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ABSTRACT 

Explanatory note for the qualification work " Language command system in on-board 

control systems" 75 pages, 8 figures, 12 tables, 44 sources. 

Keywords: VOICE COMMAND SYSTEM, ONBOARD CONTROL SYSTEMS, 

SPEECH RECOGNITION, AVIATION COMMUNICATIONS, INTELLIGENT 

SYSTEMS. 

Object of study: the voice command system in onboard control systems. 

Subject of study: the structure and algorithms of the voice command system. 

Purpose of the qualification work: to develop a voice command system for onboard 

control systems and to implement the latest principles for building such systems using 

modern speech recognition methods. 

Method of research: comparative analysis, processing of literary sources, digital 

modeling, and testing. 

Theoretical research: development of the structure and algorithms of the voice 

command system for onboard control systems. The use of modern speech recognition 

methods is proposed to ensure high accuracy and speed of command execution. An approach 

to integrating voice commands into the overall aircraft control system is implemented. 

Research results: the voice command system significantly improves the efficiency 

and convenience of managing onboard systems, reducing the pilot's workload. The proposed 

system ensures reliable command recognition even in challenging aviation environments. 

The speech recognition system proposed in the work uses modern machine learning 

algorithms to adapt to the individual voice characteristics of the pilot, achieving high 

accuracy and reliability in control. 

Recommendations: the results of the qualification work are recommended for use in 

the development of new and modernization of existing onboard control systems of aircraft, 

as well as in the training of pilots and specialists in aviation systems automation. 

  



 
 

РЕФЕРАТ 

Пояснювальна записка до кваліфікаційної роботи "Мовна командна 

система в бортових системах керування" 75 сторінок, 8 рисунків, 12 таблиць, 44 

джерела.  

Ключові слова: МОВНА КОМАНДНА СИСТЕМА, БОРТОВІ СИСТЕМИ 

КЕРУВАННЯ, РОЗПІЗНАВАННЯ МОВИ, АВІАЦІЙНИЙ ЗВ’ЯЗОК, 

ІНТЕЛЕКТУАЛЬНІ СИСТЕМИ.  

Об'єкт дослідження: мовна командна система в бортових системах 

керування.  

Предмет дослідження: структура та алгоритми мовної командної системи. 

Мета кваліфікаційної роботи: розробити мовну командну систему для 

бортових систем керування та впровадити новітні принципи побудови таких 

систем із використанням сучасних методів розпізнавання мовлення.  

Методи дослідження: порівняльний аналіз, опрацювання літературних 

джерел, цифрове моделювання та тестування.  

Теоретичне дослідження: розробка структури та алгоритмів мовної 

командної системи для бортових систем керування. Запропоновано 

використання сучасних методів розпізнавання мовлення для забезпечення 

високої точності та швидкості виконання команд. Реалізовано підхід до 

інтеграції голосових команд в загальну систему керування літаком.  

Результати дослідження: мовна командна система значно покращує 

ефективність та зручність управління бортовими системами, зменшуючи 

навантаження на пілота. Запропонована система забезпечує надійне 

розпізнавання команд навіть у складних авіаційних умовах. Система 

розпізнавання мовлення, запропонована в роботі, використовує сучасні 

алгоритми машинного навчання для адаптації до індивідуальних голосових 

характеристик пілота, досягаючи високої точності та надійності в керуванні.  

Рекомендації: результати кваліфікаційної роботи рекомендуються для 

використання при розробці нових та модернізації існуючих бортових систем 

керування літаків, а також у навчанні пілотів та спеціалістів з автоматизації 

авіаційних систем.  
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Introduction 

1. Definition of the topic's relevance 

The integration of language command systems within on-board control systems 

stands at the forefront of aviation innovation, representing a pivotal leap forward in aircraft 

technology. In an era characterized by ever-increasing automation and complexity in 

aviation operations, the implementation of advanced language interfaces holds immense 

promise for revolutionizing the way aircraft are controlled and managed. This introduction 

sets the stage for a comprehensive exploration of the multifaceted landscape surrounding 

language command systems, delving into their historical evolution, technological 

underpinnings, practical applications, and potential implications for the future of aviation. 

The journey towards integrating language command systems into aircraft control 

spans decades, marked by significant milestones and breakthroughs in speech recognition, 

natural language processing, and human-machine interaction. Understanding the historical 

context provides crucial insights into the evolution of these systems, tracing their 

development from rudimentary prototypes to sophisticated, real-world applications in 

modern aviation. 

At the heart of language command systems lie a myriad of cutting-edge technologies, 

including advanced speech recognition algorithms, machine learning models, and natural 

language understanding frameworks. This work delves into the intricate technical aspects 

behind the functioning of these systems, unraveling the complexities of speech processing, 

pattern recognition, and semantic analysis that enable seamless interaction between pilots 

and aircraft systems. 

Beyond theoretical frameworks and technological prowess, the true value of language 

command systems lies in their practical applications within the aviation domain. From 

cockpit voice commands and flight management to aircraft diagnostics and maintenance 

procedures, these systems have the potential to revolutionize every aspect of aircraft 

operations. This work explores the diverse array of applications for language interfaces in 

aviation, showcasing their versatility, efficiency, and real-world impact. 

As we stand on the precipice of a new era in aviation, characterized by unprecedented 

technological innovation and paradigm shifts in human-machine interaction, the 
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implications of language command systems extend far beyond the confines of the 

present. This work delves into the broader implications and future prospects of these 

systems, pondering their potential to reshape the aviation landscape, enhance safety 

and efficiency, and redefine the boundaries of human-machine collaboration. 

Through a comprehensive examination of these dimensions, this dissertation 

endeavors to provide a holistic understanding of language command systems in on-

board control, shedding light on their historical evolution, technological intricacies, 

practical applications, and transformative potential. By navigating this intricate 

tapestry of concepts and insights, we embark on a journey towards unlocking the full 

potential of language interfaces in shaping the future of aviation. 

2. Aim and objectives of the research 

The aim of this research is to conduct a comprehensive investigation into the 

integration of language command systems within on-board control systems in the 

aviation industry. This encompasses a multifaceted exploration of the technological, 

operational, and human factors aspects associated with the development and 

implementation of language interfaces in aircraft control. 

To achieve this aim, the following objectives have been outlined: 

To review the historical evolution of language command systems in on-board 

control, tracing the development trajectory from early conceptualizations to 

contemporary applications. 

To analyze the technological foundations underlying language command 

systems, including speech recognition algorithms, natural language processing 

techniques, and human-machine interaction paradigms. 

To assess the practical applications of language command systems in aviation 

operations, encompassing cockpit voice commands, flight management 

functionalities, aircraft diagnostics, and maintenance procedures. 

To evaluate the effectiveness and efficiency of language command systems in 

enhancing safety, productivity, and user experience within the aviation environment. 
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To explore the implications of language command systems for future developments 

in aviation technology, human factors considerations, and regulatory frameworks. 

To provide recommendations for the design, implementation, and integration of 

language command systems into existing and future on-board control architectures, 

addressing technical challenges, operational requirements, and user needs. 

By delineating these objectives, this research endeavors to offer a structured and 

comprehensive analysis of language command systems in on-board control, aiming to 

contribute valuable insights to the field of aviation technology and human factors 

engineering. Through rigorous investigation and critical inquiry, we aspire to illuminate the 

path towards harnessing the transformative potential of language interfaces for the 

advancement of aviation safety, efficiency, and innovation. 

 

3. Object and subject of the research 

The object of this research is the integration of language command systems within 

on-board control systems, specifically within the context of the aviation industry. This 

encompasses the technological infrastructure, operational procedures, and human-machine 

interaction dynamics involved in the implementation and utilization of language interfaces 

in aircraft control environments. 

The subject of the research encompasses a comprehensive examination of language 

command systems, spanning their historical evolution, technological underpinnings, 

practical applications, and implications for the future of aviation. This includes but is not 

limited to: 

Speech recognition algorithms and technologies utilized in language command 

systems. 

Natural language processing techniques employed to interpret and respond to human 

commands. 

Human factors considerations related to the design, usability, and acceptance of 

language interfaces in cockpit environments. 
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Operational integration of language command systems within existing aircraft 

control architectures, including flight management systems, avionics interfaces, and 

maintenance procedures. 

Safety, efficiency, and user experience implications associated with the 

adoption of language interfaces in aviation operations. 

Regulatory frameworks, standards, and guidelines governing the design, 

certification, and implementation of language command systems in aircraft. 

By delving into the intricacies of these elements, this research seeks to provide 

a comprehensive understanding of language command systems within on-board 

control, shedding light on their potential benefits, challenges, and implications for the 

aviation industry. Through empirical analysis and critical inquiry, we aim to 

contribute valuable insights to the advancement of aviation technology and human 

factors engineering, paving the way for the safe, efficient, and user-friendly 

integration of language interfaces in aircraft control environments. 

 

4. Research methods 

This research employs a multifaceted approach encompassing qualitative and 

quantitative research methods to achieve its objectives effectively. The chosen 

methods are tailored to provide a comprehensive analysis of language command 

systems within on-board control systems, ensuring robustness and validity in the 

research findings. 

