Please use this identifier to cite or link to this item:
https://er.nau.edu.ua/handle/NAU/40477
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Zaporozhets, Artur | - |
dc.date.accessioned | 2019-10-28T07:43:51Z | - |
dc.date.available | 2019-10-28T07:43:51Z | - |
dc.date.issued | 2019-10-25 | - |
dc.identifier.citation | Zaporozhets A. System for Diagnosing Main Pipelines of Heat Networks Based on UAVs / A. Zaporozhets // International Journal “NDT Days”. – 2019. – № 1. –Vol. 2. – P. 69-77. | uk_UA |
dc.identifier.issn | 2603-4018 | - |
dc.identifier.uri | http://er.nau.edu.ua/handle/NAU/40477 | - |
dc.description | 1. Babak V., Zaporozhets A., Kovtun S., Sergienko R. Diagnosing methods analysis of bulk heating systems technical condition. The Scientific Heritage. Vol. 1, No. 14, 2017, pp. 59-65. 2. Babak V., Zaporozhets A., Kovtun S., Serhiienko R. Methods and Means of Heat Losses Monitoring for Heat Pipelines. International Journal “NDT Days”. Vol. 1, No. 2, 2018, pp. 213-221. 3. Slippey A, Ellis M., Conway B., Yun H. Heat Pipe Embedded Carbon Fiber Reinforced Polymer Composite Enclosures for Avionics Thermal Management. SAE Technical Paper. 2014-01-2189, 2014 4. Zaporozhets A., V. Eremenko, R. Serhiienko R., Ivanov S. Development of an Intelligent System for Diagnosing the Technical Condition of the Heat Power Equipment. IEEE 13th International Scientific and Technical Conference on Computer Sciences and Information Technologies (CSIT). 2018, pp. 48-51. doi: 10.1109/STC-CSIT.2018.8526742 5. Zaporozhets A., Eremenko V., Serhiienko R., Ivanov S. Methods and Hardware for Diagnosing Thermal Power Equipment Based on Smart Grid Technology. Advances in Intelligent Systems and Computing III. Vol. 871, 2019, pp. 476-489. doi: 10.1007/978-3-030-01069-0_34 6. Babak V.P., Kovtun S.I. Calibration thermoelectric heat flux sensor in the diagnostic system of thermal state of electric machines. Tekhnichna elektrodynamika. №1, 2019, pp. 89-92. 7. Dimov D., Velinov K. Application Fields of the Thermal Imaging Method. International Journal “NDT Days” Vol. 1, Issue 2, 2018, pp. 145-154. 8. Zaporozhets A. Analysis of methods for diagnosing heat energy objects. Science-based technologies. Vol. 35, No. 3, 2017, pp. 259-265. doi: 10.18372/2310-5461.35.11846 9. Babak V., Zaporozhets A., Sverdlova A. Smart Grid Technology in Monitoring of Power System Objects. Industrial Heat Engineering. Vol. 38, No. 6, 2016, pp. 71-81. doi: 10.31472/ihe.6.2016.10 10. Anweiler S., Piwowarski D., Ulbrich R. Unmanned Aerial Vehicles for Environmental Monitoring with Special Reference to Heat Loss. International Conference Energy, Environmental and Material Systems (EENS 2017). Vol. 19, 2017. 11. Zaporozhets A., Sverdlova A. Peculiarities of application of Smart Grid technology in systems for monitoring and diagnostics of heat-and-power engineering objects. Technical Diagnostics and Non-Destructive Testing. No. 2, 2017, pp. 33-41. doi: 10.15407/tdnk2017.02.05 12. Babak V., Zaporozhets A., Sverdlova A. Diagnostics of technical condition of thermal power objects based on distributed computing infrastructure. Scientific Proceedings on HTCM. Vol. 187, №1, 2016, pp. 85-89. 13. Chiesa S., Fioriti M., Fusaro R. MALE UAV and its systems as basis of future definitions. Aircraft Engineering and Aerospace Technology. Vol. 88, Issue 6, 2016, pp. 771-782. 