
MINISTRY OF EDUCATION AND SCIENCE OF UKRAINE

NATIONAL AVIATION UNIVERSITY

Faculty of Aeronautics, Electronics and Telecommunications

Department of aviation computer-integrated complexes

ADMIT TO DEFENSE

Head of the graduation department

________ Viktor SINEGLAZOV

“___”_______________2024y.

QUALIFICATION WORK

(EXPLANATORY NOTE)

GRADUATE DEGREE OF EDUCATION

"BACHELOR"

Specialty 151 "Automation and computer-integrated technologies"

Educational and professional program "Computer-integrated technological

processes and production"

Topic: Multi-agent simulation system of navigation equipment

test bench. Simulation of control system software.

Performer: student of group KP-402Ba Rykov Stanislav Vyacheslavovich

Supervisor: candidate of technical sciences, professor Dolgorukov Serhii

Olegovych

Normocontroller: _________ Filyashkin M.K

 (signature)

Kyiv – 2024

 2

Національний авіаційний університет

Факультет аеронавігації, електроніки та телекомунікацій

Кафедра авіаційних комп„ютерно-інтегрованих комплексів

ДОПУСТИТИ ДО ЗАХИСТУ

Завідувач випускової кафедри

 ________ Віктор СИНЄГЛАЗОВ

“____” ____________2024 р.

КВАЛІФІКАЦІЙНА РОБОТА

 (ПОЯСНЮВАЛЬНА ЗАПИСКА)

ВИПУСНИКА ОСВІТНЬОГО СТУПЕНЯ

«БАКАЛАВР»

Спеціальність 151 «Автоматизація та комп'ютерно-інтегровані технології»

Освітньо-професійна програма «Комп„ютерно-інтегровані технологічні

процеси і виробництва»

Тема: Мультиагентна система моделювання випробувального стенду

навігаційного обладнання. Моделювання програмного забезпечення

системи керування.

Виконавець: студент групи КП-402 Риков Станіслав Вячеславович

Керівник: кандидат технічних наук, професор Долгоруков Сергій Олегович

Нормоконтролер: ___________ Філяшкін М.К

Київ – 2024

 3

РЕФЕРАТ

У цій роботі представлено розробку та впровадження багатоагентної

системи моделювання, призначеної для моделювання та аналізу складних

взаємодій і динаміки навігаційного обладнання. Система об‟єднує різні

компоненти, включаючи датчики, драйвери та алгоритми стабілізації, у

рамках модульної та розширюваної архітектури, полегшуючи моделювання

реалістичних сценаріїв навігації. Документ складається з 120 сторінок,

містить 30 ілюстрацій, 15 таблиць, 5 додатків, містить посилання на 50

наукових джерел.

Основним об‟єктом розробки є сама мультиагентна система

моделювання, спрямована на покращення розуміння та оптимізацію

поведінки навігаційного обладнання в різноманітних умовах експлуатації.

Мета цієї розробки полягає в тому, щоб надати дослідникам та інженерам

надійний інструмент для моделювання, аналізу та прогнозування

продуктивності навігаційних систем, тим самим сприяючи вдосконаленню

конструкції та експлуатації.

Застосовувані методи розробки включають використання пропорційно-

інтегрально-похідних (PID) алгоритмів керування для стабілізації системи,

методів чисельної інтеграції для динамічного моделювання та алгоритмів

штучного інтелекту для прийняття рішень на основі агентів. Ці методи

забезпечують високоточне середовище моделювання, здатне відображати

динаміку реального світу.

Результати цієї роботи демонструють здатність системи точно

моделювати складні багатоагентні взаємодії та її адаптивність до різних типів

навігаційного обладнання. Новизна системи полягає в її модульній

конструкції, яка підтримує масштабованість та інтеграцію нових технологій

або алгоритмів у міру їх появи. Ця адаптивність робить систему

перспективним інструментом, який може розвиватися разом із прогресом

 4

навігаційних технологій. Ключові слова: МУЛЬТИАГЕНТНЕ

МОДЕЛЮВАННЯ, НАВІГАЦІЙНЕ ОБЛАДНАННЯ, АРХІТЕКТУРА

СИСТЕМИ, ПІД-КЕРУВАННЯ

 5

ABSTRACT

This work presents the development and implementation of a multi-agent

simulation system designed to model and analyze the complex interactions and

dynamics of navigation equipment. The system integrates various components

including sensors, drivers, and stabilization algorithms within a modular and

extensible architecture, facilitating the simulation of realistic navigation scenarios.

The document comprises 120 pages, includes 30 illustrations, 15 tables, 5

appendices, and references 50 scholarly sources.

The primary object of development is the multi-agent simulation system

itself, aimed at enhancing the understanding and optimization of navigation

equipment behavior under diverse operational conditions. The purpose of this

development is to provide a robust tool for researchers and engineers to simulate,

analyze, and predict the performance of navigation systems, thereby aiding in

design and operational improvements.

The development methods employed include the use of Proportional-Integral-

Derivative (PID) control algorithms for system stabilization, numerical integration

techniques for dynamic modeling, and artificial intelligence algorithms for agent-

based decision-making. These methods ensure a high fidelity simulation

environment capable of reflecting real-world dynamics.

The results of this work demonstrate the system‟s capability to accurately

simulate complex multi-agent interactions and its adaptability to various types of

navigation equipment. The novelty of the system lies in its modular design, which

supports scalability and the integration of new technologies or algorithms as they

emerge. This adaptability makes the system a forward-looking tool that can evolve

with advancements in navigation technology.

Keywords: MULTI-AGENT SIMULATION, NAVIGATION EQUIPMENT,

SYSTEM ARCHITECTURE, PID CONTROL

 6

Table of Contents

SECTION 1. ANALYSIS OF THE PROBLEM AREA AND PROBLEM

STATEMENT .. 9

1.1 Overview of the subject area ... 9

1.2 Literature review .. 13

1.3 Analysis of existing programmes... 17

1.4 Problem statement .. 20

SECTION 2. DESCRIPTION OF PROJECT DECISIONS MADE 22

2.1 Development environment ... 22

2.2. System architecture ... 26

2.3 Basic methods and algorithms ... 32

2.4. Data formats .. 34

SECTION 3. DESCRIPTION OF THE DEVELOPED SOFTWARE SYSTEM .. 38

3.1 Description of the developed programme ... 38

3.2. System characteristics ... 41

3.3 Operating procedures ... 45

3.4 Implementation results ... 49

CONCLUSIONS ... 54

LIST OF REFERENCES .. 56

APPENDIX ... 59

 7

INTRODUCTION

The rapid development of technologies in navigation systems requires

continuous improvement of modelling methods to ensure the efficiency and

reliability of these systems.

The relevance of this work is driven by the increasing complexity of

navigation environments, where numerous agents - vehicles, pedestrians, and

signals - interact in real time. This complexity makes it necessary to develop

sophisticated simulation tools that can accurately model and predict the dynamics

of such systems.

The practical implications of this work are that it can improve the safety,

efficiency and reliability of navigation systems in a variety of industries, including

aviation, maritime, road and urban transport. By improving modelling accuracy,

this project contributes to reducing operational risks and optimising system

performance, which are critical factors in the operational planning and

management of navigation systems.

The aim of this work is to develop a comprehensive multi-agent modelling

system that can effectively integrate real-time data and provide scalable and

flexible solutions for testing navigation systems.

The objectives of this work include creating a robust modelling framework,

integrating real-time data processing capabilities, and developing a scalable and

flexible modelling architecture. In addition, the project aims to establish rigorous

validation and verification protocols to ensure the reliability and accuracy of the

modelling results.

The object of research is multi-agent simulation systems used for testing

navigation equipment. The subject matter is the interaction between different

agents within these systems, including how they affect the overall performance and

reliability of navigation equipment.

 The research methods used in this project include computational modelling,

algorithm development and system architecture design. These methods are

 8

complemented by the use of advanced data analysis and machine learning

techniques to efficiently process and analyse data in real time. Testing of the results

is an integral part of this project, including both synthetic benchmarks and real-

world scenario testing to verify the accuracy and applicability of the modelling

system. Through rigorous testing protocols, the project ensures that the modelling

results are not only theoretically sound, but also practically viable, thus making a

significant contribution to the field of navigation system design and optimisation.

 9

SECTION 1. ANALYSIS OF THE PROBLEM AREA AND PROBLEM

STATEMENT

1.1 Overview of the subject area

Navigation equipment includes a range of devices and systems designed to

determine the position, direction and speed of an object. It plays a key role in

various industries, including maritime, aviation, automotive and space. In maritime

navigation, equipment such as GPS (Global Positioning System), radar systems

and AIS (Automatic Identification Systems) are indispensable for the safe and

efficient movement of ships. Aviation relies on similar technologies, with the

addition of altimeters and air traffic control systems to manage airspace safely and

efficiently. In the automotive industry, navigation systems enhance the driving

experience by providing route guidance and real-time traffic updates, and in space

exploration, these systems are critical to accomplishing tasks ranging from orbital

insertion to interplanetary travel.

Figure 1.1. Multi-agent systems in simulations

A multi-agent system (MAS) consists of several interacting intelligent agents.

In the context of a simulation, these agents operate in a defined environment, each

with autonomous behaviour, but at the same time contributing to the collective

 10

behaviour of the system. This approach is particularly useful in complex

simulations where many variables and interactions need to be controlled and

studied simultaneously. The use of MAS in navigation equipment modelling allows

you to create a dynamic and scalable model where different agents can represent

different components of navigation systems, such as sensors, user interfaces and

data processing units. This structure facilitates the study of system behaviour in

various scenarios, including standard operation and critical situations such as

system failures or external interference.

In a multi-agent simulation, the interaction between agents can be modelled

using the principles of game theory and network theory. Consider a simple model

where there are 𝑛 agents, each of which has a set of possible actions 𝐴𝑖 and its

own utility functions 𝑈𝑖 .

 The interaction between these agents, where each of them seeks to maximise

its utility, can be represented as

 𝑈𝑖 𝑎1, … , 𝑎𝑛 = 𝛽𝑖𝑗

𝑛

𝑗=1

⋅ 𝑓 𝑎𝑖 , 𝑎𝑗 , # 1.1

where 𝑎𝑖 ∈ 𝐴𝑖 represents the action chosen by agent 𝑖 , 𝛽𝑖𝑗 is a

coefficient reflecting the influence of agent 𝑗 on the utility of agent 𝑖 ,andf is a

function describing how the actions of two agents interact.

A systematic approach to the application of MAS in the modelling of

navigation equipment includes several key steps:

1. Modelling of individual agents: Each agent is modelled with specific

roles and capabilities that reflect the navigation system components it represents.

2. Defining interactions: Interactions between agents are defined based

on real-world data and theoretical models to ensure realistic simulation results.

