Please use this identifier to cite or link to this item:
https://er.nau.edu.ua/handle/NAU/29423
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Prochorenko, I | - |
dc.contributor.author | Tymoshenko, N | - |
dc.contributor.author | Galchenko, S | - |
dc.date.accessioned | 2017-06-15T18:41:18Z | - |
dc.date.available | 2017-06-15T18:41:18Z | - |
dc.date.issued | 2016 | - |
dc.identifier.uri | http://er.nau.edu.ua/handle/NAU/29423 | - |
dc.description.abstract | The task is to build a neural network model depending on residual knowledge the trainees with whom they come into the labor market. Neural network model makes it possible with enough precision to predict the level of professional training according to their individual abilities. | uk_UA |
dc.language.iso | en | uk_UA |
dc.publisher | Aviation in the XXI-st century. Safety in aviation and space technologies: the seventh world congress, 19-21 of september 2016: abstracts. – K., 2016. – V.1. – P. 1.1.4-1.1.6. | uk_UA |
dc.title | Neural network model for predicting the level of residual knowledge of the subjects of study | uk_UA |
dc.type | Thesis | uk_UA |
Appears in Collections: | Тези доповідей на конференціях кафедри автоматизації та енергоменеджменту |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Прохоренко И.pdf | Тези доповіді | 470.52 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.