Qualitative research methods, including literature review, case studies, and 

expert interviews, will be utilized to gain in-depth insights into the historical 

evolution, technological foundations, and practical applications of language 

command systems. A thorough examination of academic literature, industry reports, 

and relevant documentation will facilitate a comprehensive understanding of the 

subject matter, while case studies and expert interviews will offer valuable 

perspectives from practitioners and domain experts. 

Quantitative research methods, such as surveys and empirical data analysis, 

will be employed to assess the effectiveness, efficiency, and user experience 
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implications of language command systems in aviation operations. Surveys will be 

conducted to gather feedback from pilots, aviation professionals, and other 

stakeholders regarding their experiences and perceptions of language interfaces in on-board 

control. Empirical data analysis will involve the collection and analysis of relevant 

operational data to evaluate the impact of language command systems on safety, 

productivity, and operational efficiency. 

Furthermore, a comparative analysis approach will be adopted to assess the 

advantages and disadvantages of different approaches to implementing language interfaces 

in aircraft control. This will involve the systematic comparison of various systems, 

technologies, and operational practices to identify best practices, challenges, and areas for 

improvement. 

Overall, the combination of qualitative and quantitative research methods will provide 

a comprehensive and rigorous examination of language command systems within on-board 

control systems, yielding valuable insights into their design, implementation, and impact on 

aviation operations. Through a methodologically sound approach, this research aims to 

contribute to the advancement of knowledge in the field of aviation technology and human 

factors engineering. 
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Chapter 1 

Literature Review 

1.1. Historical Evolution of Language Command Systems in On-board 

Control 

The inception of language command systems in on-board control dates back to 

the early stages of aviation history, marked by rudimentary attempts to integrate 

verbal instructions into aircraft operations. Over the decades, the evolution of these 

systems has been shaped by significant technological advancements, pioneering 

research, and practical applications in various domains. From the initial experiments 

with voice recognition in aircraft cockpits to the sophisticated language interfaces 

integrated into modern flight management systems, the journey of language command 

systems reflects a continuous quest for innovation and optimization in human-

machine interaction. 

The historical trajectory of language command systems encompasses key 

milestones, including the development of early voice recognition prototypes, the 

emergence of natural language processing techniques, and the integration of speech-

based interfaces into critical aviation systems. Pioneering research efforts in the mid-

20th century laid the foundation for subsequent advancements, paving the way for the 

adoption of voice-controlled navigation, communication, and control functionalities 

in commercial and military aircraft. 

Throughout this evolutionary process, language command systems have 

undergone iterative refinement, driven by advancements in computing power, signal 

processing algorithms, and artificial intelligence. From rule-based systems relying on 

predefined commands to machine learning models capable of understanding and 

interpreting natural language inputs, the sophistication of language interfaces has 

grown exponentially, enabling more intuitive and user-friendly interactions between 

pilots and aircraft systems. 

Furthermore, the historical evolution of language command systems has been 

shaped by a myriad of external factors, including regulatory frameworks, industry 

standards, and technological trends. The gradual shift towards digitalization, 
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automation, and connectivity in aviation has accelerated the adoption of language interfaces, 

driving innovation and transformation across the industry. 

In summary, the historical evolution of language command systems in on-board 

control represents a fascinating journey of technological innovation, scientific discovery, 

and practical implementation. By tracing this evolutionary path, we gain valuable insights 

into the origins, development, and future prospects of language interfaces in aviation, laying 

the groundwork for a comprehensive understanding of their role in modern aircraft 

operations. 

 

1.2. Modern Approaches to Implementing Language Systems in Control 

In the contemporary landscape of aviation technology, the implementation of 

language systems in on-board control has evolved to encompass a diverse array of 

approaches, methodologies, and technological paradigms. This section provides a 

comprehensive overview of the modern approaches and strategies employed in the design, 

development, and deployment of language command systems, shedding light on the latest 

trends, innovations, and best practices in the field. 

At the forefront of modern approaches is the integration of advanced speech 

recognition algorithms, leveraging deep learning techniques, neural networks, and 

probabilistic models to achieve unprecedented levels of accuracy and robustness in 

recognizing spoken commands. These state-of-the-art algorithms enable real-time 

processing of natural language inputs, allowing for seamless interaction between pilots and 

aircraft systems without the need for cumbersome manual inputs or complex command 

structures. 

Parallel to advancements in speech recognition, natural language processing (NLP) 

technologies have emerged as a cornerstone of modern language systems, facilitating the 

understanding, interpretation, and contextual analysis of human language inputs. Through 

the application of machine learning algorithms, semantic parsing techniques, and 

ontological frameworks, NLP enables language interfaces to decipher the intent behind 

spoken commands, infer user preferences, and adaptively respond to changing contexts and 

environments. 
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Moreover, modern approaches to implementing language systems in on-board 

control extend beyond technical considerations to encompass human factors 

engineering, user experience design, and ergonomic considerations. Human-centered 

design principles, usability testing methodologies, and cognitive psychology insights 

are integrated into the development process to ensure that language interfaces are 

intuitive, user-friendly, and conducive to safe and efficient operation in high-stakes 

aviation environments. 

Furthermore, the advent of cloud computing, edge computing, and distributed 

processing architectures has revolutionized the scalability, flexibility, and 

accessibility of language systems in aviation. Cloud-based solutions offer seamless 

integration with existing avionics systems, enabling real-time data exchange, remote 

updates, and adaptive learning capabilities that enhance the performance and 

adaptability of language interfaces in diverse operational scenarios. 

In summary, modern approaches to implementing language systems in on-

board control represent a convergence of cutting-edge technologies, interdisciplinary 

insights, and user-centric design principles. By harnessing the power of advanced 

speech recognition, natural language processing, and human factors engineering, 

these approaches pave the way for a new era of intuitive, interactive, and intelligent 

aviation systems that redefine the boundaries of human-machine interaction in flight. 
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Chapter 2 

Technologies and Methods of Language Systems in On-board Control 

2.1. Analysis of Speech Recognition Methods 

The analysis of speech recognition methods within the realm of on-board control 

systems represents a fundamental exploration into the diverse array of algorithms, 

techniques, and methodologies employed to decipher and interpret spoken commands. This 

section delves into the intricacies of speech recognition, shedding light on the underlying 

principles, challenges, and advancements that shape the landscape of this critical technology 

in aviation. 

Speech recognition methods encompass a spectrum of approaches, ranging from 

traditional rule-based systems to modern deep learning architectures. Rule-based systems 

rely on predefined phonetic patterns, language models, and grammatical rules to match 

spoken utterances to predetermined commands, offering simplicity and transparency in 

algorithm design but often exhibiting limited flexibility and scalability in complex linguistic 

contexts. 

In contrast, modern speech recognition methods leverage the power of machine 

learning, neural networks, and statistical modeling to achieve superior accuracy, robustness, 

and adaptability in real-world environments. Deep learning architectures, such as 

convolutional neural networks (CNNs), recurrent neural networks (RNNs), and transformer 

models, have revolutionized the field of speech recognition by enabling end-to-end training 

on large-scale datasets, thereby capturing complex patterns and nuances in human speech 

with unparalleled precision. 

Furthermore, the integration of acoustic modeling, language modeling, and 

pronunciation modeling techniques plays a pivotal role in enhancing the performance of 

speech recognition systems. Acoustic modeling involves the representation of speech 

signals in the form of feature vectors, spectrograms, or mel-frequency cepstral coefficients 

(MFCCs), enabling the extraction of relevant acoustic features for subsequent analysis and 

classification. 

Language modeling, on the other hand, focuses on capturing the statistical properties, 

syntactic structures, and semantic relationships inherent in natural language, thereby 
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enabling the prediction of plausible word sequences and grammatical constructs from 

observed speech inputs. Techniques such as n-gram models, recurrent neural networks 

(RNNs), and transformer-based language models are commonly employed to 

facilitate language modeling in speech recognition systems. 

Moreover, pronunciation modeling techniques aim to address variations in 

pronunciation, accent, and dialect among speakers, ensuring robustness and 

adaptability in speech recognition across diverse linguistic contexts. Phonetic 

dictionaries, pronunciation lexicons, and acoustic-phonetic alignment algorithms are 

utilized to map spoken utterances to canonical representations, facilitating accurate 

recognition and interpretation of spoken commands. 

In summary, the analysis of speech recognition methods in on-board control 

systems encompasses a multifaceted exploration of algorithmic principles, 

computational techniques, and practical considerations that underpin the development 

and deployment of language interfaces in aviation. By examining the strengths, 

limitations, and emerging trends in speech recognition, this section provides valuable 

insights into the technological foundations of language systems and their role in 

shaping the future of aircraft control and navigation. 

2.2. Overview of Existing Language Models for On-board Control 

An overview of existing language models for on-board control systems offers 

a comprehensive examination of the diverse range of linguistic frameworks, 

computational architectures, and semantic representations utilized to facilitate natural 

language understanding and interaction within aircraft environments. This section 

embarks on a detailed exploration of the theoretical foundations, practical 

implementations, and emerging trends in language modeling, shedding light on the 

rich tapestry of approaches that underpin the design and development of language 

interfaces in aviation. 

Language models serve as the backbone of language systems, providing the 

framework for understanding and interpreting human speech inputs in the context of 

aircraft control and navigation. Traditional language models, such as finite-state 

grammars, context-free grammars, and phrase-structure grammars, offer structured 
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representations of linguistic knowledge, enabling rule-based parsing and interpretation of 

spoken commands. 