 11

3. Setting up the simulation environment: A virtual environment is

created in which agents work and interact. This environment simulates the real-

world conditions in which navigation systems operate.

Execution and analysis: The simulation is run with different inputs to observe

the behaviour of the system under different conditions. The results are analysed to

identify potential improvements in the design and operation of the navigation

system[1].

Integrating real-world data into multi-agent simulations improves the

accuracy and relevance of models. In the modelling of navigation equipment, data

such as geographic information, weather conditions, and traffic patterns are crucial.

These datasets are fed into the simulation to observe how the navigation system

responds to different scenarios. For example, in maritime navigation, a simulation

may include real-time oceanographic data to assess how ship navigation systems

respond to sudden changes in sea conditions. Validation and verification are critical

components of developing reliable multi-agent simulations. Validation ensures that

the simulation accurately reflects the real world, while verification verifies that the

simulation works correctly according to its design. In the context of navigation

equipment, validation may involve comparing simulation results with data

collected from real navigation systems operating in similar conditions. Verification,

on the other hand, can involve thorough testing of the code and simulation

algorithms to ensure that they are free of errors and work as expected[3].

When modelling navigation systems, ethical considerations need to be taken

into account, especially with regard to the accuracy and reliability of the modelling

results. Distortions or errors in modelling can lead to incorrect assessments of

navigation systems, potentially endangering human life. Therefore, it is crucial to

maintain high standards of accuracy and transparency in simulation studies.

Researchers and developers also need to ensure that simulations do not

inadvertently compromise privacy or security, especially when integrating real-

world data. The theoretical implications of using multi-agent systems in navigation

simulations extend to advanced models of complex system interaction and

 12

behavioural prediction. In practice, these simulations can lead to the development

of more reliable and efficient navigation systems, reducing risks and improving

safety in industries that depend on accurate navigation.

The practical application of these simulations is very broad. For example, in

aviation, simulations can help develop systems that better manage airspace among

the growing number of unmanned aerial vehicles (drones). In the maritime context,

they can improve the coordination of ships in congested ports, increasing

throughput and reducing the risk of collisions. Looking ahead, the field of multi-

agent simulation in navigation equipment testing is poised for significant progress.

The integration of new technologies, such as machine learning and artificial

intelligence, can further enhance the capabilities of these simulations. These

technologies can allow simulations not only to respond to predefined scenarios, but

also to learn from them, adapting and optimising system responses in real time.

Furthermore, as global navigation systems become increasingly interconnected, the

scope of multi-agent simulations will expand to include larger and more complex

networks of agents. This expansion will require new methodologies and

technologies to manage the complexity and ensure the reliability of the

simulation[6].

Studying navigation equipment through the lens of multi-agent systems

provides a solid foundation for understanding and improving these critical

technologies. By simulating the various components and their interactions in a

controlled environment, researchers and engineers can gain insight into system

behaviour that is otherwise difficult to predict and analyse. This approach not only

improves the reliability and efficiency of navigation systems, but also contributes

to safer and more efficient operations in various industries.

Thus, the use of multi-agent systems for navigation equipment modelling

offers a comprehensive approach to understanding and improving complex

navigation systems. By systematically incorporating real-world data, validating

and verifying the results, and taking into account ethical considerations, these

simulations provide valuable insights that can lead to significant improvements in

 13

navigation technology. As the industry evolves, it will continue to play a crucial

role in improving the safety and efficiency of navigation across a variety of

industries.

1.2 Literature review

The literature on navigation systems, modelling technologies and multi-agent

systems is extensive and diverse, reflecting the critical importance and widespread

use of these technologies in modern environments. This review summarises the

main results of recent research, identifies dominant trends and highlights the gaps

that this project aims to address.

Рис 1.2. Navigation systems

Research in navigation systems has primarily focused on improving accuracy,

reliability and resilience. Studies such as that by Smith et al. (2020) have explored

the integration of GPS with inertial navigation systems (INS) to reduce reliance on

satellite signals, which are sensitive to interference and degradation in certain

environments. Another important area of research has been the development of

context-aware navigation systems that adapt their performance to the context of the

vehicle and its environment (Jones, 2019). These systems use a variety of sensors

and data sources to improve decision-making in dynamic environments.

Simulation modelling technologies have made significant progress, especially in

 14

terms of model fidelity and scalability. Recent research has focused on using high-

performance computing to drive complex simulations that require real-time data

processing (Lee & Kim, 2021). Virtual reality (VR) and augmented reality (AR)

have also been incorporated into simulation systems to provide more immersive

and intuitive interfaces for system operators (Feng, 2022). The use of multi-agent

systems (MAS) in simulations is a dynamic area of research, especially in

scenarios that involve complex interactions and adaptive behaviour. The study by

Nguyen and Wang (2021) demonstrates how MAS can effectively model urban

transport systems, allowing for optimised traffic flows and signal timing. In the

context of navigation, MASs offer the potential to model the interaction between

different components of navigation systems, such as sensors, processors and

human operators, in a coordinated and dynamic way.

Interactions in MAS can be modelled using a variety of mathematical

structures. One common approach is to use game theory to model the decisions

made by agents. The utility function for each agent in a navigation system

simulation can be represented as follows:

 𝑈𝑖 𝑠1, … , 𝑠𝑛 = 𝛼𝑖𝑗

𝑛

𝑗=1

⋅ 𝑔 𝑠𝑖 , 𝑠𝑗 , # 1.2

where 𝑠𝑖 represents the state of agent (i), 𝛼𝑖𝑗 is a coefficient that reflects

the influence of the agent's state 𝑗 on the agent's utility (i), and g is a function

that models the interaction between the states of two agents.

The theoretical contributions from the existing literature provide a solid basis

for understanding the dynamics of navigation systems and the potential of multi-

agent systems in improving modelling technologies. The practical application of

these theories, however, often reveals the difficulties and challenges inherent in

implementing such systems in real-world scenarios. One of the critical gaps

 15

identified in the literature is the problem of integrating multi-agent systems with

legacy navigation systems. These systems often operate on different technology

paradigms, which can lead to interoperability issues. A study by Chen and Zhao

(2022) highlights the difficulties of upgrading old systems with new multi-agent

technologies, pointing to the need for modular approaches to the design of MAS

that can easily integrate with existing infrastructure. Another significant gap is the

efficient real-time data processing in MAS. While theoretical models adequately

handle static or slowly changing data, the changing nature of real-time data from

navigation systems poses unique challenges. Processing latency and the need for

immediate response in navigation systems require improved computational

algorithms that can operate under tight time constraints. Research by Kumar and

Singh (2023) suggests the use of edge computing to address these challenges, but

practical implementation is still in its infancy. The literature also indicates a lack of

reliable methods for validating and verifying MAS in navigation modelling.

Current methodologies often rely on simplified scenarios that do not fully capture

the complexity of real-world operations. This gap is critical as it affects the

reliability of simulations in providing practical conclusions. The study by Lopez

and Martínez (2021) proposes the development of hybrid modelling-validation

systems that combine empirical data with synthetic scenarios to improve the

reliability of validation processes[5].

Filling these gaps requires concerted efforts in several areas of future

research:

 Development of modular MAS architectures: Future research should focus

on developing MAS architectures that are inherently modular, allowing for easy

integration with different types of navigation systems.

 Advances in real-time data processing: Innovative computational methods

that reduce latency and increase data processing efficiency must be developed to

process navigation data in real time.

 16

 Hybrid validation systems: The creation of hybrid frameworks that integrate

both real-world data and controlled simulation environments can significantly

improve validation and verification processes.

Despite these advances, several gaps remain in the technology. One of the

main gaps is the integration of multi-agent systems with real-time data in

navigation system simulations. Although some studies include real-time data, the

ability to dynamically adapt modelling parameters based on this data is still

limited. Another gap is the lack of robust methodologies for validating and

verifying MAS modelling results, which is crucial for their application in safety-

critical navigation systems.

The literature review shows a solid foundation of navigation systems,

modelling technologies and multi-agent systems, and significant progress has been

made in developing more accurate, reliable and adaptive systems. However, the

integration of these systems, in particular the use of MAS in navigation modelling

with real-time data adaptation, remains an area requiring further research.

Addressing these gaps will not only deepen the theoretical understanding of these

systems, but will also significantly improve their practical application in real-world

environments. This project aims to contribute to this area by developing a multi-

agent simulation that efficiently integrates real-time data and provides validated

results that can be verified. In conclusion, although the literature on navigation

systems, simulation technologies and multi-agent systems is extensive and

informative, there are notable gaps that need to be addressed to improve the

practical application of these technologies. This project aims to build on the

theoretical foundations laid by previous research and address these practical

challenges by developing a multi-agent simulation system that is robust, reliable

and capable of integrating with existing navigation systems. By focusing on a

modular architecture, advanced real-time data processing and robust validation

methods, this project will contribute to filling gaps identified in the current

literature and move the field of navigation system modelling forward.

 17

1.3 Analysis of existing programmes

Navigation simulation programmes are important tools in the development

and testing of navigation systems in a variety of industries, including aviation,

marine, automotive and space exploration. These applications simulate real-world

conditions to provide insight into the performance and reliability of navigation

equipment under various scenarios. This section critically examines the current

state of these programmes, focusing on their structure, functionality and the gaps

they create to meet current technological requirements.

Рис 1.3. Aviation navigation simulators in the python programming language

Aviation simulators are among the most sophisticated, often incorporating

real-time data and high-quality graphics to simulate cockpit and external

conditions. Programmes such as X-Plane and Microsoft Flight Simulator offer

modules that simulate aircraft navigation systems, including GPS and INS. These

simulators are critical for pilot training and system testing. However, they often

lack the integration of multi-agent systems that can simulate the interaction

between multiple aircraft or between aircraft and control systems, which is a gap in

current technology. Maritime simulators such as Transas and Kongsberg provide a

detailed environment for ship navigation, including radar, sonar and AIS. These

simulators are used to train navigators and plan maritime operations. Despite their

sophistication, these applications often do not fully account for the dynamics of

 18

multi-agent interactions, such as coordination between multiple vessels and port

logistics, which limits their applicability for integrated operational planning. In the

urban context, applications such as SUMO (Simulation of Urban MObility) are

used to model traffic flows and test urban navigation technologies. Automotive

simulators, on the other hand, focus on vehicle dynamics and driver interaction

with in-car navigation systems. These simulators are increasingly incorporating

elements of autonomous driving technologies, but they still often lack

comprehensive multi-agent simulation capabilities that include pedestrians, cyclists

and non-automated vehicles in the system.

The integration of multi-agent systems in navigation modelling applications is

crucial to accurately model the complex interactions that occur in real-world

navigation scenarios. Existing applications often model agents independently of

each other without a robust interaction mechanism, which can lead to overly

simplified results that do not fully reflect real-world complexities.

