Forecasting of passenger traffic flow using smoothing methods and arima models

No Thumbnail Available

Date

2024-04-05

Journal Title

Journal ISSN

Volume Title

Publisher

National Avіation University

Abstract

A detailed analysis and comparison of the efficiency of smoothing methods and ARIMA models in forecasting the company's passenger traffic was performed. As a result of the research, it was established that the most effective model for forecasting passenger traffic is the ARIMA(12, 1, 0) model. This model provides sufficiently accurate forecasts that are able to take into account both the trend and seasonal variations in the time series.
Проведено детальний аналіз та порівняння ефективності методів згладжування та моделей ARIMA в прогнозуванні пасажирського трафіку компанії. В результаті дослідження було встановлено, що найефективнішою моделлю для прогнозування пасажирського трафіку є модель ARIMA(12, 1, 0). Ця модель забезпечує достатньо точні прогнози, здатні враховувати як тренд, так і сезонні варіації у часовому ряді.

Description

1. Yurchenko M. E. FORECASTING AND ANALYSIS OF TIME SERIES / Maryna Yevgeniivna Yurchenko. – Chernihiv: ChNTU, 2018. – 88 p. 2. Brownlee J. Probabilistic Model Selection with AIC, BIC, and MDL / Jason Brownlee. – 2019

Keywords

time series, traffic flow, arima model, smoothing method, часові ряди, транспортний потік, модель arima, метод згладжування

Citation

Bocharova A. Forecasting of passenger traffic flow using smoothing methods and arima models // Polit. Challenges of science today : Abstracts of ХХІV International conference of higher education students and young scientists. – K.: NAU, 2024. P. 404