PROBABILISTIC APPROACH TO OBJECT DETECTION AND RECOGNITION FOR VIDEOSTREAM PROCESSING

Abstract

Purpose: The represented research results are aimed to improve theoretical basics of computer vision and artificial intelligence of dynamical system. Proposed approach of object detection and recognition is based on probabilistic fundamentals to ensure the required level of correct object recognition. Methods: Presented approach is grounded at probabilistic methods, statistical methods of probability density estimation and computer-based simulation at verification stage of development. Results: Proposed approach for object detection and recognition for video stream data processing has shown several advantages in comparison with existing methods due to its simple realization and small time of data processing. Presented results of experimental verification look plausible for object detection and recognition in video stream. Discussion: The approach can be implemented in dynamical system within changeable environment such as remotely piloted aircraft systems and can be a part of artificial intelligence in navigation and control systems.
Мета: Представлені результати спрямовані на розвиток теоретичних засад комп'ютерного зору та штучного інтелекту динамічних систем. Запропонований підхід до виявлення та розпізнавання об'єктів базується на ймовірнісних методах забезпечення необхідного рівня правильного розпізнавання об'єктів. Методи дослідження: Представлений підхід базується на методах теорії ймовірності, статистичних методах оцінки щільності ймовірності та комп'ютерному моделюванні. Результати: Запропонований підхід для виявлення та розпізнавання об'єктів при обробці відеоданих продемонстрував ряд переваг у порівнянні з існуючими методами завдяки простоті реалізації та швидкій обробці даних. Представлені результати експериментальної перевірки виглядають перспективно для виявлення та розпізнавання об'єктів у відеопотоці. Обговорення: Підхід може бути реалізований у динамічній системі в умовах мінливого середовища, наприклад, у дистанційно пілотованих авіаційних системах, та може бути складовою штучного інтелекту в системах навігації та управління.
Цель: Представленные результаты исследования направлены на развитие теоретических основ компьютерного зрения и искусственного интеллекта в динамической системе. Предложенный подход к обнаружению и распознаванию объектов основан на вероятностных предположениях и служит для обеспечения необходимого уровня правильного распознавания объектов. Методы исследования: Представленный подход основывается на методах теории вероятности, методах статистического оценивания плотности вероятности и компьютерного моделирования для верификации. Результаты: Предложенный подход к обнаружению и распознаванию объектов при обработке видеоданных продемонстрировал ряд преимуществ по сравнению с существующими методами ввиду простоты реализации и быстрой обработки данных. Представленные результаты моделирования выглядят многообещающе для применения в задачах обнаружения и распознавания объектов в видеопотоке. Обсуждение: Описанный подход может быть реализован в динамической системе в условиях меняющейся среды, например, в дистанционно пилотируемых авиационных системах, и может быть частью искусственного интеллекта в системах навигации и управления.

Description

Keywords

Bayesian approach, BLOB, probability density function, object detection, recognition, video stream, Байєсівський підхід, виявлення об'єкту, відеопотік, розпізнавання, щільність імовірності, Байесовский подход, видеопоток, обнаружение объекта, плотность вероятности, распознавание

Citation