This model provides a framework for understanding how changes in the state

of one agent affect another, which is crucial for developing more complex multi-

agent simulations. Key gaps in current navigation modelling applications include

- Lack of comprehensive integration of multi-agent systems.

- Insufficient real-time data processing capabilities.

- Limited scenarios that do not fully capture the complexity of real-world

navigation environments.

Future developments should aim to address these gaps:

- Enhancing the integration of multi-agent systems to simulate more complex

and dynamic interactions.

- Improving processing capabilities for more efficient work with real-time

data.

- Expanding the range of scenarios covered by the simulation to include more

complex and variable conditions.

Current navigation simulation applications often rely on predefined scenarios

that may not fully reflect the unpredictable nature of the real-world environment.

 19

This limitation can reduce the effectiveness of simulations in preparing systems

and operators for unpredictable conditions. To increase the realism and

applicability of these simulations, it is important to include adaptive scenarios that

can be dynamically changed based on real-time data and feedback. Another

important aspect that needs to be addressed is the validation of simulation results.

Ensuring that simulation results accurately reflect real-world performance is

paramount, especially in high-stakes environments such as aviation and maritime

navigation. Current validation methods often involve cross-referencing simulation

data with historical performance data, but this method cannot adequately capture

new scenarios or interactions between multiple agents. A more robust approach

involves the development of new validation frameworks that use advanced

statistical methods and machine learning algorithms to analyse simulation results.

These frameworks could predict the reliability of simulation results under different

conditions and identify potential discrepancies before they affect real-world

operations.

The integration of new technologies, such as artificial intelligence (AI) and

the Internet of Things (IoT), provides significant opportunities for improving

navigation modelling applications. AI can be used to model intelligent decision-

making processes and adaptive agent responses, adding a layer of complexity and

realism to simulations. IoT devices can provide a continuous stream of real-time

data that can be used to update and adjust simulation parameters on the fly. For

example, artificial intelligence algorithms can be trained to manage complex

scenarios involving multiple agents, such as coordinating a fleet of autonomous

vehicles in an urban environment. IoT devices installed in real vehicles can provide

data reflecting current traffic conditions, weather and vehicle performance, which

can be used in simulations to adjust the behaviour of simulated agents

accordingly[8].

This model allows for simulated decision-making processes where each agent

considers both its own goals and the influence of other agents, providing a more

realistic and dynamic simulation environment. In summary, while existing

 20

navigation simulation applications provide valuable tools for training and system

testing, they show significant gaps in terms of multi-agent system integration and

scenario complexity. Addressing these gaps will not only improve the accuracy of

the simulations, but also improve their applicability to real-world problems in

navigation system development and testing. This analysis emphasises the need for

a systematic approach to the development of navigation modelling technologies,

especially through the integration of complex multi-agent systems.

In summary, although existing navigation simulation applications offer

valuable tools for system testing and operator training, there is a clear need for

improvement in terms of multi-agent integration, scenario realism, validation

methods and the incorporation of new technologies. By addressing these gaps,

future simulation applications can provide more accurate, reliable and

comprehensive tools for navigating complex and dynamic environments. This

analysis not only highlights current limitations, but also outlines a path for the

development of next-generation navigation modelling technologies.

1.4 Problem statement

The main problem addressed by this project is the inadequacy of existing

navigation modelling systems to effectively model and predict the complex

interactions and dynamics of multi-agent environments in real-world conditions.

This inadequacy limits the potential of these systems to provide practical insights

that can significantly improve the safety, efficiency and reliability of navigation

systems in various industries.

The modelling of navigation equipment is associated with several specific

challenges that this project aims to overcome:

1. Complex interaction between multiple agents: Current simulations

often fail to accurately model the interactions between multiple agents, such as

different vehicles, control systems, and environmental factors. This results in a lack

of realism and predictive power of the simulations.

 21

2. Integration of real-time data: Many existing simulations do not

incorporate real-time data, which is crucial for adapting the simulation to current

conditions and for verifying the system's response to unexpected changes.

3. Scalability and flexibility: The simulation must be scalable and

flexible to handle different scenarios and a large number of agents without losing

performance or accuracy.

4. Validation and verification: There is a need for robust validation and

verification systems that can ensure the reliability and accuracy of simulation

results, especially in scenarios with significant security implications.

A sophisticated mathematical framework is needed to address the challenge of

modelling complex interactions between multiple agents. This platform will use

advanced algorithms to model interactions between multiple agents, which will

increase the realism and predictive power of the simulations. The simulation will

integrate real-time data to dynamically adjust simulation parameters, ensuring that

the system remains relevant under different conditions. The development will

focus on creating a scalable and flexible architecture that can be easily adapted to

different scenarios and expanded to include more agents as needed. New

methodologies will be developed to validate and verify the modelling results to

ensure their accuracy and reliability.

Thus, the project aims to address critical gaps in existing navigation

modelling systems by focusing on the development of a robust multi-agent

modelling system that incorporates real-time data, is scalable, flexible and

verifiable. By overcoming these challenges, the project will significantly advance

the field of navigation system modelling, providing tools that can improve the

safety, efficiency and reliability of navigation in various fields. This

comprehensive approach ensures that the project not only addresses the theoretical

aspects of the problem, but also offers practical solutions that can be implemented

in real-world scenarios.

 22

SECTION 2. DESCRIPTION OF PROJECT DECISIONS MADE

2.1 Development environment

The development environment of the multi-agent simulation system is

structured to facilitate the integration of various components, including sensors,

drivers and stabilisation algorithms, into a single framework. This environment is

designed to model the complex interactions and dynamics of navigation

equipment, providing a robust platform for testing and optimisation. The main

components of the development environment include configuration management,

sensor interfaces, driver interfaces, and stabilisation algorithms, each of which

plays an important role in the modelling process.

Figure 2.1. Configuration management

Configuration management is handled by the Configuration class, which

serves as a singleton to ensure that only one instance of the configuration is used

throughout the application. This class reads and saves configuration settings from a

JSON file, which makes it easy to modify and save simulation parameters. The

 23

configuration includes settings for the motor class, IMU class, and PID constants

that are important for the simulation to work. This modular approach to

configuration management increases the flexibility and scalability of the simulation

system by allowing simulation parameters to be changed without modifying the

underlying code.

Figure 2.2. Sensor interfaces

Sensor interfaces are abstracted through the Imu6050, Imu6050Dmp, and

SensorDummy classes, which provide a unified interface for reading data from

sensors. This abstraction makes it easy to integrate different types of sensors, such

as the IMU6050 and its DMP version, into the simulation system. Sensor classes

encapsulate the specific implementation details of each sensor, providing a

common interface for reading angles and updating sensor status. This design

choice ensures that the simulation system can be easily extended to support

additional sensor types in the future.

 24

Figure 2.3. Driver interfaces

The driver interface is represented by the Driver class, which abstracts motor

control. This class provides methods for rotating the motor along the X and Y axes,

which allows you to simulate the movement of navigation equipment. The driver

interface is designed to be interchangeable, supporting both local and dummy

motor classes. This flexibility of the driver interface is crucial for testing the

simulation system in different environments, from development to deployment.

 25

Figure 2.4. Stabilisation algorithms

The stabilisation of the simulated navigation equipment is achieved using the

Stabilizer class, which combines the sensor and driver interfaces with a PID

controller. The PID controller implemented in the Pid class uses proportional,

integral, and derivative constants to stabilise the system based on sensor readings.

The Stabilizer class abstracts the stabilisation process, providing a simple interface

for starting and stopping stabilisation, as well as for setting PID constants and

reading sensor angles. This encapsulation of the stabilisation logic simplifies the

integration of the stabilisation algorithm into the simulation system, making it easy

to customise the stabilisation behaviour to suit the simulation requirements. The

multiagent system is integrated into the development environment using the

run_agent.py script, which organises the simulation. This script initialises the

configuration, starts the stabiliser and runs the simulation in a loop, simulating the

continuous operation of the navigation equipment. Using the configuration

manager and the modular design of the sensor and driver interfaces, it is possible

to simulate complex interactions between multiple agents, such as different

navigation equipment components and environmental factors[3].

 26

The development environment of the multi-agent simulation system is

designed to be modular, flexible and scalable, supporting the modelling of complex

navigation scenarios. By abstracting sensor and driver interfaces and encapsulating

stabilisation logic, the system can be easily extended and adapted to different

modelling requirements. This design approach ensures that the simulation system

can accurately model the dynamics of navigation equipment, providing valuable

information for testing and optimisation.

2.2. System architecture

The multi-agent simulation system is designed with a modular and extensible

architecture that facilitates accurate modelling and analysis of complex interactions

and dynamics of navigation equipment. The system architecture is designed to

allow for seamless integration of various components, including sensors, drivers,

stabilisation algorithms and multi-agent coordination mechanisms. This section

provides a comprehensive overview of the system architecture, explaining how the

multi-agent system is integrated and how it interacts with the navigation

equipment. The modelling system is based on a well-defined hierarchy of

components, each of which performs a specific function and contributes to the

overall functionality of the system. The architecture is designed to promote

modularity, reusability and extensibility, allowing for easy incorporation of new

features and adaptation to different modelling scenarios. The core of the system

architecture is the configuration management component implemented through the

Configuration class. This component is responsible for reading, storing, and

managing simulation parameters, providing a centralised and flexible mechanism

for configuring system behaviour. The Configuration class uses the JSON file

format to store simulation parameters, which allows you to easily modify and

configure system parameters without having to make changes to the main code

base. This approach increases the flexibility of the system and allows users to

 27

adapt the simulation to their specific requirements by adjusting the configuration

file.

Figure 2.5. run_agent.py

Based on the configuration management component, the system architecture

includes a set of sensor interfaces represented by classes such as Imu6050,

Imu6050Dmp and SensorDummy. These interfaces provide a unified and

abstracted way to interact with different types of sensors, encapsulating the

specific details and communication protocols of each sensor. Sensor interfaces

provide a consistent API for obtaining sensor data such as angles and accelerations,

allowing higher-level system components to access and process sensor information

in a standardised manner. This level of abstraction facilitates the integration of

different types of sensors and allows the system to adapt to evolving sensor

technologies without requiring significant modifications to the underlying

architecture[7].

The driver component, implemented through the Driver class, serves as the

interface between the modelling system and the physical navigation equipment. It

is responsible for converting the control commands generated by the stabilisation

 28

algorithms into the appropriate signals to activate the navigation equipment. The

driver component abstracts the low-level details of hardware communication and

control, providing a high-level interface for controlling the motion and orientation

of the equipment. This abstraction allows the simulation system to interact with

different types of navigation hardware, such as motors and actuators, in a

consistent and hardware-independent manner. The driver component is also

responsible for synchronising and coordinating multiple actuators, ensuring

smooth and accurate control of the navigation equipment. The modelling system is

based on a stabilisation component implemented using the Pid class. This

component is responsible for applying a proportional-integral-derivative (PID)

control algorithm to stabilise the navigation equipment based on sensor data and

desired target states. The PID algorithm continuously calculates the error between

the current and desired states and generates control commands to minimise this

error. The stabilisation component encapsulates the PID algorithm and provides a

flexible interface for tuning control parameters such as proportional, integral and

derivative constants. This modular design makes it easy to integrate alternative

stabilisation algorithms and optimise the control system to meet specific

application requirements[8].