In contrast, modern language models harness the power of statistical learning, 

machine learning, and deep neural networks to capture the intricate patterns, semantic 

relationships, and contextual nuances inherent in natural language. Probabilistic models, 

such as hidden Markov models (HMMs), conditional random fields (CRFs), and Gaussian 

mixture models (GMMs), are commonly employed to model the statistical properties of 

language and facilitate probabilistic inference in language understanding tasks. 

Furthermore, the emergence of deep learning architectures has revolutionized the 

field of language modeling, enabling the development of neural network-based models 

capable of capturing complex linguistic structures and semantic representations. Recurrent 

neural networks (RNNs), long short-term memory networks (LSTMs), and transformer 

architectures have demonstrated remarkable success in language modeling tasks, offering 

superior performance in capturing long-range dependencies, hierarchical structures, and 

contextual embeddings in natural language. 

Moreover, pre-trained language models, such as BERT (Bidirectional Encoder 

Representations from Transformers), GPT (Generative Pre-trained Transformer), and 

BERT-based variants, have emerged as powerful tools for language understanding and 

generation in diverse domains, including aviation. These models leverage large-scale 

corpora of text data to learn contextualized representations of words, phrases, and sentences, 

enabling robust and contextually aware interpretation of spoken commands within aircraft 

environments. 

In summary, the overview of existing language models for on-board control systems 

provides a glimpse into the rich diversity of computational frameworks, algorithmic 

techniques, and theoretical paradigms that underpin the development and deployment of 

language interfaces in aviation. By exploring the strengths, limitations, and emerging trends 

in language modeling, this section lays the groundwork for a deeper understanding of the 

technological landscape and practical considerations surrounding language systems in 

aircraft control and navigation. 
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2.3. Technologies of Natural Language Processing and Their Application 

in Aviation Systems 

The exploration of natural language processing (NLP) technologies and their 

application in aviation systems represents a pivotal aspect of language systems in on-

board control. This section delves into the intricate methodologies, computational 

techniques, and practical implementations that underpin the processing, 

understanding, and generation of natural language inputs within aircraft 

environments, offering insights into the transformative potential of NLP in aviation. 

Natural language processing encompasses a diverse array of techniques and 

methodologies aimed at enabling computers to understand, interpret, and generate 

human language in a manner that is contextually relevant and semantically 

meaningful. At the core of NLP lie fundamental tasks such as tokenization, part-of-

speech tagging, syntactic parsing, semantic analysis, and discourse processing, each 

of which plays a crucial role in extracting meaning and intent from natural language 

inputs. 

Tokenization involves segmenting text data into individual tokens or words, 

enabling subsequent analysis and processing at the lexical level. Part-of-speech 

tagging assigns grammatical categories (e.g., noun, verb, adjective) to each token, 

facilitating syntactic and semantic analysis by capturing the grammatical structure of 

sentences and phrases. 

Syntactic parsing aims to analyze the grammatical structure of sentences and 

phrases, identifying relationships and dependencies between words and phrases to 

derive syntactic trees or parse structures that represent the underlying syntactic 

hierarchy of the text. 

Semantic analysis focuses on extracting meaning and intent from natural 

language inputs, encompassing tasks such as named entity recognition, semantic role 

labeling, sentiment analysis, and semantic parsing. These tasks aim to capture the 

semantic content of text data, enabling computers to understand the intended meaning 

and context of user utterances within specific domains or applications. 
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Discourse processing involves analyzing the structure and coherence of larger units 

of text, such as paragraphs, documents, or conversations, to infer the underlying discourse 

relations, rhetorical structures, and pragmatic implications of the text. 

In the context of aviation systems, NLP technologies find diverse applications across 

various domains, including cockpit voice commands, flight management systems, air traffic 

control communications, aircraft diagnostics, and maintenance procedures. These 

applications leverage NLP techniques to facilitate intuitive, efficient, and contextually 

aware interactions between pilots, air traffic controllers, and automated systems, thereby 

enhancing safety, productivity, and user experience in aviation operations. 

Through the integration of advanced NLP technologies, aviation systems can interpret 

complex natural language inputs, adaptively respond to changing contexts and 

environments, and facilitate seamless communication and collaboration between human 

operators and automated systems. By harnessing the power of NLP, the aviation industry 

stands poised to unlock new frontiers in human-machine interaction, automation, and 

decision support, ushering in a new era of intelligent and user-centric aviation systems. 
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Chapter 3 

Analysis of existing control systems with language interfaces 

3.1. Overview of Existing Automated Control Systems with Language 

Interfaces in Aviation and Other Industries 

The integration of language interfaces into automated control systems 

represents a watershed moment in human-computer interaction, transcending 

traditional input methods and revolutionizing the way users interact with technology. 

This section offers an expansive exploration of the dynamic landscape of existing 

automated control systems endowed with language interfaces, examining their 

multifaceted functionalities, broad-ranging applications, and profound ramifications 

across aviation and diverse industrial sectors. 

Automated control systems enhanced with language interfaces harness cutting-

edge natural language processing (NLP) technologies to facilitate seamless, intuitive, 

and hands-free communication between human operators and sophisticated 

automated platforms. In the aviation domain, these systems herald a new era of 

cockpit control, empowering pilots to execute commands, retrieve critical 

information, and navigate complex operational scenarios using natural language 

speech commands. 

Pioneering advancements in voice recognition and semantic understanding 

have paved the way for the integration of language interfaces into flight management 

systems, navigation aids, and cockpit avionics, enabling pilots to interact with aircraft 

systems effortlessly and efficiently. By bridging the gap between human intent and 

machine execution, these systems mitigate cognitive workload, enhance situational 

awareness, and optimize operational performance during flight operations. 

Beyond aviation, automated control systems with language interfaces have 

permeated various industries, including automotive, manufacturing, healthcare, and 

consumer electronics, catalyzing a paradigm shift in user interaction paradigms. In 

automotive applications, voice-controlled infotainment systems, virtual assistants, 

and driver assistance features empower motorists to access navigation, entertainment, 
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and communication functionalities without compromising safety or diverting attention from 

the road. 

Similarly, in manufacturing environments, voice-activated control systems streamline 

production workflows, expedite equipment setup and configuration, and foster greater 

operational agility and responsiveness. Moreover, in healthcare settings, voice-enabled 

medical devices, electronic health records systems, and virtual medical assistants empower 

clinicians to access patient information, record medical observations, and perform 

administrative tasks hands-free, optimizing clinical workflows and enhancing patient care 

delivery. 

The ubiquitous proliferation of automated control systems with language interfaces 

underscores the inexorable march toward intuitive, user-centric human-machine interaction 

paradigms across diverse domains. By leveraging the synergistic fusion of natural language 

understanding, voice recognition, and cognitive computing technologies, these systems 

epitomize the convergence of human ingenuity and technological innovation, heralding a 

transformative era of automation, digitalization, and experiential augmentation. 

In summation, the panoramic overview of existing automated control systems with 

language interfaces illuminates their unparalleled versatility, pervasive applicability, and 

transformative potential in reshaping the contours of human-computer interaction across 

aviation and an array of industries. As these technologies continue to mature and proliferate, 

they are poised to catalyze a seismic shift in the fabric of human-machine collaboration, 

driving unprecedented advancements in productivity, efficiency, and user experience on a 

global scale. 

3.2. Comparison of Functional Capabilities and Characteristics of Existing 

Systems 

The comparison of functional capabilities and characteristics of existing language 

command systems constitutes a pivotal aspect in evaluating their efficacy, usability, and 

adaptability across various operational domains. This subsection undertakes an exhaustive 

comparative analysis, delving into the intricate nuances of the functional attributes, 

performance metrics, and design paradigms of language command systems deployed across 

aviation and an array of industrial sectors, elucidating pivotal distinctions, convergences, 
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and emergent trends that delineate the evolutionary trajectory of human-machine 

interaction paradigms. 

In the realm of aviation, language command systems serve as linchpins of 

cockpit automation, facilitating seamless communication, task execution, and 

information retrieval for flight crews amidst the dynamic exigencies of flight 

operations. These systems embody a sophisticated ensemble of functionalities, 

encompassing voice-activated controls, natural language understanding, and context-

aware processing capabilities, enabling pilots to issue commands, query system 

status, and navigate operational procedures with precision and efficiency. 

Furthermore, aviation-centric language command systems are engineered to conform 

to stringent safety, reliability, and regulatory standards, integrating fault-tolerant 

architectures, redundant fail-safes, and human factors considerations to ensure 

resilient performance in high-stakes aviation environments and mitigate the risk of 

catastrophic failures or human errors. 

Conversely, in the automotive domain, language command systems herald a 

paradigm shift in vehicular interaction paradigms, empowering drivers with 

unprecedented levels of connectivity, convenience, and safety on the road. These 

systems boast an expansive repertoire of features, ranging from voice-controlled 

infotainment systems and navigation aids to driver assistance functionalities and 

vehicle diagnostics, augmenting driver situational awareness, entertainment options, 

and hands-free operational capabilities while minimizing distractions and cognitive 

load. Moreover, automotive language command systems leverage advanced machine 

learning algorithms, cloud-based processing architectures, and personalized user 

profiles to deliver tailored user experiences, anticipate driver intents, and optimize 

system performance across diverse driving scenarios and environmental conditions. 

