Please use this identifier to cite or link to this item: https://er.nau.edu.ua/handle/NAU/38775
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGoncharenko, Andriy Viktorovichen
dc.date.accessioned2019-05-21T16:25:45Z-
dc.date.available2019-05-21T16:25:45Z-
dc.date.issued2019-04-23-
dc.identifier.citationGoncharenko A. V. Symmetrical solution for a reliability problem within the multi-optional uncertainty degree evaluation doctrine / A. V. Goncharenko // Матеріали XIV міжнародної науково-технічної конференції “АВІА-2019”. (23-25 квітня 2019 р., Київ). – К.: НАУ, 2019. – pp. 17.1-17.5.uk_UA
dc.identifier.urihttp://er.nau.edu.ua/handle/NAU/38775-
dc.descriptionIt is visible that intensities of 12 and 10 do not calibrate the optimal options’ dispositions. In that particular case, none of the flows from the state “1” is taken into account. The solutions in the view of either equation (1) or its symmetrical reflection solution as equation (5) are the general ones. That is, the partial cases are obtained from them. Objective functional for procedures (1)-(6), like proposed in references [8-16], is as follows [8-10, p. 35, (55)], [11, p. 90, (11)] and expressed with formula (7):en
dc.description.abstractThe fifth part of the generalization for the degrading state maximal probability determination in the framework of the hybrid-optional functions entropy conditional optimality doctrine initiated in the preceding reports was presented in the given report. The issue will be continued with a following sequence of reports.en
dc.language.isoenen
dc.publisherNational Aviation Universityen
dc.subjectaircraften
dc.subjectmaintenanceen
dc.titleSymmetrical solution for a reliability problem within the multi-optional uncertainty degree evaluation doctrineen
dc.typeArticleen
Appears in Collections:The Fourteenth International Scientific Conference "AVIA-2019"

Files in This Item:
File Description SizeFormat 
4753.pdfThe Fourteenth International Scientific Conference "AVIA-2019", Symmetrical solution for a reliability problem within the multi-optional uncertainty degree evaluation doctrine632.02 kBAdobe PDFView/Open
Goncharenko_A_V_References.docReferences146 kBMicrosoft WordView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.