Please use this identifier to cite or link to this item:
https://er.nau.edu.ua/handle/NAU/58207
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Ковтонюк, Інна Юхимівна | - |
dc.contributor.author | Ковтонюк, Вадим Сергійович | - |
dc.contributor.author | Kovtoniuk, Inna | - |
dc.contributor.author | Kovtoniuk, Vadym | - |
dc.date.accessioned | 2023-03-06T13:29:48Z | - |
dc.date.available | 2023-03-06T13:29:48Z | - |
dc.date.issued | 2021-02-26 | - |
dc.identifier.citation | Ковтонюк І.Ю. Альтернативний погляд на виведення нерівностей Белла /Інтеграція науки и практики як механізм ефективного розвитку суспільства : наук.-практ. конф., 26-27 лютого 2021р.: тези доп. – Львів, 2021. – С.143-146 | uk_UA |
dc.identifier.isbn | 978-966-992-412-4 | - |
dc.identifier.uri | https://er.nau.edu.ua/handle/NAU/58207 | - |
dc.description | 1. Einstein A. Can quantum-mechanical description of physical reality be considered complete? / A. Einstein, B. Podolsky, N. Rosen // Phys. Rev. 47 — 1935 — 777. 2. Bell J.S. On the Einstein Podolsky Rosen paradox / Bell J.S. // Physics (Long Island City, N.Y.) 1 — 1964 — 195. 3. Brunner N. Bell nonlocality / N. Brunner, D. Cavalcanti, S. Pironio, V. Scarani, S. Wehner // Rev. Mod. Phys. 86 — 2014 — 419. 4. Fine. A Hidden variables, joint probability, and the Bell inequalities / A. Fine // Phys. Rev. Lett 48 — 1982 — 291. 5. Abramsky S. The sheaf-theoretic structure of non-locality and contextuality / S. Abramsky, A. Brandenburger // New J. Phys. 13 — 2011 — 113036. 6. Farkas G. Theorie der Einfachen Ungleichungen / G. Farkas // Journal für die Reine und Angewandte Mathematik 124 — 1902 — с. 1-27. | uk_UA |
dc.description.abstract | У тезах запропоновано доведення необхідності та достатності нерівностей Белла як критерія нелокальності, спираючись на лему Фаркаша. Виконано порівняння даного підходу із загальноприйнятим, що ґрунтується на застосуванні теорії лінійного програмування. | uk_UA |
dc.description.abstract | In these theses, the proof of the necessity and sufficiency of Bell inequalities for testing nonlocality based on Farkas’ lemma is proposed. This approach is compared to the traditional one which is based on the application of linear programming. | uk_UA |
dc.language.iso | uk | uk_UA |
dc.publisher | Видавництво "Молодий вчений" | uk_UA |
dc.relation.ispartofseries | Науковий журнал"Молодий вчений";частина 2 | - |
dc.subject | нерівності Белла | uk_UA |
dc.subject | нелокальність | uk_UA |
dc.subject | лема Фаркаша | uk_UA |
dc.subject | квантова механіка | uk_UA |
dc.subject | Bell inequalities | uk_UA |
dc.subject | nonlocality | uk_UA |
dc.subject | Farkas' lemma | uk_UA |
dc.subject | quantum mechanics | uk_UA |
dc.title | Альтернативний погляд на виведення нерівностей Белла | uk_UA |
dc.title.alternative | The alternative perspective on Bell inequalities | uk_UA |
dc.type | Thesis | uk_UA |
dc.subject.lbc | I 73 | uk_UA |
dc.subject.udc | 001.89(063) | uk_UA |
Appears in Collections: | Тези наукових конференцій кафедри вищої математики |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Тези, Ковтонюк.pdf | Тези | 216.4 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.