Within the manufacturing sector, language command systems emerge as 

pivotal enablers of smart factory initiatives, orchestrating production workflows, 

monitoring equipment status, and enhancing operational agility amidst the 

complexities of modern manufacturing environments. These systems embody a rich 

tapestry of functionalities, encompassing voice-activated equipment controls, 
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predictive maintenance algorithms, and real-time production analytics, empowering 

operators to streamline operational processes, optimize resource allocation, and 

mitigate downtime risks. Furthermore, manufacturing-specific language command systems 

exhibit robust interoperability with industrial control systems, enterprise resource planning 

(ERP) platforms, and supply chain management (SCM) solutions, facilitating seamless data 

exchange and integration within the broader manufacturing ecosystem. 

In healthcare settings, language command systems serve as catalysts for clinical 

innovation, streamlining administrative tasks, augmenting medical documentation, and 

enhancing patient care delivery processes. These systems offer a diverse array of 

functionalities, including voice-enabled medical dictation, EHR navigation, clinical 

decision support, and virtual medical assistant services, empowering healthcare 

professionals to optimize workflow efficiency, reduce documentation burdens, and focus on 

delivering high-quality patient care. Moreover, healthcare-specific language command 

systems adhere to stringent data privacy, security, and regulatory compliance standards, 

leveraging encryption protocols, access controls, and audit trail mechanisms to safeguard 

patient confidentiality and ensure HIPAA compliance. 

In summation, the comparison of functional capabilities and characteristics of existing 

language command systems underscores their multifaceted utility, transformative potential, 

and cross-industry applicability in shaping the contours of human-machine interaction 

paradigms. By harnessing the synergistic convergence of advanced speech recognition, 

natural language processing, and machine learning technologies, these systems epitomize 

the vanguard of human-centric design, paving the way for a future where human-machine 

collaboration transcends boundaries and empowers individuals to realize their full potential 

across diverse operational domains. 

3.3. Analysis of the Advantages and Disadvantages of Different Approaches to 

Implementing a Language Interface in Control Systems 

The analysis of various approaches to implementing a language interface in control 

systems is instrumental in understanding the nuanced trade-offs, technical considerations, 

and usability implications inherent in the design and deployment of language command 

systems across diverse operational domains. This section embarks on a comprehensive 
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exploration of the multifaceted landscape of language interface implementation 

methodologies, elucidating the inherent advantages and disadvantages of different 

approaches, ranging from rule-based systems and statistical models to deep learning 

architectures and hybrid approaches, in fostering intuitive, efficient, and reliable 

human-machine interaction paradigms. 

Rule-based systems represent one of the foundational approaches to 

implementing language interfaces in control systems, relying on predefined 

grammatical rules, semantic parsers, and domain-specific vocabularies to interpret 

user input and execute corresponding actions. The advantages of rule-based systems 

lie in their transparency, interpretability, and ease of customization, enabling 

designers to fine-tune system behavior, handle edge cases, and accommodate domain-

specific constraints with relative ease. However, rule-based systems are inherently 

limited by their rigidity, brittleness, and susceptibility to semantic ambiguity, 

necessitating extensive rule sets, manual intervention, and domain expertise to 

maintain and update over time. 

Statistical models offer an alternative paradigm for language interface 

implementation, leveraging probabilistic models, machine learning algorithms, and 

large-scale corpora to infer user intent, disambiguate linguistic input, and generate 

contextually relevant responses. The advantages of statistical models lie in their 

adaptability, scalability, and robustness to linguistic variations, enabling systems to 

learn from data, generalize across diverse contexts, and evolve over time without 

explicit rule specification. However, statistical models are susceptible to data sparsity, 

overfitting, and generalization errors, particularly in low-resource domains or in the 

presence of noisy, unstructured input data, necessitating careful feature engineering, 

data preprocessing, and model validation strategies to mitigate performance 

degradation. 

Deep learning architectures represent the forefront of language interface 

implementation, harnessing the power of neural networks, recurrent models, and 

attention mechanisms to learn hierarchical representations of language semantics, 

syntactic structures, and context dependencies directly from raw input data. The 
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advantages of deep learning architectures lie in their ability to automatically extract high-

level features, capture long-range dependencies, and adapt to complex, dynamic input 

patterns, enabling systems to achieve state-of-the-art performance in tasks such as speech 

recognition, natural language understanding, and dialog generation. However, deep learning 

architectures require large-scale annotated datasets, substantial computational resources, 

and domain-specific expertise for training, fine-tuning, and optimization, posing challenges 

in terms of data acquisition, model interpretability, and deployment scalability. 

Hybrid approaches amalgamate the strengths of rule-based systems, statistical 

models, and deep learning architectures to capitalize on their complementary advantages 

and mitigate their respective limitations in language interface implementation. By 

leveraging rule-based heuristics for initial parsing and semantic annotation, statistical 

models for probabilistic inference and context modeling, and deep learning architectures for 

feature learning and pattern recognition, hybrid approaches offer a balanced compromise 

between interpretability, scalability, and performance in real-world applications. However, 

hybrid approaches entail additional complexity in system design, integration overhead, and 

model fusion challenges, necessitating careful architectural design, algorithmic selection, 

and performance optimization strategies to achieve optimal balance between flexibility, 

robustness, and computational efficiency. 

In summation, the analysis of the advantages and disadvantages of different 

approaches to implementing a language interface in control systems underscores the 

nuanced interplay between design trade-offs, technological capabilities, and user experience 

considerations in shaping the efficacy, usability, and adoption of language command 

systems across diverse operational domains. By embracing a principled approach to system 

design, leveraging insights from linguistics, cognitive science, and machine learning, and 

fostering interdisciplinary collaboration, language command systems can realize their full 

potential as enablers of seamless, intuitive, and empowering human-machine interaction 

paradigms in the digital age. 
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Chapter 4 

GVSITE SRS Evaluation 

As we do not have the appropriate equipment and resources to conduct an 

experimental study, "Evaluation of Speech Recognition Systems for Aircraft Cockpit 

Voice Control" (Smith et al., 2018) article will be used as a frame in chapters 4-5. 

A collaborative flight test evaluation was conducted by NASA Langley 

Research Center and an industry partner team as part of NASA's Aviation Safety and 

Security Synthetic Vision System project. The evaluation took place over a 3-week 

period at the Reno/Tahoe International Airport (NV) and an additional 3-week period 

at the Wallops Flight Facility (VA). Known as the Gulfstream-V Synthetic Vision 

Systems Integrated Technology Evaluation (GVSITE), this test aimed to assess 

integrated Synthetic Vision System (SVS) concepts crucial for the development and 

deployment of actual SV systems. 

The SV systems evaluated during GVSITE included computer-generated 

terrain displayed on the Primary Flight Display (PFD), monochrome textured terrain 

presented on a Head-Up Display (HUD), and plan or perspective views of computer-

generated terrain and obstacles on the Navigation Display (ND). Additionally, the 

integrated SV system incorporated data-link capabilities, sensors, and algorithms to 

provide and verify necessary information for display. It also featured symbology and 

algorithms designed to enhance pilot situational awareness during surface operations 

and to mitigate or alert to potential runway incursions. 

This paper focuses specifically on assessing the in-flight performance of a 

Speech Recognition System (SRS) utilized as the pilot-vehicle interface for the 

integrated SV system display concepts. 

4.1. Flight Test Aircraft 

The flight test utilized a Gulfstream G-V aircraft, as shown in Figure 1. The 

Evaluation Pilot (EP) occupied the left seat, while a Gulfstream Safety Pilot occupied 

the right seat. The left seat setup included two research displays for assessing the PFD 

and ND concepts, an overhead HUD projection unit for evaluating head-up concepts, 

and an SRS system serving as the pilot-vehicle interface to the SV displays. 
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Fig. 1. G-V aircraft exterior and interior views. 

 

4.2. Evaluation Pilots 

Ten expert pilots (EPs) from airlines, a major transport aircraft manufacturer, the 

Federal Aviation Administration, and the Joint Aviation Authority participated in research 

flights, accumulating approximately 67 hours of flight testing. A total of 145 flight test runs 

were conducted to evaluate the NASA Synthetic Vision System (SVS) concepts near 

Wallops Island, VA (with 8 pilots) and Reno/Tahoe International Airport (with 7 pilots). 

Five of the ten pilots participated in tests at both locations. 

4.3. Speech Recognition System Design for GVSITE 

A Speech Recognition System (SRS) was integrated into the Gulfstream-V aircraft to 

enhance the pilot-vehicle interface with the Synthetic Vision System (SVS) displays without 

requiring hardware modifications. It served as a testing ground for future developments in 

commercial and business aircraft flight deck technologies. The system utilized a commercial 

speech recognition engine to interpret pilot's speech inputs, an interface application to 

exchange information with a computer via Ethernet, and a text-to-speech module to generate 

audible messages or play pre-recorded WAV files. The speech recognition technology 

employed was a readily adaptable, speaker-independent system with customizable 

grammar. 
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The bi-directional Speech Recognition System (SRS) allowed the Evaluation 

Pilots (EPs) to verbally command changes to the Synthetic Vision System (SVS) 

displays and receive aural warnings and alerts triggered by the SVS research systems. 