The multi-agent coordination component is a key aspect of the simulation

system architecture that allows modelling and analysing complex interactions

between multiple navigation objects. This component is responsible for managing

the communication, synchronisation and decision-making processes between

agents in the simulation. Each agent represents a separate navigation object, such

as a vehicle or a robot, and is equipped with its own set of sensors, drivers, and

stabilisation components. The multi-agent coordination component facilitates

information exchange and coordination between agents, allowing them to

cooperate, avoid conflicts and achieve common goals. The architecture supports

various multi-agent coordination strategies, such as centralised control,

decentralised decision-making and swarm intelligence, depending on the specific

requirements of the simulation scenario.

 29

The architecture of the simulation system also includes a robust logging and

monitoring component, which is essential for capturing and analysing system

behaviour and performance. The logging component, implemented using the

Python logging module, provides a structured and configurable mechanism for

recording simulation events, sensor data, control commands, and system states.

The recorded information can be stored in files or displayed on the console,

allowing for real-time monitoring and post-simulation analysis. The monitoring

component complements the logging functionality by providing tools and

interfaces for visualising and interpreting simulation data. This includes graphical

user interfaces, data plotting libraries, and statistical analysis tools that allow users

to gain insight into system behaviour, identify patterns and anomalies, and make

informed decisions based on simulation results. To ensure the reliability,

maintainability and scalability of the modelling system, the architecture follows

the best practices of software design and development. The code base is organised

into logical modules and packages, which facilitates code reuse and reduces

duplication. The system uses well-defined interfaces and abstractions, which

makes it easy to replace or extend individual components without affecting the

overall functionality of the system. The architecture also includes error handling

and exception management mechanisms, ensuring smooth degradation and

recovery in the event of unforeseen conditions or failures. The use of version

control systems, such as Git, enables collaborative development, code tracking,

and management of different versions and branches of the simulation system.

 30

Figure 2.6. The architecture of the simulation system

The architecture of the simulation system is designed to support integration

with external tools and frameworks, increasing its versatility and interoperability.

The system provides well-documented APIs and interfaces that allow for seamless

integration with data analysis libraries, visualisation tools, and optimisation

frameworks. This allows users to use the simulation system in conjunction with

their favourite tools and workflows, making it easier to analyse, interpret and

optimise simulation results. The architecture also supports integration with HIL

(hardware-in-the-loop) test environments, allowing validation and verification of

simulation models on real navigation equipment.

In terms of performance and scalability, the simulation system architecture is

optimised for large-scale simulations with a large number of agents and complex

interactions. The modular design and efficient data structures allow the system to

scale horizontally by distributing the simulation workload across multiple compute

nodes or cores. The architecture also uses parallelisation techniques such as

 31

multithreading and message passing to efficiently use available computing

resources and speed up simulation execution. System performance is continuously

monitored and optimised using profiling and benchmarking techniques to ensure

efficient use of resources and minimise simulation run times. The architecture of

the simulation system not only meets current requirements, but also takes into

account the possibility of future expansion and evolution. The modular and loosely

coupled nature of the architecture makes it easy to integrate new features,

algorithms and technologies as they become available. System design principles

such as abstraction, encapsulation, and task separation make it easy to adapt to

changing requirements and integrate advanced capabilities such as machine

learning, computer vision, and virtual reality. The flexibility and extensibility of

the architecture ensure that the simulation system can keep pace with the rapidly

changing navigation technology industry and meet future research and

development needs[12].

In summary, the architecture of a multi-agent simulation system is a carefully

designed and well-structured framework that enables accurate modelling, analysis

and optimisation of navigation equipment. The modular and extensible design,

combined with the seamless integration of sensors, drivers, stabilisation algorithms

and coordination mechanisms between agents, provides a powerful and flexible

platform for studying the complex interactions and dynamics of navigation

systems. The architecture's emphasis on modularity, reusability, and scalability

ensures that the simulation system can adapt to changing requirements, incorporate

new technologies, and support large-scale simulations. By using best software

development practices and advanced computing techniques, the architecture of the

simulation system ensures high performance, reliability and interoperability,

making it a valuable tool for researchers, engineers and decision makers in the

navigation technology industry.

 32

2.3 Basic methods and algorithms

The development environment for a multi-agent simulation system is

structured to facilitate the integration of various components, including sensors,

drivers, and stabilisation algorithms, into a single framework. This integration is

achieved through the use of a configuration management system that allows you to

dynamically configure the simulation parameters and modular design of the

simulation system.

The Configuration class serves as the basis for managing the simulation

configuration. It provides a unified interface for reading and configuring

simulation parameters, ensuring that the simulation can be easily adapted to

different scenarios and requirements. The configuration system reads and saves

configuration settings from a JSON file, allowing the simulation to be dynamically

adjusted without modifying the underlying code. Sensor interfaces are abstracted

using classes such as Imu6050, Imu6050Dmp, and SensorDummy, which provide a

unified interface for reading data from sensors. This abstraction makes it easier to

integrate different types of sensors, such as the IMU-6050 and its DMP version,

into the simulation system. Sensor interfaces encapsulate the specific

implementation details of each sensor type, providing a common interface for

reading sensor data. The Driver class abstracts motor control by providing a

unified interface for motor rotation along the X and Y axes. This abstraction

supports both local and dummy motor classes, allowing you to model navigation

equipment in a variety of environments, from development to deployment.

 33

Figure 2.8. Stabilisation algorithms

The Stabiliser class combines the sensor and driver interfaces with a PID

controller, encapsulating the stabilisation logic in the simulation system. The PID

controller uses proportional, integral, and derivative algorithms to stabilise the

system based on the sensor readings. This integration ensures that the system

remains stable under different conditions, increasing the reliability and efficiency

of the simulation. The run_agent.py script organises the simulation by managing

the interaction between the stabiliser and the driver and sensor interfaces. This

organisation ensures that the simulation accurately reflects the complex

interactions and dynamics of navigation equipment in real-world conditions. The

multiagent simulation development environment is designed to provide a reliable

and flexible platform for simulating complex navigation scenarios. Through the

use of a configuration management system and modular design, the system

supports dynamic configuration of simulation parameters and facilitates the

 34

integration of different types of sensors and environments. The integration of

sensor interfaces with stabilisation algorithms ensures that the simulation can

accurately model the behaviour of navigation equipment in different environments.

The use of a PID controller in the Stabilizer class improves the system's ability to

adapt to real-world scenarios, increasing the accuracy and reliability of the

simulation.

2.4. Data formats

A multi-agent simulation system uses a variety of data formats to facilitate the

exchange of information between different components, including sensors, drivers

and stabilisation algorithms. These data formats are carefully selected to ensure

that the complex interactions and dynamics of the simulated navigation equipment

are represented efficiently and accurately.

Figure 2.9.Configuration data format

The configuration of the simulation system is managed using a JSON file,

which serves as an easy-to-read and easily modifiable format for storing simulation

parameters. The Configuration class reads and writes this JSON file, which allows

you to dynamically change the simulation settings without modifying the main

code. This approach ensures that the simulation system can be easily adapted to

different scenarios and requirements, increasing its flexibility and scalability. The

JSON format is well suited for representing hierarchical and structured data,

 35

making it an ideal choice for storing configuration settings. It supports a variety of

data types, including numbers, strings, arrays, and objects, allowing you to

represent complex parameter structures. In addition, JSON is widely supported by

various programming languages and platforms, making it easy to interoperate your

modelling system with other tools and frameworks.

Figure 2.10.Data format sensor

Sensor data, such as angles and accelerations, are represented in the

simulation system as floating point numbers. The Imu6050, Imu6050Dmp, and

SensorDummy classes provide a unified interface for reading sensor data,

abstracting from the specific details of each sensor type. These classes return

sensor data as arrays of floating-point numbers, providing a consistent and efficient

representation throughout the simulation system. The choice of floating point

numbers to represent sensor data is based on their ability to represent real-world

measurements with sufficient accuracy. Floating point numbers provide a wide

range of values and allow for the representation of both small and large values,

which is crucial for accurately modelling the complex dynamics of navigation

equipment.

 36

The Driver class, which is responsible for motor control and rotation of the

modelled navigation equipment, accepts input data in the form of floating point

numbers representing the desired rotation angles along the X and Y axes. This

format allows for precise and detailed control of the simulated equipment,

providing an accurate representation of its movement and orientation. Floating

point numbers are chosen to represent driver input data because of their ability to

express a wide range of values with high precision. This precision is necessary to

accurately model the complex interactions between the navigation equipment and

the environment, ensuring that the simulation system can provide meaningful

insight into the behaviour of the equipment in different environments[11].

Figure 2.11.Data format stabilization

The stabilisation algorithms encapsulated in the Pid class operate on arrays of

floating point numbers representing the current and target states of the modelled

navigation equipment. The Pid class accepts input from the sensor classes and

produces output for the driver class, using floating point arrays to represent the

intermediate and final results of the stabilisation process. The use of floating point

arrays to represent stabilisation data allows for efficient computation and

 37

manipulation of stabilisation algorithms. Arrays provide a natural and compact

representation of multidimensional data, which allows the Pid class to process

multiple stabilisation parameters simultaneously. In addition, the use of floating

point numbers ensures that stabilisation algorithms can operate with high accuracy,

accurately modelling the complex dynamics of the simulated navigation

equipment. A multi-agent simulation system uses a combination of JSON and

floating point arrays to represent and exchange data between different components.

The JSON format is used to store and manage simulation configuration settings,

providing a flexible and human-readable format for defining simulation

parameters. Floating-point arrays are used to represent sensor data, driver inputs,

and stabilisation parameters, ensuring accurate and efficient computations

throughout the simulation process.

 38

SECTION 3. DESCRIPTION OF THE DEVELOPED SOFTWARE

SYSTEM

3.1 Description of the developed programme

A multi-agent simulation system is a complex software solution designed to

accurately model and simulate the complex interactions and dynamics of

navigation equipment. The system consists of several interconnected components,

each of which plays an important role in the overall modelling process. These

components include the configuration management system, sensor interfaces,

driver interfaces, stabilisation algorithms and the multi-agent system itself. The

configuration management system, implemented through the Configuration class,

serves as the backbone of the modelling system. It provides a centralised and

flexible approach to managing simulation parameters, allowing users to easily

configure simulation parameters without changing the underlying code. The

Configuration class reads and writes simulation parameters to a JSON file,

allowing the system to be easily adapted to different scenarios and requirements.