14. Anweiler S., Piwowarski D. Multicopter platform prototype for environmental monitoring. Journal of Cleaner Production. Vol. 155, Part 1, 2017, pp. 204-211. doi: 10.1016/j.jclepro.2016.10.132 15. Carlson J, Menicucci D., Vorobieff P., Mammoli A., He H. Infrared imaging method for flyby assessment of solar thermal panel operation in field settings. Applied Thermal Engineering. Vol 70, Issue 1, 2014, pp, 163-171. doi: 10.1016/j.applthermaleng.2014.05.008 16. Harvey M.C., Rowland J.V., Luketina K.M. Drone with thermal infrared camera provides high resolution georeferenced imagery of the Waikite geothermal area, New Zealand. Journal of Volcanology and Geothermal Research. Vol. 325, 2016, pp. 61-69. doi: 10.1016/j.jvolgeores.2016.06.014 17. Nishar A., Richards S., Breen D, Robertson J., Breen B. Thermal infrared imaging of geothermal environments and by an unmanned aerial vehicle (UAV): A case study of the Wairakei – Tauhara geothermal field, Taupo, New Zealand. Renewable Energy. Vol. 86, 2016, pp. 1256-1264. doi: 10.1016/j.renene.2015.09.042 18. Pajares G. Overview and Current Status of Remote Sensing Applications Based on Unmanned Aerial Vehicles (UAVs). Photogrammetric Engineering & Remote Sensing. Vol 81, Issue 4, 2015, pp. 281-329. doi: 10.14358/PERS.81.4.281 19. Tsanakas J.A., Ha L., Buerhop C. Faults and infrared thermographic diagnosis in operating c-Si photovoltaic modules: A review of research and future challenges. Renewable and Sustainable Energy Reviews. Vol. 62, 20166, 695-709. doi: 10.1016/j.rser.2016.04.079 20. Yahyanejad S., Rinner B. A fast and mobile system for registration of low-altitude visual and thermal aerial images using multiple small-scale UAVs. ISPRS Journal of Photogrammetry and Remote Sensing. Vol. 104, 2015, pp. 189-202. doi: 10.1016/j.isprsjprs.2014.07.015 21. Kovacs M., Gaman G.A., Pupazan D., Calamar A., Irimia A. Research on the potentiality of using aerial vehicles for monitoring the environment agent – air. Journal of Environmental Research and Protection. Vol. 13, Issue 3, 2016, pp. 33-38. 22. Loginov I.D. Processing and segmentation of thermal images. Young Scientist. Vol. 147, №13, 2017, pp. 62-71. | uk_UA |
dc.description.abstract | The possibilities of thermal aerial photography for detecting different types of defects on pipelines in a functioning state are explored. The characteristics and capabilities of the proposed set of devices for monitoring thermal losses in pipelines based on quadrocopters are considered. The created hardware-software complex for diagnosing the state of trunk pipelines of heat networks based on the UAV is considered. The obtained experimental results, confirming the possibility of differences in the technical condition of pipelines. | uk_UA |
dc.language.iso | en | uk_UA |
dc.publisher | NDT Day | uk_UA |
dc.subject | UAV | uk_UA |
dc.subject | main pipeline | uk_UA |
dc.subject | heat networks | uk_UA |
dc.subject | diagnostics | uk_UA |
dc.subject | thermal aerial photography | uk_UA |
dc.subject | hardware | uk_UA |
dc.title | System for Diagnosing Main Pipelines of Heat Networks Based on UAVs | uk_UA |
dc.type | Article | uk_UA |
Appears in Collections: | Наукові праці співробітників НАУ (проводиться премодерація, колекція НТБ НАУ) |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
JNDTD-v2-n1-a09.pdf | 722.4 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.