To enable this functionality, the EPs used noise-attenuating David Clark headsets 

plugged into a Telex ProCom/2 intercom box. This intercom box split the pilot's 

speech input to drive both the nominal G-V intercom input jacks and a specialized 

SRS function. The SRS function was implemented using a Microsoft Windows-based 

application running on a single computer. The intercom box's audio output was 

connected to the computer's audio-in port, allowing the computer to receive speech 

input. A "push-to-listen" function was incorporated into the system: when the EP 

depressed the yoke-mounted radio transmit rocker switch, a serial input closed on the 

SRS computer, initiating the "listening" process. Releasing the "push-to-listen" 

trigger signaled the SRS application to complete the speech recognition process. This 

implementation mimicked existing radio communications, making it intuitive and 

easy for the EPs to use as they interacted with the on-board speech-respondent 

"assistant." 

Instead of implementing a natural language interface, the speech recognition 

system (SRS) utilized a hierarchical grammar structure to enhance recognition 

accuracy. The hierarchy consisted of three-word commands for controlling the 

Synthetic Vision System (SVS) displays (PFD, HUD, and ND) as shown in Figure 2, 

with the first word representing the display device, the second word indicating the 

function or element to be controlled, and the third word specifying the value or 

modifier. For instance, the command "NAV RANGE 5" adjusted the navigational 

display range to 5 nautical miles. Additionally, two "exceptions" were programmed: 

"cancel" to undo the previous command and "repeat" to reissue the last command.  

Some words in the SRS grammar had alternative pronunciations, allowing 

users to choose between saying the word or spelling out each letter. For example, 

"HUD" could be pronounced as a word or spelled out as "H-U-D," and "NAV" could 

be said as a word or spelled out as "N-D." Similarly, "field-of-view" could be 

articulated as "FO-V." 
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Fig. 2. Hierarchical Grammar for GVSITE. The 3 tier grammar structure: 1) Display device, 2) 

Display element and 3) State. 

The SRS provided positive visual feedback during its operation. While the EP 

depressed the push-to-listen button and vocalized a command, the SRS interpreted it. 

Throughout the button's depression, a box featuring plus signs was displayed at the bottom 

of the PFD and HUD (Fig. 3). Should the SRS hold a minimum 40% confidence level in its 

interpretation, it transmitted the command to the displays. The interpreted command was 
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then briefly showcased to the pilot for confirmation (Fig. 3). Conversely, if the SRS 

held less than a 40% confidence level, a box containing minus signs was briefly 

presented at the bottom of the PFD (Fig. 4). The 40% confidence threshold was 

established based on preliminary testing conducted prior to the evaluation flights. 

 

Fig. 3. The SRS box awaiting spoken command (left) and displaying the recognized 

command(right). 

 

Fig. 4. The PFD display when the SRS was not confident in its interpretation. 
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The complete grammar setup for GVSITE is provided in Appendix A. Additionally, 

synonyms were permitted, such as using "NAV" interchangeably with "ND." Before the 

evaluation flights, it was noted that the phonetic similarity between "off" and "on" led to 

poor recognition rates when both were included in the grammar. Therefore, "declutter" was 

substituted for "off." In the context of aviation displays, "declutter" essentially means the 

same as "off" – to remove symbols from a display. Although "off" would have been 

preferred by the EPs as the natural opposite of "on," "declutter" was acceptable and became 

easy to remember and use after training. 

4.4. Results 

Throughout the entire flight test period, pilots issued a total of 505 verifiable SRS 

commands, achieving an overall success rate of 84%. This means there were 425 correctly 

recognized commands and 80 incorrectly recognized ones. Despite this, the SRS software's 

reported accuracy rate is 96%. 

The distribution of commands pertaining to each display is presented in  

Table 1. The data indicates that commands for the PFD and ND were issued almost 

identically, at a rate four times greater than those for the HUD. It is important to note that 

the HUD had hardware controls for symbology and raster declutter, which were mounted 

on the EP's yoke. While the SRS commands for the HUD could adjust symbology groups, 

the hardware controls toggled the entire stroke or raster HUD components. 

Table 1. SRS Commands per Display 

 

 

Each EP averaged 34 SRS commands per test flight, with a maximum of 64 and a minimum 

of 12. Figure 5 illustrates the total commands spoken during the flight test for each EP. 
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There were two types of incorrect recognitions by the SRS: 

1) Instances where the SRS was not confident in matching to any command, resulting 

in rejection due to recognition falling below the threshold level of 40%. This occurred 

regardless of whether the utterance was correctly interpreted. 

2) Cases where the SRS incorrectly interpreted a command, with recognition 

exceeding the threshold level of 40%, but the recognized utterance did not match the 

spoken command. For example, "PFD FOV 60" was interpreted as "NAV RANGE 

60". 

As depicted in Figure 6, the error rates varied considerably among EPs. Two 

EPs had error rates of 42% and 37%, while the others were closer to 10% error rates. 

Among the commands where the SRS exceeded the 40% threshold, the accuracy rate 

was 96%. This means that only 20 of the 80 incorrect recognitions were  

 

Fig. 5. Number of SRS commands spoken by each EP. 

 



37 
 

misinterpretations. The remaining 60 incorrect recognitions were confidence-related, 

indicating that the recognizer performance did not surpass the 40% threshold level, leading 

to no recognition action being taken (refer to Table 2). 

Table 2. Incorrect SRS Commands. 

 

 

  The errors were linked to the specific display to which the utterance was directed. 

These details are illustrated in Figures 6 to 8. Specifically, the PFD command comprised 67 

out of the total 80 (84%) incorrect recognitions. Despite both the ND and PFD being 

addressed an equal number of times, the PFD accounted for a disproportionately high share 

of the errors. 

 

Fig. 6. Percentage of Incorrect Recognitions per Display. 
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Fig. 7. Commands Correctly Recognized per Display. 

 

  

Fig. 8. Incorrect Recognitions for the PFD. 
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4.5. Summarising 

Across all GVSITE data flights, the SRS achieved an overall success rate of 84%, 

correctly interpreting 84% of the 505 total SRS commands. Eighty commands were either 

recognized with insufficient confidence or incorrectly interpreted. Specifically, for 60 out 

of these 80 incorrect commands, the SRS had less than 40% confidence in its interpretation. 

The remaining 20 incorrect commands were misinterpretations, such as interpreting “NAV 

RANGE 5” as “NAV RANGE 20.” 

When the success rate was broken down by display type, the ND commands had a 

95% success rate, the HUD commands had a 96% success rate, and the PFD commands had 

a lower success rate of 68%. The SRS recognition engine’s practical success rate is known 

to be 96%, aligning with the success rates for the ND and HUD commands. 

The incorrect recognitions for the PFD commands, detailed in Figure 8, revealed that 

the majority of errors were due to the “PFD FOV” commands. Most of the time, the SRS 

lacked confidence in interpreting these commands. If “PFD FOV” commands were excluded 

from the analysis, the overall success rate of the SRS would match the published accuracy 

rate of 96%. 

The poor performance for PFD commands was primarily due to the noise-attenuating 

microphones and headsets used in the G-V aircraft. These microphones canceled out 

ambient cockpit noise when no voice input was detected, but caused a response lag, making 

the initial part of the pilot’s speech sound truncated. Consequently, commands like “HUD” 

and “NAV” became nearly phonetically equivalent to their truncated versions “UD” and 

“AV,” whereas “PFD” did not have a similar phonetic equivalent, making “FD” harder to 

recognize. This issue was more pronounced when pilots spoke quickly, complicating 

recognition. This hypothesis should be experimentally verified, and if confirmed, several 

changes could improve the system: a) tailoring the grammars to include truncated phonetic 

equivalents, b) modifying commands to compensate for this effect, or c) training pilots to 

utter a sound before pressing the push-to-listen button. 

Additionally, another significant factor affecting SRS performance was the audio 

input volume and quality from the EPs. While audio input was checked during ground tests 

before each flight, there was no real-time monitoring of SRS volume or quality. This 
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oversight should have been addressed. The audio volume is crucial for SRS 

performance, but it was an uncontrolled variable during the tests since EPs often 

adjusted their intercom volumes and microphone positions, affecting SRS 

performance. Occasionally, the audio input was too weak or overly saturated. To 

resolve this, real-time audio volume monitoring should be implemented, ideally with 

a series of lights indicating the audio input volume and its status (e.g., “high-medium-

low”). 

4.6. EP Recommendations 

After analyzing the results of the SRS work and the pilots' feedback, I can make 

the following suggestions: 

1. Introduce shortcuts for common commands. For instance, allow "RANGE 

5" to replace "NAV RANGE 5" and "VIEW 30" for "PFD FOV 30." Although the 

hierarchical structure methodology was clear, "range" only applied to the Navigation 

Display and "view" to the PFD. Thus, including "NAV" and "PFD" was unnecessary 

for most EPs. 

2. Adjust the cadence of certain commands to create a uniform cadence across 

all commands, if feasible. For example, change "PFD FOV" to a cadence similar to 

"NAV RANGE." This could involve changing the command "PFD" to a single word 

(possibly "Primary"), although a one-syllable word would be preferable. 

3. Replace "FOV" with a single word (perhaps "View"). Using "Field-of-View" 

or even "F-O-V" was verbally cumbersome compared to a single word like "View." 

4. Ensure consistency in using "UP/DOWN" and "INCREASE/DECREASE." 

The increase/up and decrease/down commands were not always intuitively obvious 

and were not consistently programmed to be synonymous. 