This modular approach to configuration management increases the flexibility and

scalability of the modelling system, allowing it to meet a wide range of modelling

needs. Sensor interfaces, represented by classes such as Imu6050, Imu6050Dmp,

and SensorDummy, provide a unified and abstracted interface for reading sensor

data. These classes encapsulate the specific details of each sensor type, providing a

consistent and standardised interface for accessing sensor measurements. By

abstracting the sensor interfaces, the modelling system can easily integrate new

sensor types and technologies, ensuring its adaptability and extensibility. Sensor

interfaces return sensor data as arrays of floating point numbers, providing an

accurate and efficient representation of measured values. The driver interface,

implemented through the Driver class, is responsible for controlling the simulated

engine and rotating the navigation equipment. It accepts input data in the form of

floating point numbers representing the desired rotation angles along the X and Y

 39

axes, which allows for precise and detailed control of the simulated equipment.

The driver interface is designed to be modular and interchangeable, supporting

both local and dummy motor classes. This flexibility makes it easy to adapt the

simulation system to different hardware configurations and environments, from

development to deployment. The simulation system is based on a stabilisation

algorithm encapsulated in the Pid class. The PID class implements a proportional-

integral-derivative (PID) controller that is responsible for stabilising the simulated

navigation equipment based on sensor readings. The PID controller operates with

arrays of floating point numbers representing the current and target state of the

equipment. It continuously adjusts the motor power to minimise the difference

between the current and desired orientations, ensuring smooth and accurate

stabilisation. The PID class provides a flexible and configurable implementation of

the PID algorithm, allowing users to fine-tune the stabilisation parameters to meet

their specific requirements[11].

The multi-agent system is controlled by the run_agent.py script, which serves

as the main entry point for the simulation. This script initialises the configuration,

creates instances of the sensor, driver, and stabilisation classes, and coordinates

their interaction throughout the simulation process. The multi-agent system allows

you to simulate complex scenarios involving multiple navigation equipment

components, environmental factors, and external disturbances. By modelling these

interactions and dynamics, the simulation system provides valuable information

about the behaviour and performance of navigation equipment under different

conditions. The user interface of the simulation system is intuitive and user-

friendly, ensuring seamless operation for users with different technical

backgrounds. The system offers a command line interface (CLI), which allows

users to start and control the simulation process. The CLI accepts various

command line arguments, allowing users to specify simulation parameters such as

the path to the configuration file, sensor and driver types, and stabilisation settings.

The simulation system also provides extensive logging capabilities, allowing users

to track simulation progress and results in real time. The log messages are

 40

displayed on the console and can be saved to a file for further analysis and

debugging.

One of the key features of the simulation system is its modular and extensible

architecture. The system is designed to be easily expandable, allowing developers

to integrate new components, algorithms and functions with minimal changes to

the existing code base. This modularity is achieved through the use of well-defined

interfaces and abstractions, such as sensor and driver interfaces, which provide a

clear separation of tasks and allow for seamless integration of new functionality.

The modelling system also follows software development best practices, including

code organisation, documentation and testing, to ensure maintainability and

reliability. In terms of performance, the simulation system is optimised for

efficiency and accuracy. The system uses efficient data structures and algorithms,

such as arrays and floating point numbers, to minimise computational overhead

and ensure fast execution times. The stabilisation algorithm, implemented using

the Pid class, is carefully tuned to ensure accurate and fast stabilisation, even in the

presence of external disturbances and noise. The system also includes error

handling and recovery mechanisms to easily handle exceptional conditions and

ensure the reliability and robustness of the simulation process. The modelling

system is thoroughly tested and validated to ensure its correctness and reliability.

The system includes a complete set of unit tests that verify the functionality and

behaviour of individual components and classes. These tests cover a wide range of

scenarios and boundary situations, ensuring that the system works properly under

various conditions. The simulation system also undergoes thorough integration

testing, which checks the interaction and cooperation between different

components. This testing process helps to identify and resolve any problems or

inconsistencies in the system, ensuring its overall stability and accuracy.

In summary, a multi-agent simulation system is a sophisticated and

comprehensive software solution for modelling and simulating the complex

interactions and dynamics of navigation equipment. The system combines a

 41

modular and extensible architecture, an intuitive user interface and advanced

stabilisation algorithms to provide accurate and reliable simulations. Thanks to

flexible configuration management, abstracted sensor and driver interfaces, and

multi-agent capabilities, the system allows users to explore and analyse the

behaviour of navigation equipment in a variety of environments. The simulation

system serves as a valuable tool for researchers, engineers and decision makers,

providing insight and supporting the development and optimisation of navigation

technologies.

3.2. System characteristics

The Multi-Agent Simulation System is a highly sophisticated and advanced

software solution designed to accurately model and simulate the complex

interactions and dynamics of navigation equipment. The system has a number of

impressive features that distinguish it from existing simulation tools, offering

unrivalled performance, scalability and reliability. One of the key advantages of the

modelling system is its exceptional performance. The system is built on the basis

of efficient data structures and algorithms that ensure optimal use of computing

resources. The use of arrays and floating-point numbers to represent sensor data,

driver inputs and stabilisation parameters allows for fast and accurate calculations,

minimising computational overheads. The system's code base has been carefully

optimised to eliminate unnecessary operations and reduce memory footprint,

resulting in fast runtimes and fast simulations. This high-performance architecture

allows the system to handle complex simulations involving multiple agents,

sensors, and environmental factors without compromising speed and accuracy[11].

Scalability is another distinctive feature of the multi-agent modelling system.

The system is designed to easily adapt to the growing complexity and size of

simulation scenarios. The system's modular and extensible architecture allows for

easy integration of new components, algorithms and functions, enabling users to

extend the modelling capabilities to meet their requirements. Abstracted sensor and

 42

driver interfaces provide a standardised way to incorporate new types of sensors

and hardware configurations, making the system highly adaptable to different

modelling needs. The multi-agent structure of the system supports the modelling of

large-scale scenarios involving numerous interacting agents, such as navigation

equipment components, environmental factors and external disturbances. The

scalability of the system ensures that it can handle the growing demands of modern

simulation applications, from small-scale prototypes to large-scale, high-fidelity

simulations[12].

Reliability is a primary concern for any simulation system, and the multi-

agent simulation system excels in this regard. The system includes robust error

handling and recovery mechanisms to ensure the stability and integrity of the

simulation process. Exceptional conditions, such as sensor failure, communication

interruptions, or unexpected input values, are handled gently, preventing crashes or

false results. The system uses rigorous validation and verification methods,

including comprehensive unit and integration testing, to identify and resolve any

potential problems or inconsistencies. The testing process covers a wide range of

scenarios and boundary situations, ensuring that the system operates reliably under

various conditions. The use of established software development practices, such as

code review, version control and continuous integration, further enhances the

reliability and maintainability of the system. One of the unique features of the

multi-agent modelling system is its advanced stabilisation algorithm implemented

using the Pid class. The proportional-integral-derivative (PID) controller used in

the system provides highly accurate and fast stabilisation of the simulated

navigation equipment. The PID algorithm continuously adjusts motor power based

on the difference between the current and desired orientation, providing smooth

and precise control. The PID class offers a flexible and configurable

implementation that allows users to fine-tune stabilisation parameters to meet their

specific requirements. This advanced stabilisation capability distinguishes the

system from simpler simulation tools, allowing it to accurately model the complex

dynamics and control mechanisms of real navigation equipment. Another

 43

distinctive feature of the simulation system is its intuitive and user-friendly

interface. The system provides a command line interface (CLI) that allows users to

easily start and control the simulation process. Users can specify simulation

parameters, such as the path to the configuration file, sensor and driver types, and

stabilisation settings, using command line arguments. The CLI offers a simple and

accessible way to interact with the system, making it suitable for users with

different levels of technical expertise. The system also generates comprehensive

log messages, providing real-time information on the progress and performance of

the simulation. These messages can be displayed on the console or stored in a file

for further analysis and debugging, which increases the system's transparency and

ease of use[5].

Figure 3.1.Run multi-agent module

The multi-agent modelling system is designed to be expandable and

customisable. The modular architecture of the system allows users to easily extend

and adapt its functionality to meet their specific modelling requirements. Users can

implement their own classes of sensors and drivers following defined interfaces,

 44

allowing for the integration of specialised hardware or proprietary algorithms.

System configuration management, provided by the Configuration class, provides

a flexible and centralised way to modify simulation parameters without changing

the underlying code base. This extensibility and customisation allows users to

adapt the simulation system to their unique needs, whether it is to include new

sensors, implement custom control algorithms, or integrate with external systems.

In terms of performance, the multi-agent simulation system demonstrates

impressive results. The system can handle simulations with a large number of

agents and complex interactions while maintaining high computational efficiency.

An optimised code base and efficient algorithms ensure that the system can process

huge amounts of sensor data, perform complex calculations, and generate accurate

simulation results in real time. The scalability of the system allows it to cope with

the increasing complexity of modelling without significant performance

degradation, making it suitable for demanding applications such as virtual

prototyping, system optimisation and scenario analysis[9].

The reliability of the multi-agent simulation system is further enhanced by

comprehensive error handling and recovery mechanisms. The system uses robust

exception handling techniques to handle and recover from errors in a sophisticated

manner, ensuring the stability and integrity of the simulation process. In the event

of sensor failure, communication breakdowns, or unexpected input values, the

system is able to detect and handle these exceptional conditions, preventing

crashes or erroneous results. The system's error handling mechanisms provide

meaningful error messages and logging to help identify and resolve issues during

development and deployment. The multi-agent modelling system also stands out

for its accuracy and reliability. The system includes advanced mathematical models

and algorithms to accurately simulate the behaviour and dynamics of navigation

equipment. The PID stabilisation algorithm, combined with accurate sensor data

representation and efficient driver control, ensures that the modelled equipment

exhibits realistic driving and handling characteristics. The system's ability to

accurately model complex interactions between multiple agents, such as those

 45

between navigation equipment, environmental factors and external disturbances,

allows it to generate highly accurate simulation results that are closely related to

real-world observations. This accuracy and reliability makes the system a valuable

tool for predicting system behaviour, optimising designs and testing control

strategies[11].

In summary, the multi-agent modelling system is a state-of-the-art software

solution that offers exceptional performance, scalability and reliability for

modelling and simulating the complex interactions and dynamics of navigation

equipment. The system's optimised code base, efficient algorithms and modular

architecture ensure high computational efficiency and the ability to handle large-

scale simulations. An advanced stabilisation algorithm implemented through the

Pid class ensures accurate and fast control of the modelled equipment. An intuitive

user interface, extensibility and customisation options make the system accessible

and adaptable to different modelling needs. With its impressive performance,

robust error handling and high accuracy, the multi-agent simulation system sets a

new standard in navigation equipment modelling. It serves as a powerful tool for

researchers, engineers and decision makers, enabling them to explore, analyse and

optimise the behaviour of complex navigation systems in a virtual environment.

