Method of formulating input parameters of neural network for diagnosing gas-turbine engines
dc.contributor.author | Kulyk, Mykola | en |
dc.contributor.author | Dmitriev, Sergiy | en |
dc.contributor.author | Yakushenko, Oleksandr | en |
dc.contributor.author | Popov, Oleksandr | en |
dc.date.accessioned | 2019-04-06T14:02:58Z | |
dc.date.available | 2019-04-06T14:02:58Z | |
dc.date.issued | 2013-05 | |
dc.description.abstract | A method of obtaining test and training data sets has been developed. 弻ese sets are intended for train- ing a static neural network to recognise individual and double defects in the air-gas path units of a gas-turbine engine. 弻ese data are obtained by using operational process parameters of the air-gas path of a bypass turbofan engine. 弻e method allows sets that can project some changes in the technical conditions of a gas-turbine engine to be received, taking into account errors that occur in the measurement of the gas-dynamic parameters of the air-gas path. 弻e op- eration of the engine in a wide range of modes should also be taken into account | en |
dc.identifier.issn | 1648-7788 | |
dc.identifier.uri | http://er.nau.edu.ua/handle/NAU/38320 | |
dc.language.iso | en | uk_UA |
dc.publisher | Aviation. Taylor&Francis | en |
dc.relation.ispartofseries | 17(2) 2013; | |
dc.speciality | Aviation | en |
dc.subject | gas-turbine engine | en |
dc.subject | air-gas path | en |
dc.subject | mathematical model of operational process | en |
dc.subject | neural network | en |
dc.title | Method of formulating input parameters of neural network for diagnosing gas-turbine engines | en |
dc.type | Article | en |