5. Nearly all EPs desired a higher accuracy rate for the SRS, aiming for a 99+% 

recognition performance. 
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Chapter 5 

Laboratory SRS Experiment 

Following the GVSITE flight test, a laboratory study was conducted to establish 

baseline performance of the speaker-independent speech recognition technology. 

Participants were asked to speak words and phrases commonly used in standard aviation 

dialogue. The study was divided into three segments: single word utterances, short 

command phrases, and longer ATC clearance phrases. This study collected recognition data, 

assessed the basic accuracy of the recognition, and recorded a confidence factor in the 

recognition output by the SRS. Notably, the laboratory study employed a different SRS 

recognizer than the one used in the GVSITE flight test. 

5.1. Participants 

A total of 25 native US English-speaking individuals (18 males and 7 females) 

participated in the laboratory study. No additional information was collected about the 

participants. Each participant spent approximately 10 minutes completing the study. 

5.2. Equipment 

A laptop with standard microphone and earphone connections was used for the study. 

The headset employed was an Andrea ANC-700, featuring an active noise-canceling 

microphone optimized for speech recognition. 

- Specifications of the Andrea ANC-700 Microphone: 

- Noise Cancellation: 6 dB/octave 

- Frequency Range: 100-10,000 Hz 

- Impedance at 1 kHz (SoundBlaster Interface): 300 ohm 

- Electrical Signal-to-Noise Ratio: 60 dB 

- Sensitivity at 1 kHz (0 dB = 1 V/Pa) SoundBlaster Interface: -36 dB 

- Current Consumption (SoundBlaster Interface): 0.500 mA 

5.3. Method 

Participants were instructed to read words displayed on a screen, divided into three 

segments of the study: single word phonetics, short commands, and ATC clearances. The 

utterances were assessed for accurate recognition and a confidence factor. 
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Each participant spoke a total of 71 utterances (Table 3), consisting of 26 single 

word utterances (e.g., the aviation phonetic alphabet from Alpha to Zulu) and 45 

phrase utterances. The phrase utterances included 39 short phrases and 6 long phrases. 

The short command phrases were typical flight deck and display management 

commands used in the previous GVSITE flight test, such as “NAV RANGE 20.” The 

longer phrase utterances were taxi clearances, with the longest one comprising 14 

words (19 syllables). 
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Table 3. All of the 71 utterances each participant spoke. 
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In all three segments of the study, the independent variable was the utterance. 

The dependent variables were accuracy (correct or incorrect) and the confidence 

factor (ranging from 0 to 100). In the first segment, utterance numbers 1 through 26 

were used, corresponding to the aviation phonetic alphabet from Alpha to Zulu. In the 

second segment, the utterances were approximately 3-5 words long, with utterance 

numbers 27 through 65 being used. Additionally, in this segment, two different 

command sets were compared and evaluated for accuracy. One command set began 

with “PFD Field-of-View view angle” and was compared to the set beginning with 

“PFD FOV view angle.” Another comparison was made between commands starting 

with “Checklist checklist name” versus “checklist name Checklist.” The third 

segment used utterance numbers 65 through 71, which were modeled after typical 

ATC ground control clearances. 

5.4. Procedure 

Each participant was equipped with a headset, and the microphone was adjusted 

to a distance proportional to their normal speaking volume. A volume level meter 

within the software ensured consistent microphone positioning and input levels. 

Additionally, the microphone height was set below the “Puff line” to minimize wind 

noise during the pronunciation of words containing the letter “P.” 

Participants were instructed to speak the designated word or phrase while the 

speech recognition software captured the audio and processed it using its recognition 

algorithms. The recognized utterance was then displayed to the participant, who 

indicated whether it was correctly recognized. This process continued until all 

utterances in each segment of the study were completed. 

5.5. Results 

The overall recognition rate for all 71 utterances by all 25 participants (1775 

utterances) was 95.5% correct. Per participant, the median was 96%, the maximum 

was 100%, the minimum was 77% and the standard deviation was 5.52. 
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5.5.1. Single Word Utterance 

The overall recognition rate for all aviation phonetic utterances across all 25 

participants (totaling 650 utterances) was 94.8% accurate, as outlined in Table 4. Participant 

performance varied, with recognition rates ranging from 100% to 80% for phonetics such 

as ‘A’ and ‘P.’ 

Table 5 breaks down the recognizer’s confidence level (refer to Appendix E) for each 

aviation phonetic alphabet utterance (single words) across all 25 participants (650 

utterances). The data indicates that the mean standard deviation for confidence was 

approximately 8.0, with the utterance “Tango” exhibiting the greatest variability (standard 

deviation). 

Additionally, Table 6 provides the percentage of correct recognitions by participant 

for single-word utterances. Eight participants achieved a perfect recognition score, while 

one participant had a recognition performance of only 77%. 

Table 4. Mean Percentage of Correct Recognition, All Participants (N=25). 

 

5.5.2. Short Phrase Utterance 

Within the second segment, two different command sets were evaluated to determine 

which set to use. The confidence level for these phrases is tabulated in Table 7, as well as 

the mean correct recognition rate. The “PFD Field of View number” versus “PFD FOV 

number” set both were recognized 100% of the time. Similarly, the “Checklist checklist 

name” versus “checklist name Checklist” command set was only different by 1%. Since the 

accuracy data revealed no clear advantage, the more natural speech data sets will be used; 

“PFD Field of View number”, and “checklist name Checklist”. Finally, the percentage 

correct by participant for the short phrase word utterances is given in Table 8. Fourteen 
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participants obtained perfect recognition score. One participant only had 85% 

recognition performance, whereas they had 92% performance in the single word 

utterance test. The participant with the worst performance in the single word 

utterances, scored 95% in the short phrase utterances. 

5.5.3. ATC Long Phrase Utterance 

Segment 3 was included as an initial exploration into potential future studies 

focusing on SRS applications in cockpit interactions with ATC communications. 

Table 9 provides the confidence levels associated with the long phrase 

utterances, while Table 10 displays the percentage of correct recognitions by 

participant for these lengthy phrases. 

Analysis of the percentage of correct recognitions by participant reveals that 8 

participants achieved perfect recognition scores. However, 4 participants exhibited a 

recognition performance of only 67%, resulting in a mean recognition rate of 86% 

across all participants. The majority of ATC phrase utterances were accurately 

recognized, with only one word being incorrectly interpreted. Specifically, the word 

‘Alpha’ in the utterance “United 231 Taxi to Concourse Delta via Echo Bravo Alpha” 

was misinterpreted five times, reflecting a consistent error rate observed with ‘Alpha’ 

from the initial phonetic segment. Additionally, it was observed that short syllable 

words (such as 'at', 'and', 'to') were frequently omitted. 

Table 11 presents a summary of correct recognitions across all segments. 
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Table 5. Segment 1: Confidence of Phonetic, All Participants (N=25). 

 

  



48 
 

Table 6. Segment 1: Phonetics Percent Correct per Participant Sorted by Incorrect 

Recognitions. 
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Table 7. Segment 2: Confidence of Command, All Participants (N=25). 
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Table 8. Segment 2: Commands, Percent Correct per Participant Sorted by Incorrect 

Recognitions. 
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Table 9. Segment 3: Confidence by ATC Phrase, All Participants (N=25). 

 

5.6. Optimization 

An utterance was deemed correct if the participant confirmed the recognizer's guess 

as accurate. The recognizer utilized an internal algorithm to assess recognition correctness 

based on an "utterance score," which needed to meet or exceed the predetermined utterance 

threshold of 50. Alongside the participant's assessment, the recognizer's score, derived from 

the utterance score, was also recorded. This dataset underwent analysis to identify an 

optimal utterance score threshold that would enhance recognition rates using the 

recognizer's utterance score. 

Out of all single-word phonetic utterances (totaling 650), there were 7 instances 

(1.1%) where the SRS marked a correct recognition despite the confidence threshold being 

below 50, resulting in a recorded incorrect recognition. Conversely, there were 15 

occurrences (2.3%) where the utterance was actually incorrect but was incorrectly deemed 

correct by the SRS. 

In digital avionics design, priorities often prioritize error detection over error 

correction. In essence, it is preferable to receive no data than to receive erroneous data. For 

example, the ARINC 429 digital data bus lacks error correction capability but transmits data 

(for error detection) to determine if a data packet was received accurately. Following a 

similar principle, SRS optimization may focus on achieving a lower false positive rate than 

an overall recognition rate. 

Adjusting the threshold setting allows for some recognition optimization. A "false 

positive" occurs when the utterance score exceeds the threshold and is considered correct, 

despite being incorrect. To minimize false positive recognitions, the threshold could be 

increased. For instance, resetting the threshold to 52 reduces the false positive rate by 0.5%, 
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albeit with a corresponding 0.6% decrease in the overall recognition rate (refer to 

Table 12). Conversely, resetting the threshold to 48 increases the correct recognition 

rate by 1.2%, but also raises the false positive rate by 0.6%. Depending on priorities, 

SRS optimization through threshold setting adjustment is feasible within a narrow 

range. 

 

Table 10. Segment 3: ATC Phrase, Percent Correct per Participant sorted by Incorrect 

Recognitions. 
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Table 11. Total Correct Recognition for All Participants (N=25). 