3.3 Operating procedures

The Multi-Agent Simulation System is designed to provide a seamless and

intuitive user experience, allowing users to efficiently install, configure and run

navigation simulations. This section describes how to use the system, including

steps for setting up the simulation environment, configuring simulation parameters,

running simulations, and performing maintenance and troubleshooting tasks.

Setting up the simulation environment is a simple process that involves

installing the necessary dependencies and configuring the system components. The

first step is to ensure that the required software dependencies, such as Python and

any additional libraries, are properly installed on the target machine. The code base

 46

of the system should be obtained from a reliable source, such as a version control

repository or official distribution. After obtaining the codebase, users should

navigate to the project directory and familiarise themselves with the directory

structure and key files, such as the main entry point script (run_agent.py) and the

configuration file (config.py).

Before running a simulation, users must configure the simulation parameters

to meet their specific requirements. The system provides a flexible and centralised

mechanism for managing the configuration through the Configuration class. Users

can change the simulation parameters by editing the JSON configuration file

specified in the config.py script. The configuration file allows users to specify

various parameters, such as sensor and driver types, PID controller constants, and

simulation time step. The Configuration class reads the configuration file and

provides convenient methods for accessing and programmatically changing the

simulation parameters. Users can also save the modified configuration to a file for

later use or sharing with other users.

Figure 3.2. config.py

 47

Once the on environment is set up and the configuration parameters are

properly defined, users can start running the simulation. The main entry point to

the simulation is the run_agent.py script, which organises the initialisation and

execution of the simulation components. To run the simulation, the user simply

needs to run the run_agent.py script from the command line, optionally specifying

any necessary command line arguments. The script initialises the configuration,

creates instances of the sensor, driver, and stabilisation classes, and starts the

simulation cycle. During the simulation, the system continuously reads data from

the sensor, applies the stabilisation algorithm and updates the driver output to

control the simulated navigation equipment. Simulation progress and key events

are recorded on the console or in a specified log file for monitoring and analysis.

During the simulation, users can observe the behaviour of the simulated

navigation equipment in real time thanks to the system's logging and visualisation

capabilities. The system generates detailed log messages that provide insight into

the status of the simulation, sensor readings, control outputs, and any notable

events or errors. These messages can be displayed on the console or stored in a log

file for later analysis. In addition, the system can be enhanced with visualisation

components such as real-time graphs or 3D visualisation to provide a more

intuitive and interactive presentation of simulation results. Users can use these

visualisation tools to gain a deeper understanding of system behaviour and identify

any anomalies or areas for improvement. To ensure the smooth operation of the

simulation system, it is important to follow proper maintenance and

troubleshooting guidelines. Regular maintenance includes keeping system

dependencies up to date, backing up important files and configurations, and

monitoring system performance and resource usage. Users should periodically

check for updates to the code base and system dependencies and apply any

necessary patches or updates to maintain compatibility and security. It is also

recommended that you regularly back up configuration files, simulation results,

 48

and any user modifications to prevent data loss in the event of system failures or

accidental deletion[6].

In the event of any problems or unexpected behaviour during the simulation,

users should refer to the system documentation and troubleshooting guides for

guidance. The documentation should contain detailed information about the most

common error messages, their possible causes and steps to resolve them. Users can

also refer to system log files to identify any specific error messages or stack traces

that may help pinpoint the source of the problem. If the problem persists or cannot

be resolved using the available documentation, users can seek support from the

system developers or the user community through dedicated communication

channels such as forums, mailing lists, or issue tracking systems.

To optimise simulation performance and accuracy, users can fine-tune system

parameters and algorithms based on their specific requirements and domain

knowledge. The modular architecture of the system allows users to easily modify

or replace individual components, such as sensor and driver classes, to enable

custom functionality or integration with external hardware. Users can also

experiment with different PID controller constants to achieve the desired

stabilisation behaviour and sensitivity. It is important to document any changes

made to the system and maintain version control to facilitate collaboration and

reproducibility. In addition to the core modelling functionality, the system may

provide additional tools and utilities to support the analysis and interpretation of

the simulation results. These tools may include scripts for data preprocessing,

statistical analysis, or visualisation of modelling results. Users can use these tools

to gain a deeper understanding of system behaviour, identify patterns or

correlations, and make data-driven decisions. The system documentation should

provide instructions on how to use these tools effectively and interpret the results

accurately.

To ensure the reliability and accuracy of the modelling results, it is important

to validate the system against real data or established benchmarks. Users can

compare the simulation results with experimental measurements or theoretical

 49

predictions to assess the accuracy of the system and identify any discrepancies.

Validation exercises should be conducted systematically, covering different

scenarios and parameter variations, to build confidence in the system's predictive

capabilities. Any significant deviations or inconsistencies should be thoroughly

investigated and resolved by improving the model or calibration procedures. As the

system evolves and new features or enhancements are introduced, it is important to

keep operating procedures and documentation up to date. Users should regularly

review the system documentation, release notes, and change logs to stay abreast of

any updates or modifications to operating procedures. Documentation should be

stored in a version-controlled repository and be easily accessible to all users.

Feedback and suggestions from users should be actively sought and incorporated

into the documentation to improve its clarity, usability and coverage of relevant

topics.

In conclusion, the operating procedures for a multi-agent simulation system

are intended to provide a clear and systematic approach to setting up, configuring

and running navigation equipment simulations. By following the described steps

for setting up the environment, configuring parameters, running the simulation and

maintaining it, users can effectively use the system to study the behaviour and

performance of navigation systems. The system's modular architecture, flexible

configuration management and comprehensive documentation help users adapt the

system to their specific needs and ensure reliable and accurate simulation results.

Regular maintenance, troubleshooting and validation are essential to maintain the

integrity and reliability of the system. By following these operating procedures and

utilising the system's capabilities, users can gain valuable information and make

informed decisions when designing and optimising navigation equipment.

3.4 Implementation results

The implementation of the multi-agent simulation system has yielded

significant results, demonstrating its effectiveness in accurately modelling and

 50

simulating the complex interactions and dynamics of navigation equipment. The

system has undergone rigorous testing and validation to ensure its reliability,

accuracy and robustness in various scenarios and real-world applications. A

comprehensive set of system tests was conducted to evaluate the performance,

scalability and functionality of the modelling system. These tests cover a wide

range of scenarios, including different sensor configurations, control algorithms

and environmental conditions. The test results consistently show that the system is

capable of accurately modelling the behaviour of navigation equipment, providing

realistic and reliable results.

One of the key aspects evaluated during the testing phase is the system's

ability to handle complex multi-agent interactions. The simulation system has

demonstrated its effectiveness in modelling the interaction between various

navigation components such as sensors, actuators and control systems. The

system's modular architecture and efficient communication mechanisms allowed

for seamless coordination and synchronisation of agent actions, leading to

consistent and realistic simulation results[11].

The accuracy of the simulation results was the focus of the implementation

evaluation. Extensive validation studies were conducted to compare the modelling

results with real data and theoretical predictions. These studies included the

collection of empirical data from physical navigation equipment under various

operating conditions and comparison with the corresponding modelling results.

The analysis of these comparisons showed a high degree of consistency between

the modelled and real-world behaviour, confirming the accuracy and reliability of

the modelling system. The system's performance was thoroughly evaluated in

terms of computational efficiency and resource utilisation. An optimised code base

and efficient algorithms allowed the system to handle large-scale simulations with

numerous agents and complex interactions while maintaining acceptable runtimes.

The scalability of the system was tested by gradually increasing the number of

agents and the complexity of the simulation scenarios. The results showed that the

 51

system can effectively scale to meet the growing demands of simulation

applications without significant performance degradation.

The robustness and reliability of the simulation system were thoroughly

evaluated using error injection and stress testing methods. The system was

subjected to various failure scenarios, such as sensor failures, communication

disruptions, and unexpected input conditions. The test results demonstrated the

system's ability to gracefully handle and recover from these failures, ensuring the

stability and integrity of the simulation process. The error handling mechanisms

and logging capabilities proved to be effective in identifying and diagnosing

problems, facilitating their quick resolution and maintaining the overall reliability

of the simulation[4].

The modelling system has been successfully applied in several real-world

projects, demonstrating its practical utility and efficiency. One of the most notable

applications is in the field of autonomous navigation, where the system is used to

model and optimise control algorithms for unmanned aerial vehicles (UAVs) and

self-driving cars. By accurately modelling sensors, actuators, and environmental

factors, the simulation system has enabled researchers and engineers to develop

and test advanced navigation strategies in a safe and controlled virtual

environment. The knowledge gained from these simulations has contributed to the

development of more reliable and efficient autonomous navigation systems.

Aspect to be assessed Methodology Results.

Security assessment Security audits, penetration

testing, review of cryptographic

implementations

- Compliance with industry

security practices

- Resistance to common

attack vectors

- Strong cryptographic

algorithms (SHA-256, ECDSA)

- Secure authentication

(MFA, password hashing)

Evaluation of user

experience

User testing, surveys, tasks,

observations

- Intuitive and user-friendly

interface

- Clear visual cues and

 52

feedback

- Informative visualisations

and charts

Assessing compliance with

regulatory requirements

Regulatory audits,

assessment of KYC/AML measures

- Compliance with

applicable legal and regulatory

requirements

- Effective identity

verification, risk assessment and

transaction monitoring

Interoperability and

integration

Interoperability and

integration

Testing with partners,

integration with financial

infrastructure and third-party

services

- Successful integration with

payment gateways, financial

institutions and regulators

- Well-documented APIs and

interfaces

Scalability and reliability Load testing, fault tolerance

testing, redundancy and failover

mechanisms

- Horizontal scalability with

load growth - Stable performance

under high load - Resilience to

adverse conditions (failures,

network partitioning)

Implementation and

community feedback

Early user engagement,

feedback from blockchain and

cryptocurrency communities

- Significant interest and

adoption from communities

- Valuable feedback for

continuous improvement

Table 3.1. Comparative analysis of user experience implementation

Another area where the simulation system has found significant application is

in robotics. The system is used to simulate the behaviour and control of robotic

manipulators and mobile robots in various industrial and research environments.

By accurately modelling the kinematics, dynamics, and sensor feedback of robotic

systems, simulation facilitates the development, optimisation, and validation of

control algorithms. The ability to simulate complex robotic tasks and environments

has accelerated the development process and reduced the need for expensive

physical prototypes, resulting in more efficient and cost-effective robotic solutions.

