The estimation of microalgae cultivation productivity for biofuel production in nigerian congitions
Loading...
Date
2019
Journal Title
Journal ISSN
Volume Title
Publisher
Наукоємні технології
Abstract
Microalgae constitute the main source of materials that can be used as raw materials for many high value
bioproducts, the most prominent ones of which are vitamins, lipids, chlorophyll and carotenoids.The key to economic
production of biomass and bioproducts from microalgae is to optimize their growth conditions. Microalgae require
optimal lighting conditions for efficient photosynthesis. This article focuses on the conditions for growing microalgae
mostly chlorella sp. Microalgae require optimal lighting conditions for efficient photosynthesis. Photoperiod, light
intensity and wavelength of light are some of the important factors affecting the rate of photosynthesis. Light conditions
directly affect the growth, pigment content and protein amount in microalgae. The aim of this paper is to model the
productivity of biomass and the accumulation of lipids in algae, as well as to calculate the productivity when cultivated
under weather conditions in different regions of Nigeria.The intensity of solar radiation per day is usually one of the
variables collected by meteorological stations in Nigeria. Satellite derived solar irradiance over 25 locations in the 5
climatic zones of Nigeria (tropical rainforest, Guinea savannah , Sahel savannah , Sudan savannah , and Mangrove
swamp forest ) was analyzed.
This article analysis the prospect of production of biofuel of the third generation using microalgal biomass in the
weather conditions typical regions of Nigeria. Taking into account the average monthly density of solar radiation in the
main regions of Nigeria kWh/m2.day to estimate the possibiity of achieving crop yields of microalgal biomass per
square meter of cultivated areas in the weather conditions of Nigeria.
In addition, advantages and current limitations of biodiesel production, quantitative and qualitative feasibility of
microalgal biodiesel, and its economic feasibility are discussed.
Description
1. Dutta K., Achlesh D., Jih-Gaw L. Retrospective
for alternative fuels. First to fourth generation
Renewable Energy. 2014. V. 69. Pp. 114–122.
2. Elegbede I. O., Cinthya G. Algae Biofuel in the
Nigerian Energy Context. Environemtal and Climate
Technologies. 2016. Vol. 17(1). Pp. 44–60.
3. Shamanskyi S., Boichenko S., Lesia P.
Estimation of microalgae cultivation productivity for
biofuel production in Ukaine condition. Proceedings of
National Aviation University. 2018. № 3. Pp. 67–77.
4. Asmare A., Berhanu M., Demessie A., Ganti S.
Murthy. Theoretical Estimation the Potential of Algal
Biomass for Biofuel Production and Carbon
Sequestration in Ethiopia. International Journal of
Renewable Energy Research. 2013. Vol. 3. Pp. 560–570.
5. Birhanu A. A., Ayalew S. Review on Potential
and Status of Biofuel Production in Ethiopia. Journal
of Plant Sciences. 2017. Vol. 5(2). Pp. 82–89.
6. Шаманський С. Й., Бойченко С. В., Павлюх Л. І., Бойченко М. С. Оцінка масової та
ліпідної продуктивності культивування мікроводоростей в умовах Київської області для виробництва
біопалива. Modern methods, innovations and
experience of practical application in the field of
technical sciences. International research and practice
conference (27–28 December 2017, Radom, Republic
of Poland). 2017. Pp. 87–90.
7. Шаманський С. Й., Бойченко С. В., Аденій К. О. Економічна оцінка виробництва біопалива
з мікроводоростей в Україні. Екологічна безпека як
основа сталого розвитку суспільства. Європейський досвід і перспективи. ІІІ Міжнародна науково-практична конференція (14 вересня 2018 р.,
Львів, Україна). 2018. С. 214.
8. Zhu L. Microalgal culture strategies for biofuel
production. Biofuels Bioproducts and Biorefining.
2015. Vol. 9. Pp. 801–804.
9. Шаманський С. Й. Оцінювання енергоекономічної ефективності культивування мікроводоростей для виробництва біопалива в Україні.