 

 

Table 12. Optimization analysis of Confidence Threshold setting 

 

5.7. Summarising 

The SRS engine successfully demonstrated its capability to recognize voice 

commands independently and process natural continuous speech. Across 1775 utterances 

spoken by 25 different participants, the SRS achieved a recognition rate exceeding 95%. 

However, for in-flight applications, enhancing microphone quality and noise 

cancellation features are imperative to ensure optimal input audio signal quality. 

Discrepancies were observed between the laboratory test and the aircraft SRS performance, 

with the latter falling short of the expected recognition rate. Two significant disparities 

between the flight test and laboratory conditions were noted: firstly, the presence of higher 

ambient noise levels during the flight test compared to the controlled laboratory 

environment, and secondly, the absence of a volume display for the flight test setup. 

Addressing these limitations could potentially improve the recognition rate to a maximum 

of 96%. Nevertheless, pilots have emphasized the necessity for the SRS to achieve closer to 

a 99.99+% correct recognition rate. 
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Conclution 

 

          The data underscores the obstacles and complexities associated with 

developing a speech recognition system tailored for aviation, pinpointing specific 

challenges like the integration of the aviation phonetic alphabet. 

The data indicates a pressing need for substantial research and development 

efforts. Generally, the recognition rate standards for commercial speech recognition 

systems fall significantly short of those necessary for aviation applications. Despite 

the increasing adoption of Speech Recognition Systems (SRSs) in consumer 

electronics like Siri™, Cortana™, and Amazon Echo™, aviation communication 

differs significantly from natural language, necessitating tailored solutions for this 

unique context. To enhance recognition rates, it's essential to implement structured or 

restricted grammars, hierarchical structures, speaker-dependent models, and context-

specific adjustments in SRSs for aviation. For instance, real-time correlation of 

waypoint names and their pronunciation with aircraft position could improve 

recognition rates, considering that a pilot in Virginia might not reference waypoints 

in California. 

The increasing necessity for speech recognition systems in aviation is 

becoming increasingly urgent. This demand is primarily motivated by the growing 

importance of enhanced data exchange among stakeholders in the National Air Space 

(NAS). This emphasis particularly concerns digital communication systems such as 

the Aircraft Communications Addressing and Reporting System (ACARS), 

controller-pilot data-link communication (CPDLC), and emerging operational 

frameworks known as "Net-Centric Operations." These frameworks enable new 

modes of operation by facilitating the exchange of status, intentions, and performance 

data among all users, fostering cooperative and coordinated flight operations. 

In these operational scenarios, human oversight, awareness, and potential 

intervention remain essential, despite the increasing prevalence of machine-to-

machine collaboration. As the volume of information exchanged grows, it poses a 

challenge for humans-in-the-loop, leading to information overload and clutter. To 
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manage this data effectively, there is a growing need for Increasingly Autonomous Systems 

(IAS). These systems are designed to provide humans with relevant information such as 

traffic updates, intentions, and messaging, and enable interaction or intervention when 

necessary. 

IAS operates autonomously, comprehending communications and extracting 

pertinent information, including path planning, intent, and state data from all aircraft within 

its range. It employs adaptive capabilities, learning from user input and contextual data 

through machine learning algorithms. A key aspect of IAS design is its human-centered 

approach, emphasizing bi-directional communication to ensure effective collaboration 

between humans and machines. Therefore, speech-based interfaces, including text-to-

speech and speech-to-text capabilities, play a crucial role in facilitating natural interaction 

and creating an intuitive interface for IAS. Research indicates that natural, aural 

communication is essential for developing a user-friendly and low-workload IAS interface. 

IAS are expanding their presence in various aviation applications beyond trajectory 

planning and execution. Technologies such as machine learning and cognitive computing, 

typified by IBM Watson, are increasingly recognized for their potential to enhance safety 

and performance within the aviation sector. However, a key technical challenge lies in 

developing these increasingly autonomous systems into intelligent machines. This requires 

leveraging machine learning algorithms while ensuring human involvement and interaction 

to optimize system performance beyond what either component could achieve individually. 

The collaboration between humans and autonomy is pivotal for the success of IAS, with 

speech serving as a natural and intuitive interface crucial for enabling autonomous systems. 

In future research, I propose to use integrated aviation-specific speech recognition systems 

with technologies such as IBM Watson to reduce the workloads of the commercial flight 

cockpit.  
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Appendix A 

Available commands for the GVSITE flight test 

The tables provided outline the commands accessible within the Speech Recognition 

System (SRS). Moreover, Evaluation Pilots (EPs) had access to shortcut commands, namely 

CANCEL and REPEAT. CANCEL was utilized to revoke the last command issued, while 

REPEAT was employed to replicate the previously spoken command. 
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Appendix B 

Custom Speech Application Software 

 

          The evaluation software was created within the Microsoft Visual Studio 2005 

development environment, utilizing the C# programming language and the Fonix C# 

Application Programmers Interface (API). Around 2,000 lines of code were dedicated to 

this project. Below are screenshots depicting the three segments utilized in the study. 

 

Figure B1. Single word utterance segment screen image. 
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Figure B2. Short (command) phrase utterance segment screen image. 

 

 

Figure B3. Long phrase utterance segment screen image. 
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Appendix C 

Speaker-independent engine 

A speech application is structured into nodes, each representing the vocabulary and 

other recognition configurations utilized during speech recognition. The Software 

Development Kit (SDK) facilitates word-spotting and grammar nodes, eliminating the need 

for training. The diagram below illustrates a speech utterance and outlines the audio 

attributes associated with each node. These attributes dictate how the speech detector frames 

the utterance before transmitting it to the recognizer. 

 

Figure C1. Speech waveform and attributes. 

The speaker-independent SRS engine undertakes the following operations: 

1. Audio collection: Raw audio data is gathered from an input source, such as a 

microphone, and forwarded to the Audio Processing component. 

2. Audio processing: The audio input is segmented into "frames" using predetermined 

parameters, ensuring that only relevant audio data for recognition is retained. This processed 

data is then directed to the Feature Extraction component. 

3. Feature extraction: Frequency components are extracted from the processed audio 

data at intervals of 10 milliseconds. These frequency components are then passed on to the 

Neural Networks component. 

4. Neural networks: Phoneme probability estimates are derived from the frequency 

components by the neural networks. These estimates are subsequently transmitted to the 
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Continuous Word Decoder. Neural networks play a pivotal role in the speech 

recognition technology. 

5. Continuous word decoder: The collection of phoneme probabilities is 

compared against the dictionary, resulting in a list of word probabilities arranged in 

descending order of likelihood. 
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Appendix D 

Software Implementation 

Each segment of the study had its own configuration for grammar structure and 

candidate word dictionary. The Application Programmers Interface (API) employed a 

straightforward script language to define the grammar structure. In this language, a "vertical 

line" denotes a logical OR, a "space" signifies a logical AND, square brackets "[ ]" indicate 

optional elements, and parentheses "( )" are used for grouping. 

In the first segment, the dictionary consisted solely of the 26 phonetics. 

$phonetics = (Alpha%A | Bravo%B | Charlie%C | Delta%D | Echo%E | Foxtrot%F | 

Golf%G | Hotel%H | India%I | Juliette%J | Kilo%K | Lima%L | Mike%M | November%N | 

Oscar%O | Papa%P | Quebec%Q | Romeo%R | Sierria%S | Tango%T | Uniform%U | 

Victor%V | Wiskey%W | X-Ray%X | Yankee%Y | Zulu%Z);  

$grammar = $phonetics; 

 

In the second segment, which focused on short command utterances, the structure was as 

follows: 

$navcommand = NAV (declutter |  

(zoom (in | out)) | 

 ((range ( back | one%1 | two%2 | five%5| ten%10 |  

twenty%20 | fifty%50 | one-hundred%100 | 

two-hundred%200)))) ;  

$pfdcommand = PFD (declutter |  

(traffic (on | off)) |  

(((Field of view) | (F O V))  

(unity | thirty%30 | sixty%60 | ninety%90)));  

$hudcommand = HUD (declutter | (traffic (on | off)));  

$chklstcommand = [Checklist] ((Before Takeoff) |  

Takeoff | Climb | Cruise | Descent |  

Landing | (After Landing)) [Checklist];  

$grammar = $pfdcommand | $navcommand | $hudcommand | $chklstcommand; 
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The third segment, (long phrase utterance) contained the following structure: 

$command = (Hold | (Hold at) | (Hold Short) | (Hold Short Of) | Taxi);  

$modifiers = (To|At); 

$dest = (Ramp | Gate | Concourse | (Runway One%1 Four%4 Left%Lt)|  

(Runway One%1 Four%4 Right%Rt)| (Runway two%2 three%3) |  

(Runway one%1 six%6));  

$modifiers2 = (via|at); 

$grammar = $callsign $command [$modifiers] $dest [$phonetics]  

[$modifiers2] {$phonetics}; 
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Appendix E 

Software controls definitions 

 

          The Utterance Score is an integer ranging from 0 to 100, provided by the SRS 

algorithm, indicating the confidence level in recognizing the last spoken utterance. 

The Utterance Score Recognition Threshold is also an integer ranging from 0 to 100, 

used to compare with the Utterance Score. If the Utterance Score exceeds or equals this 

threshold, the utterance is considered recognized. Throughout the study, this threshold was 

consistently set to 50. 