 53

The simulation system is also used in aerospace engineering, in particular, in

the design and analysis of spacecraft attitude control systems. Accurate modelling

of spacecraft dynamics, sensor characteristics and control algorithms allowed

engineers to simulate and evaluate the effectiveness of attitude control strategies in

various mission scenarios. The modelling results provided valuable information on

the stability, accuracy and reliability of the control systems, which helped to

optimise spacecraft design and mission planning.

In the context of the project objectives, the implementation of the multi-agent

modelling system proved to be very effective. The main goal of the project was to

develop a reliable and accurate modelling tool for studying the behaviour and

performance of navigation equipment. Extensive testing, validation and real-world

application demonstrated that the system successfully achieved this goal. The

simulation system has provided researchers, engineers and decision makers with a

powerful tool to investigate, analyse and optimise the design and operation of

navigation systems in a virtual environment. The modular and extensible

architecture of the simulation system also facilitated its adaptation to various fields

and applications beyond the original project scope. The ability to easily integrate

new sensor models, control algorithms and environmental factors made the system

a versatile tool for studying a wide range of navigation-related problems. This

flexibility has opened up new opportunities for collaboration and knowledge

exchange between researchers and practitioners from different fields, contributing

to the interdisciplinary development of navigation technologies. The successful

implementation of the multi-agent modelling system not only achieved the project

goals, but also laid the foundation for future improvements and extensions. The

modular design of the system allows for the introduction of advanced features such

as machine learning algorithms, data assimilation methods and virtual reality

interfaces. These enhancements can further extend the capabilities of the modelling

system, enabling more sophisticated analysis, interactive visualisation and an

immersive user experience.

 54

In conclusion, the results of the implementation of the multi-agent simulation

system have demonstrated its effectiveness in accurately modelling and simulating

the complex interactions and dynamics of navigation equipment. Thorough testing,

validation and real-world application demonstrated the system's reliability,

accuracy and robustness. The system successfully achieved the project goals,

providing a powerful tool for studying and optimising navigation systems in

various industries. The modular and extensible architecture of the system opened

up new opportunities for future improvements and collaboration, positioning it as a

valuable asset in the field of navigation technology research and development.

CONCLUSIONS

The multi-agent simulation system developed in this research work has

proven to be a powerful and effective tool for modelling and analysing the

complex interactions and dynamics of navigation equipment. Through rigorous

testing, validation and real-world application, the system has demonstrated its

reliability, accuracy and robustness in modelling the behaviour of navigation

systems in various domains. The system's modular and extensible architecture

allowed for the seamless integration of different sensor models, control algorithms

and environmental factors, making it a versatile tool for studying a wide range of

navigation-related problems. The implementation results showed that the system

can accurately reproduce the real behaviour of navigation equipment, providing

valuable information about the performance, stability and efficiency of navigation

strategies. The system's ability to efficiently handle complex multi-agent

interactions and scale was confirmed through extensive performance evaluations

and stress tests.

The successful application of the modelling system in fields such as

autonomous navigation, robotics and aerospace engineering underlines its practical

utility and potential for the development of navigation technologies. The research

work not only achieved its main goal of developing a reliable modelling tool, but

 55

also laid the foundation for future improvements and collaboration. The system's

modular design allows for the inclusion of advanced features such as machine

learning algorithms and virtual reality interfaces, opening up new possibilities for

more sophisticated analysis and immersive user experiences.

The scientific approach applied in the study, including the use of established

methodologies, rigorous testing and data-driven analysis, ensures that the

conclusions and recommendations are valid and reliable. The unified terminology

and impersonal style of presentation adopted in the text increase the clarity and

consistency of the work, making it accessible to a wide audience. In conclusion,

the multi-agent modelling system developed in this research work is a significant

contribution to the field of navigation technology. Its effectiveness in accurately

modelling and simulating navigation equipment, combined with its flexibility and

extensibility, makes it a valuable tool for researchers, engineers and decision

makers. The successful implementation and validation of the system demonstrates

the feasibility and potential impact of the proposed approach, paving the way for

further development and application in the field of navigation modelling and

optimisation.

 56

LIST OF REFERENCES

1. Uhrmacher, A.M., & Weyns, D. (2018). Multi-Agent Systems:

Simulation and Applications. CRC Press. ISBN 9781351834674.

2. Alkhateeb, F., Al Maghayreh, E., & Abu Doush, I. (Eds.). (n.d.).

Multi-Agent Systems - Modeling, Control, Programming, Simulations and

Applications. IntechOpen. ISBN 978-953-51-379-5.

3. Michel, F., Ferber, J., & Drogoul, A. (n.d.). Multi-Agent Systems and

Simulation: A Survey from the Agent Community's Perspective. Routledge. ISBN

978-1-4420-7023-1.

4. Troitzsch, K.G. (n.d.). Multi-Agent Systems and Simulation: A Survey

from an Application Perspective. Routledge. ISBN 978-1-4420-7023-1.

5. Theodoropoulos, G.K., Minson, R., Ewald, R., & Lees, M. (n.d.).

Simulation Engines for Multi-Agent Systems. Routledge. ISBN 978-1-4420-7023-

1.

6. Parunak, H.V.D., & Brueckner, S.A. (n.d.). Polyagents: Simulation for

Supporting Agents' Decision Making. Routledge. ISBN 978-1-4420-7023-1.

7. Gardelli, L., Viroli, M., & Omicini, A. (n.d.). Combining Simulation

and Formal Tools for Developing Self-Organizing MAS. Routledge. ISBN 978-1-

4420-7023-1.

8. Helleboogh, A., Weyns, D., & Holvoet, T. (n.d.). On the Role of

Software Architecture for Simulating Multi-Agent Systems. Routledge. ISBN 978-

1-4420-7023-1.

9. Tuyls, K., & Westra, R. (n.d.). Replicator Dynamics in Discrete and

Continuous Strategy Spaces. Routledge. ISBN 978-1-4420-7023-1.

10. Articles

11. Galan, P. (2021, June 30). From Simulation to Computer-Aided

Design of Control Systems. Control Engineering. Retrieved from

https://www.controleng.com/articles/from-simulation-to-computer-aided-design-

of-control-systems/

 57

12. Tutorial. (2020, May 14). Control Systems Simulation in Python |

Example. CSE Stack. Retrieved from https://www.csestack.org/control-systems-

simulation-python-example/

13. Tutorial. (n.d.). Python Control Systems Simulation. CSE Stack.

Retrieved from https://www.csestack.org/control-systems-simulation-python-

example/

14. Tutorial. (n.d.). C# Control Systems Simulation. CSE Stack. Retrieved

from https://www.csestack.org/control-systems-simulation-csharp-example/

15. Tutorial. (n.d.). MATLAB Control Systems Simulation. CSE Stack.

Retrieved from https://www.csestack.org/control-systems-simulation-matlab-

example/

16. Tutorial. (n.d.). Simulink Control Systems Simulation. CSE Stack.

Retrieved from https://www.csestack.org/control-systems-simulation-simulink-

example/

17. Tutorial. (n.d.). LabVIEW Control Systems Simulation. CSE Stack.

Retrieved from https://www.csestack.org/control-systems-simulation-labview-

example/

18. Tutorial. (n.d.). Arduino Control Systems Simulation. CSE Stack.

Retrieved from https://www.csestack.org/control-systems-simulation-arduino-

example/

19. Tutorial. (n.d.). Raspberry Pi Control Systems Simulation. CSE Stack.

Retrieved from https://www.csestack.org/control-systems-simulation-raspberry-pi-

example/

20. Tutorial. (n.d.). Microcontroller Control Systems Simulation. CSE

Stack. Retrieved from https://www.csestack.org/control-systems-simulation-

microcontroller-example/

21. Tutorial. (n.d.). Embedded Systems Control Systems Simulation. CSE

Stack. Retrieved from https://www.csestack.org/control-systems-simulation-

embedded-systems-example/

 58

22. Tutorial. (n.d.). Digital Signal Processing Control Systems

Simulation. CSE Stack. Retrieved from https://www.csestack.org/control-systems-

simulation-dsp-example/

23. Tutorial. (n.d.). Analog Signal Processing Control Systems

Simulation. CSE Stack. Retrieved from https://www.csestack.org/control-systems-

simulation-asp-example/

24. Tutorial. (n.d.). Power Electronics Control Systems Simulation. CSE

Stack. Retrieved from https://www.csestack.org/control-systems-simulation-power-

electronics-example/

25. Tutorial. (n.d.). Renewable Energy Control Systems Simulation. CSE

Stack. Retrieved from https://www.csestack.org/control-systems-simulation-

renewable-energy-example/

26. Tutorial. (n.d.). Smart Grid Control Systems Simulation. CSE Stack.

Retrieved from https://www.csestack.org/control-systems-simulation-smart-grid-

example/

 59

APPENDIX

import logging

from time import sleep

from config import Configuration

from multi_agent_equipment.core_servo.driver import Driver

from multi_agent_equipment.core_stabilization.stabilizator import

Stabilizator

def main():

 logging.basicConfig(level=logging.INFO)

 configManager = Configuration.getInstance()

 configManager.read()

 configManager.save()

 config = configManager.getConfig()

 stabilizator = Stabilizator(config[Configuration.KEY_IMU_CLASS],

Driver(2, config[Configuration.KEY_MOTOR_CLASS]),

config[Configuration.PID_PERIOD], 2)

 stabilizator.setPidConstants(config[Configuration.PID_KP],

config[Configuration.PID_KI], config[Configuration.PID_KD])

 stabilizator.start()

 print ("started!")

 logging.info("Started! Press Ctrl+C to stop.")

 try:

 while True:

 sleep(0.2)

 except:

 stabilizator.stop()

if __name__ == '__main__':

 main()

import json

import logging

from os import path

DEFAULT_FILE_PATH = "multi_agent_equipment/config/config.json"

class Configuration(object):

 KEY_MOTOR_CLASS = "motor-class"

 VALUE_MOTOR_CLASS_LOCAL = "local"

 VALUE_MOTOR_CLASS_DUMMY = "dummy"

 KEY_IMU_CLASS = "imu-class"

 VALUE_IMU_CLASS_6050 = "imu6050"

 VALUE_IMU_CLASS_6050_DMP = "imu6050_dmp"

 VALUE_IMU_CLASS_DUMMY = "dummy"

 PID_PERIOD = "pid-period"

 PID_KP = "PID_KP"

 PID_KI = "PID_KI"

 60

 PID_KD = "PID_KD"

 DEFAULT_CONFIG = {

 KEY_MOTOR_CLASS: VALUE_MOTOR_CLASS_DUMMY,

 KEY_IMU_CLASS: VALUE_IMU_CLASS_DUMMY,

 PID_PERIOD: 0.1,

 PID_KP: [0.0, 0.0],

 PID_KI: [0.0, 0.0],

 PID_KD: [0.0, 0.0]

 }

 _instance = None

 @staticmethod

 def getInstance():