Екологічна безпека. 2018. № 1(25). С. 52–60.
10. Chiemeka I. U., Chineke T. C. Evaluating the
global solar energy potential at Uturu, Nigeria.
International Journal of Physical Sciences. 2009. Vol.
4(3). Pp. 115–119.
11. Jacovides C. P., Timvios F. S., Papaioannou
G., Asimakopoulos D. N., TheofilouC. M. Ratio of
PAR to Broadband Solar Radiation Measured in
Cyprus. Agricultural and Forest Meteorology. 2004.
Vol. 121. Pp. 135–140.
12. Hodaifa G., Martinez M. E., Sanchez S. Use of
industrial wastewater from olive-oil extraction for biomass
production of Scenedesmus obliquus. Bioresource
Technology. 2008. Vol. 99. Pp. 1111–1117.
13. Шаманський С. Й., Бойченко С. В. Інноваційні екологічно безпечні технології у
водовідведенні. Монографія. Видавництво «Центр
учбової літератури», 2018. 320 с.
14. Delgadillo-Mirquez L. Nitrogen and Phosphate
Removal from Wastewater with a Mixed Microalgae
and Bacteria Culture. Biotechnology Reports. 2016.
№11. Pp. 18–26.
15. Shamanskyi S., Boichenko S. Development of
Environmentally Safe Technological Water Disposal
Scheme of Aviation Enterprise. Eastern-European
Journal of Enterprise Technologies. 2016. Vol.
6/10(84). Pp. 49–57.
16. Shamanskyi S. I., Boichenko S. V. Chapter 11.
Environment-Friendly Technology of Airport’s
Sewerage. Advances in Sustainable Aviation. under
general editorship of Tahir Hikmet Karako, C. Ozgur
Colpan, Yasin Şöhret. Springer International
Publishing AG 2018. Pp. 161–175.
17. Skjànes K., Rebours C., Lindblad P. Potential
for green microalgae to produce hydrogen,
pharmaceuticals and other high value products in a
combined process. Critical Reviews in Biotechnology.
2013. Vol. 33. Iss. 2. Pp. 172–215.
18. Lau N., Matsui S., Abdullah A. A. Cyanobacteria:
Photoautotrophic Microalgal Factories for the
Sustainable Synthesis of Industrial Products. Hindawi
Publishing Corporation. BioMed Research
International. Volume 2015. 9 p.
19. Van Wambeke, Obernosterer F., Mountin T.,
Duhamel S., Ulloa O., Claustre H. Heterotrophic
bacterial production in the eastern South Pacific:
longitudinal trends and coupling with primary
production. Biogeosciences. 2008. Vol. 5. Pp. 157–169.
20. WangJ., Yang H., Wang F. Mixotrophic
cultivation of microalgae for biodiesel production:
status and prospects. Applied biochemistry and
biotechnology. 2014. Vol. 172. Pp. 3307–3329.
21. Yang J. S., Rasa E., Tantayotai P., Scow K. M,
Yuan H. L., Hristova K. R. Mathematical model of
Chlorella minutissima UTEX2341 growth and lipid
production under photoheterotrophic fermentation conditions. Bioresource Technology. 2011. Vol. 102.
Pp. 3077–3082.
22. Sudhakar K., Premalatha M. Theoretical
Assessment of Algal Biomass Potential for Carbon
Mitigation and Biofuel Production. Iranical Jornal of
Energy and Environment. 2012. Vol. 3. Pp. 232–240.
23. Osinowo A. A., Okogbue E. C., Ogungbenro S. B.,
FashanuO. Analysis of Global Solar Irradiance over
Climatic Zones in Nigeria for Solar Energy
Applications. Journal of Solar Energy. Volume 2015.
Article ID 819307. 9 p.
Keywords
Biofuel, Microalgae, Microalgal Biomass, irradiance, solar radiation