Node Rejection Strength, another integer ranging from 0 to 100, is a setting in the 

SRS algorithm determining the threshold for recognizing or rejecting out-of-vocabulary 

words. Increasing this value makes word recognition more stringent, resulting in more 

rejections. Conversely, decreasing this value makes word recognition less strict but 

increases the chance of accepting out-of-vocabulary words. For this study, the value was set 

to 80. 

Node Leading Silence is an integer setting ranging from -1 to 10000 milliseconds 

used in the SRS algorithm. It measures the duration of silence between the start of recording 

and the detection of speech. If no speech is detected within the leading silence time, 

recording stops. 

Node Tailing Silence is also an integer setting (-1 to 2000 milliseconds) used in the 

SRS algorithm to determine the maximum length of silence the speech detector waits for 

before recognizing the end of speech. This allows for natural pauses in speech. Setting a 

lower value results in faster recognition results. Trailing silence begins after speech 

detection stops, and recording stops when the trailing silence time is reached. In this study, 

the value was consistently set to 1250 milliseconds. 

Maximum Record Time is an integer setting (0 to 120 seconds) that defines the 

maximum recording time after speech detection. For this study, the maximum record time 

was set to 10 seconds. 

Silence Threshold is an integer setting (0 to 500) designed for high noise 

environments where speech may be detected prematurely. However, this threshold is only 
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applied if recognition is lower than expected. The program dynamically adjusts the 

silence threshold. 

Auto Detect Speech is a discrete setting that toggles speech detection on or off during 

audio collection. When auto speech detect is enabled, only detected speech (including 

trailing silence) is sent to the recognizer. This setting was enabled throughout the study. 

Concurrent Recognition is another discrete setting that allows concurrent 

recognition and audio acquisition. This feature requires a fast processor to perform speech 

recognition while collecting audio. It was enabled throughout the study. 

Record Back-off refers to the duration of time before speech detection begins, which 

is incorporated into the data transmitted to the recognizer. This feature helps prevent 

clipping at the start of an utterance. Throughout the study, the record back-off setting 

remained at its default value of 250 milliseconds. 
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Appendix F 

Visualization of results using Matlab 

Percentage of Incorrect Recognitions per Display: 

% Percentage of Incorrect Recognitions per Display 
% Data 
display_types = {'ND', 'HUD', 'PFD'}; 
incorrect_rates = [14, 3, 84]; % Incorrect recognition rates 

for ND, HUD, and PFD in percentage 
 
% Create a bar chart 
figure; 
bar(incorrect_rates, 'FaceColor', [0.8, 0.2, 0.2], 

'EdgeColor', [0.5, 0.1, 0.1], 'LineWidth', 1.5); 
set(gca, 'XTickLabel', display_types, 'FontSize', 12, 

'FontWeight', 'bold'); 
xlabel('Display Type', 'FontSize', 14, 'FontWeight', 'bold'); 
ylabel('Percentage of Incorrect Recognitions', 'FontSize', 14, 

'FontWeight', 'bold'); 
title('Percentage of Incorrect Recognitions per Display', 

'FontSize', 16, 'FontWeight', 'bold'); 
ylim([0 40]); 
grid on; 
ax = gca; 
ax.GridAlpha = 0.5; 
 
% Add percentage labels above bars 
for i = 1:length(incorrect_rates) 
    text(i, incorrect_rates(i) + 1, sprintf('%.1f%%', 

incorrect_rates(i)), ... 
        'HorizontalAlignment', 'center', 'FontSize', 12, 

'FontWeight', 'bold'); 
end 
 
% Save the figure 
saveas(gcf, 'incorrect_recognitions_per_display.png'); 
 

  



74 
 

Commands Correctly Recognized per Display: 

 

% Success Rate by Command Type 

% Data 
commands_types = {'ND', 'HUD', 'PFD'}; 
success_rates = [0.95, 0.96, 0.68]; % Success rates for ND, 

HUD, and PFD 
 
% Create a bar chart 
figure; 
bar(success_rates, 'FaceColor', [0.4, 0.7, 0.9], 'EdgeColor', 

[0.2, 0.4, 0.5], 'LineWidth', 1.5); 
set(gca, 'XTickLabel', commands_types, 'FontSize', 12, 

'FontWeight', 'bold'); 
xlabel('Command Type', 'FontSize', 14, 'FontWeight', 'bold'); 
ylabel('Recognition Success Rate', 'FontSize', 14, 

'FontWeight', 'bold'); 
title('Success Rate by Command Type', 'FontSize', 16, 

'FontWeight', 'bold'); 
ylim([0 1]); 
grid on; 
ax = gca; 
ax.GridAlpha = 0.5; 
 
% Add percentage labels above bars 
for i = 1:length(success_rates) 
    text(i, success_rates(i) + 0.02, sprintf('%.1f%%', 

success_rates(i) * 100), ... 
        'HorizontalAlignment', 'center', 'FontSize', 12, 

'FontWeight', 'bold'); 
end 
 
% Save the figure 
saveas(gcf, 'command_type_success_rates.png'); 
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Incorrect Recognitions for the PFD: 

% Data 
pfd_commands = {'FOV UNITY', 'FOV 30', 'FOV 60', 'FOV 90', 

'TRAFFIC ON'}; 
incorrect_counts = [15, 11, 37, 1, 3]; % Number of incorrect 

recognitions for each PFD command 
 
% Create a bar chart 
figure; 
bar(incorrect_counts, 'FaceColor', [0.2, 0.6, 0.8], 

'EdgeColor', [0.1, 0.3, 0.4], 'LineWidth', 1.5); 
set(gca, 'XTickLabel', pfd_commands, 'FontSize', 12, 

'FontWeight', 'bold', 'XTickLabelRotation', 45); 
xlabel('PFD Command', 'FontSize', 14, 'FontWeight', 'bold'); 
ylabel('Number of Incorrect Recognitions', 'FontSize', 14, 

'FontWeight', 'bold'); 
title('Incorrect Recognitions for the PFD Commands', 

'FontSize', 16, 'FontWeight', 'bold'); 
ylim([0 40]); 
grid on; 
ax = gca; 
ax.GridAlpha = 0.5; 
 
% Add counts above bars 
for i = 1:length(incorrect_counts) 
    text(i, incorrect_counts(i) + 1, sprintf('%d', 

incorrect_counts(i)), ... 
        'HorizontalAlignment', 'center', 'FontSize', 12, 

'FontWeight', 'bold'); 
end 
 
% Save the figure 
saveas(gcf, 'incorrect_recognitions_pfd.png'); 
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Appendix G 

Basic code of the voice command system for on-board control systems. 

Creating a complete voice command system for on-board control systems involves 

several components, including speech recognition, command parsing, and interfacing with 

the control systems. Here's a frame using Python and the SpeechRecognition library for 

speech recognition and command parsing. This code assumes a basic setup and does not 

include integration with actual aircraft systems, which would require more specific and 

robust implementation: 

Install Required Libraries: 

pip install SpeechRecognition pyttsx3 

 

Import Libraries and Initialize Components: 

import speech_recognition as sr 

import pyttsx3 

 

# Initialize the recognizer and text-to-speech engine 

recognizer = sr.Recognizer() 

tts_engine = pyttsx3.init() 

 

# Function to convert text to speech 

def speak(text): 

    tts_engine.say(text) 

    tts_engine.runAndWait() 

 

# Function to recognize speech 

def recognize_speech(): 

    with sr.Microphone() as source: 

        print("Listening...") 

        audio = recognizer.listen(source) 

        try: 

            command = recognizer.recognize_google(audio) 

            print(f"Recognized command: {command}") 

            return command.lower() 

        except sr.UnknownValueError: 

            print("Could not understand the command") 
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            return None 

        except sr.RequestError: 

            print("Error with the recognition service") 

            return None 

 

Define Command Parsing and Execution: 

# Define command functions 

def set_nav_range(value): 

    speak(f"Setting navigation range to {value} nautical miles") 

    # Here you would add the code to interact with the actual aircraft systems 

 

def declutter_display(): 

    speak("Decluttering the display") 

    # Here you would add the code to interact with the actual aircraft systems 

 

def execute_command(command): 

    if command: 

        words = command.split() 

        if len(words) < 2: 

            speak("Incomplete command") 

            return 

 

        device = words[0] 

        action = words[1] 

 

        if device == "nav" and action == "range": 

            if len(words) == 3 and words[2].isdigit(): 

                set_nav_range(words[2]) 

            else: 

                speak("Please specify the range value") 

        elif device == "display" and action == "declutter": 

            declutter_display() 

        else: 

            speak("Unknown command") 

    else: 

        speak("No command detected") 
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Main Loop to Continuously Listen and Execute Commands: 

 

def main(): 

    speak("Voice command system activated. Awaiting your commands.") 

    while True: 

        command = recognize_speech() 

        execute_command(command) 

 

if __name__ == "__main__": 

    main() 

 

1) Speech Recognition: The recognize_speech() function listens for audio input and uses 

Google's speech recognition service to convert it to text. 

2) Text-to-Speech Feedback: The speak() function provides feedback to the user through 

text-to-speech. 

3) Command Parsing: The execute_command() function parses the recognized text and 

executes the appropriate function based on the parsed command. 

4) Command Functions: Example command functions like set_nav_range() and 

declutter_display() simulate actions that would be taken in a real system. 

5) Main Loop: The main() function continuously listens for commands and processes 

them. 

 

 