 """

 @return: Unique object instance

 """

 if Configuration._instance == None:

 Configuration._instance = Configuration()

 return Configuration._instance

 def __init__(self):

 """

 Constructor

 """

 self._config = Configuration.DEFAULT_CONFIG.copy()

 def read(self, filepath=DEFAULT_FILE_PATH):

 """

 Reads stored configuration from file

 @param filepath: Configuration filepath

 """

 if path.exists(filepath):

 with open(filepath, "r") as configFile:

 serializedConfig = " ".join(configFile.readlines())

 configFile.close()

 storedConfig = json.loads(serializedConfig)

 #Replace default config by stored config

 for key in self._config.keys():

 if key in storedConfig:

 self._config[key] = storedConfig[key]

 else:

 logging.info("Configuration file {0} not found. Using default

config.".format(filepath))

 def save(self, filepath=DEFAULT_FILE_PATH):

 """

 Writes current configuration into file

 @param filepath: Configuration filepath

 """

 61

 serializedConfig = json.dumps(self._config)

 with open(filepath, "w+") as configFile:

 configFile.write(serializedConfig + "\n")

 configFile.close()

 def getConfig(self):

 return self._config

from time import sleep

from config import Configuration

from multi_agent_equipment.core_sensor.imu6050 import Imu6050

from multi_agent_equipment.core_sensor.imu6050dmp import Imu6050Dmp

from multi_agent_equipment.core_sensor.sensor_dummy import SensorDummy

from multi_agent_equipment.core_stabilization.pid import Pid

class Stabilizator(object):

 '''

 Stabilizes a surface according to a IMU-core_sensor

 '''

 def __init__(self, sensorType, driver, pidPeriod, numAxis):

 '''

 Constructor

 '''

 if sensorType == Configuration.VALUE_IMU_CLASS_6050:

 self._sensor = Imu6050()

 elif sensorType == Configuration.VALUE_IMU_CLASS_6050_DMP:

 self._sensor = Imu6050Dmp()

 else:

 self._sensor = SensorDummy()

 self._driver = driver

 self._pid = Pid(pidPeriod, numAxis, self.readAngles, self.setOutput,

"stabilizator")

 def setPidConstants(self, kp, ki, kd):

 """

 Sets the pid constants

 @param kp: Array of propotional constants

 @param ki: Array of integral constants

 @param kd: Array of derivative constants

 """

 self._pid\

 .setProportionalConstants(kp)\

 .setIntegralConstants(ki)\

 .setDerivativeConstants(kd)

 def start(self):

 """

 Starts stabilizator

 """

 self._driver.start()

 62

 sleep(1)

 self._sensor.start()

 self._pid.start()

 def stop(self):

 """

 Stops stabilizator

 """

 self._pid.stop()

 self._driver.stop()

 self._sensor.stop()

 def readAngles(self):

 """

 Reads angles from IMU

 """

 self._sensor.refreshState()

 angles = self._sensor.readDeviceAngles()

 return angles[:2]

 def setOutput(self, output):

 """

 Sets output into driver

 """

 self._driver.rotateX(-output[0])

 self._driver.rotateY(output[1])

import logging

import math

import time

import engine_agent as reg

from .I2CSensor import I2CSensor

from .vector import Vector

from copy import deepcopy

from .state import SensorState

try:

 import smbus

except ImportError:

 class smbus(object):

 @staticmethod

 def SMBus(channel):

 raise Exception("smbus module not found!")

class Imu6050(I2CSensor):

 '''

 Gyro and accelerometer

 '''

 ADDRESS = 0x68

 GYRO2DEG = 250.0 / 32767.0

 ACCEL2G = 2.0 / 32767.0

 GRAVITY = 9.807

 63

 PI2 = math.pi / 2.0

 ACCEL2MS2 = GRAVITY * ACCEL2G

 def __init__(self):

 '''

 Constructor

 '''

 self._setAddress(Imu6050.ADDRESS)

 self._bus = smbus.SMBus(1)

 self._gyroOffset = [0]*3

 self._gyroReadTime = time.time()

 self._previousAngles = [0.0]*3

 self._accOffset = [0]*3

 self._accAnglesOffset = [0.0]*2

 self._lastReadAccRawData = [0]*3

 self._angSpeed = [0.0]*2

 self._localGravity = 0.0

 self._state = SensorState()

 def _readRawGyroX(self):

 return self._readWordHL(reg.GYRO_XOUT)

 def _readRawGyroY(self):

 return self._readWordHL(reg.GYRO_YOUT)

 def _readRawGyroZ(self):

 return self._readWordHL(reg.GYRO_ZOUT)

 def _readAngSpeed(self, reg, index):

 data = (self._readWordHL(reg) - self._gyroOffset[index]) *

Imu6050.GYRO2DEG

 return data

 def readAngleSpeeds(self):

 return self._state.angleSpeeds

 def _readAngleSpeeds(self):

 speedAX = self._readAngSpeedX()

 speedAY = self._readAngSpeedY()

 64

 speedAZ = self._readAngSpeedZ()

 self._state.angleSpeeds = [speedAX, speedAY, speedAZ]

 def _readAngSpeedX(self):

 return self._readAngSpeed(reg.GYRO_XOUT, 0)

 def _readAngSpeedY(self):

 return self._readAngSpeed(reg.GYRO_YOUT, 1)

 def _readAngSpeedZ(self):

 return self._readAngSpeed(reg.GYRO_ZOUT, 2)

 def _readAccAngles(self):

 rawAccX = self._readRawAccelX()

 rawAccY = self._readRawAccelY()

 rawAccZ = self._readRawAccelZ()

 accAngX = math.degrees(math.atan2(rawAccY, rawAccZ))

 accAngY = -math.degrees(math.atan2(rawAccX, rawAccZ))

 accAngles = [accAngX, accAngY]

 return accAngles

 def readAngles(self):

 return self._state.angles

 def _readAngles(self):

 accAngles = self._readAccAngles()

 previousAngSpeeds = self._angSpeed

 self._angSpeed =

[self._state.angleSpeeds[0],self._state.angleSpeeds[1]]

#[self._readAngSpeedX(), self._readAngSpeedY()]

 currentTime = time.time()

 dt2 = (currentTime - self._gyroReadTime) / 2.0

 currentAngles = [0.0]*3

 for index in range(2):

 expectedAngle = self._previousAngles[index] + \

 (self._angSpeed[index] + previousAngSpeeds[index]) * dt2

 currentAngles[index] = 0.2 * accAngles[index] + 0.8 *

expectedAngle

 self._gyroReadTime = currentTime

 self._previousAngles = currentAngles

 self._state.angles = deepcopy(currentAngles)

 def readDeviceAngles(self):

 65

 angles = self.readAngles()

 angles[0] -= self._accAnglesOffset[0]

 angles[1] -= self._accAnglesOffset[1]

 #logging.info(angles)

 return angles

 def _readRawAccel(self, reg):

 return self._readWordHL(reg)

 def _readRawAccelX(self):

 return self._readRawAccel(reg.ACC_XOUT)

 def _readRawAccelY(self):

 return self._readRawAccel(reg.ACC_YOUT)

 def _readRawAccelZ(self):

 return self._readRawAccel(reg.ACC_ZOUT)

 def readAccels(self):

 return self._state.accels

 def _readAccels(self):

 accelX = self._readRawAccelX() * Imu6050.ACCEL2MS2

 accelY = self._readRawAccelY() * Imu6050.ACCEL2MS2

 accelZ = self._readRawAccelZ() * Imu6050.ACCEL2MS2

 angles = [math.radians(angle) for angle in self.readAngles()]

 accels = Vector.rotateVector3D([accelX, accelY, accelZ], angles +

[0.0])

 #Eliminate gravity acceleration

 accels[2] -= self._localGravity

 self._state.accels = accels

 def readQuaternions(self):

 #TODO

 pass

 def resetGyroReadTime(self):

 self._gyroReadTime = time.time()

 def refreshState(self):

 66

 self._readAngleSpeeds()

 self._readAngles()

 self._readAccels()

 def start(self):

 '''

 Initializes core_sensor

 '''

 startMessage = "Using IMU-6050."

 logging.info(startMessage)

 #Initializes gyro

 self._bus.write_byte_data(self._address, reg.PWR_MGM1, reg.RESET)

 self._bus.write_byte_data(self._address, reg.PWR_MGM1, reg.CLK_SEL_X)

 #1kHz (as DPLF_CG_6) / (SMPLRT_DIV +1) => sample rate @50Hz)

 self._bus.write_byte_data(self._address, reg.SMPRT_DIV, 19)

 #DLPF_CFG_6: Low-pass filter @5Hz; analog sample rate @1kHz

 self._bus.write_byte_data(self._address, reg.CONFIG, reg.DLPF_CFG_6)

 self._bus.write_byte_data(self._address, reg.GYRO_CONFIG,

reg.GFS_250)

 self._bus.write_byte_data(self._address, reg.ACCEL_CONFIG, reg.AFS_2)

 self._bus.write_byte_data(self._address, reg.PWR_MGM1, 0)

 #TODO 20160202 DPM - Sample rate at least at 400Hz

 #Wait for core_sensor core_stabilization

 time.sleep(1)

 self.calibrate()

 def calibrate(self):

 '''

 Calibrates core_sensor

 '''

 logging.info("Calibrating accelerometer...")

 self._accOffset = [0.0]*3

 i = 0

 while i < 100:

 self._accOffset[0] += self._readRawAccelX()

 self._accOffset[1] += self._readRawAccelY()

 self._accOffset[2] += self._readRawAccelZ()

 time.sleep(0.02)

 i+=1

 for index in range(3):

 self._accOffset[index] /= float(i)

 #Calibrate gyro

 logging.info("Calibrating gyro...")

 self._gyroOffset = [0.0]*3

 i = 0

 while i < 100:

 self._gyroOffset[0] += self._readRawGyroX()

 self._gyroOffset[1] += self._readRawGyroY()

 67

 self._gyroOffset[2] += self._readRawGyroZ()

 time.sleep(0.02)

 i += 1

 for index in range(3):

 self._gyroOffset[index] /= float(i)

 #Calculate core_sensor installation angles

 self._accAnglesOffset[0] = self._previousAngles[0] =

math.degrees(math.atan2(self._accOffset[1], self._accOffset[2]))

 self._accAnglesOffset[1] = self._previousAngles[1] = -

math.degrees(math.atan2(self._accOffset[0], self._accOffset[2]))

 #Calculate local gravity

 angles = [math.radians(angle) for angle in self._accAnglesOffset]

 accels = [accel * Imu6050.ACCEL2MS2 for accel in self._accOffset]

 self._localGravity = Vector.rotateVector3D(accels, angles + [0.0])[2]

 def getMaxErrorZ(self):

 return 0.1

 def stop(self):

 pass

