36 ISSN 1990-5548 Electronics and Control Systems 2024. N 2(80): 36-42

UDC 621.004.8(045)
DOI:10.18372/1990-5548.80.18682

'V. M. Sineglazov,
?V. P. Khotsyanovsky

ADAPTIVE CONTROL OF MANIPULATOR ROBOTS IN A DYNAMIC ENVIRONMENT
USING NEURAL NETWORKS

"Faculty of Air Navigation, Electronics and Telecommunications, National Aviation University,
Kyiv, Ukraine
E-mails: 'svm@nau.edu.ua  ORCID 0000-0002-3297-9060,
*sttt912@yahoo.com ORCID 0000-0003-0415-777X

Abstract—The purpose of the study is to develop an approach to planning the trajectory of the
manipulator robot using an intelligent system based on neural networks. For this purpose, the work
considered the processes of planning and deploying the movement of the robot. The analysis of existing
methods of planning the movement of manipulator robots and the review of intelligent control systems
made it possible to obtain a complete picture of the current state of this issue. A system is proposed that
can perceive the environment and control the movement of the robot by generating the correct control
commands. For this, 3 tasks were solved, namely.: analysis of the environment in order to determine its
features, determination of the trajectory in order to neutralize the collision and determination of
controlled influences for the executive authorities in order to implement the movement. The functionality
and structure of the neural network for solving each of the tasks are proposed.

Index Terms—Machine learning; neural networks; motion planning system; intelligent system; robotic
manipulators; dynamic obstacles; environment analysis; automated systems.

I. INTRODUCTION

At the early stage of the design of the robot
manipulator, the dynamic model system and the
system parameters associated with it must be
accurately described when designing the controller
[1]. In traditional control design methods, such as
computational torque control and inverse dynamics
control, which works well [2], by calculating the
torque of the robot manipulator and building
dynamic equation, you can get a good control effect
[3]. However, this suggests the possibility of
obtaining an accurate data model. However,
obtaining an accurate mathematical model of the
robot during its real operation is difficult [4].

Because many scenarios require robots to adapt to
new conditions or even learn completely new
behavior. For example, a robot that manufactures cars
will occasionally have to adapt to new car models.

For many real-world applications, it is sufficient
to program the required behavior by hand, but often
this is not possible because the environment may
simply change too often or even be unknown in
advance to the engineers programming the system.

However, modern requirements for automated
systems require the development of new motion
planning methods to ensure the accuracy and
optimality of robot actions in dynamic production
conditions, as existing approaches often have
limitations and are unable to provide flexibility in
solving dynamic production scenarios This need is

caused by the dynamism of the production
environment where robots have to function.

Motion planning taking into account dynamic
changes opens the way to increasing the accuracy
and efficiency of robots. This will lead to better
performance of tasks, saving resources and
increasing productivity. Also, this method will
reduce the risk of collisions, as the probability of
emergency situations will be significantly reduced
due to better traffic planning.

As a result, this will lead to the expansion of the
spheres of use of robots. Because the ability to adapt
to dynamic changes will make robots more versatile
and allow them to be used in a wider range of tasks.
Therefore, there is a problem of developing a
method of planning robot movement with the
possibility of taking into account changes in
dynamic production scenarios. The results of this
research are needed in practice, because they
determine the possibility of safe and effective use of
robots in conditions where they must interact with
dynamic surrounding objects, for example, other
robots. In recent years, machine learning has
revolutionized the field of robotics and automation.
Using algorithms, robots can be taught to perform
various tasks and even This has made it possible to
create more perfect works that can independently
navigate complex environments, interact with people
in a more natural way, and perform production tasks
more efficiently.
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Machine learning enables robots to process vast
amounts of data in real time, allowing them to make
faster and more accurate decisions. These robots
have a better understanding of the environment and
the objects around them. For example, they can be
programmed to identify objects using a combination
of visual, tactile and sound sensors. This allows it to
recognize different objects in the environment and
react accordingly.

II. ANALYSIS OF EXISTING AND CUSTOM ROBOTIC
MANIPULATOR MOTION PLANNING METHODS

Robotic arm positioning is the process of
precisely controlling the position and orientation of a
robotic arm limb (tool or gripper) to perform certain
tasks. This position is crucial for the interaction of
the hand with objects, manipulating them and
accurately performing various operations.

A robotic arm usually consists of several joints
that provide degrees of freedom (DOF) to the arm.
DOF represents the number of independent
parameters needed to describe the arm configuration.
Each joint allows the arm to rotate or move along a
specific axis, allowing the arm to move in multiple
directions (Fig. 1).

Positioning of a robotic arm is based on the use
of coordinate systems to determine the position and
orientation of the arm. The most common coordinate
system is the Cartesian system coordinates, where
positions are defined by X, Y, and Z coordinates.
Hand orientation can be represented by Euler angles,
quaternions, or rotation matrices. Direct kinematics
involves determining the position and orientation of
the end effector based on the angles or lengths of the
joints. On the other hand, inverse kinematics
involves finding the angles or lengths of the joints
necessary to achieve the desired position and
orientation of limbs.

Trajectory planning involves creating a smooth
and optimal trajectory along which the robot arm
will move when moving from one position to
another. It takes into account factors such as obstacle
avoidance, joint constraints and path optimization
based on criteria such as time, energy consumption
or traffic. Trajectory planning ensures efficient and
safe movement of the hand to the desired position.

In the analysis of traditional robot motion
planning methods, key techniques such as geometric
trajectory planning, inverse kinematics method,
dynamic programming, and random positions and
optimization methods should be addressed.

Geometric trajectory planning determines the
movement of the robot based on the geometric
characteristics of the workspace. This method allows

you to specify the exact position and orientation of
the manipulator, but may be limited by the
complexity of solving problems for complex user
convenience, it has its limitations, particularly in the
area of adaptation to changing conditions [5].

The inverse kinematics method is used to
determine the input angles or positions of the
manipulator to achieve a specific position or
trajectory. This method is effective in solving
problems for specific points in space, but may lose
accuracy in complex problems due to a large number
of possible solutions. Also, it is used in most
industrial robot control systems [6].

The inverse kinematics method allows you to
determine the robot's kinematic parameters based on
its position and orientation.

Dynamic programming considers the movement
of the manipulator as a sequence of actions with
criteria minimization. This method is effective for
optimization problems and for planning trajectories,
in particular in cases where the dynamic constraints
of the robot are important. However, it can be
computationally expensive for real time in complex
environments, especially with a large number of
dimensions of the decision space and complex
tasks [7].

Regarding random positions and optimization
methods, these approaches often use random points
to reduce the number of intermediate points in the
trajectories or use optimization methods to reach
optimal solutions.

In order to perform a comparative analysis of the
above-mentioned approaches, a table should be
drawn up in which their main characteristics and
differences will be displayed (Table I).

Fig. 1. Robotic Arm with 5 DOF
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TABLE I.

Approach Peculiarities
Geometric Determines the movement of
trajectory the robot according to the
planning geometric characteristics of

The inverse

the workspace
Defines the input angles or

Advantages
Ensures the exact position and
orientation of the robot
Convenient management for
the user
Effective in solving problems
for specific points
Used in most control systems

Effective for optimization and
planning of trajectories
Allows to take into account
the dynamic limitations of the

Reducing the number of
intermediate points in
trajectories

kinematics positions of the manipulator
method to reach a certain point
Dynamic Considers the movement of
programming  the manipulator as a sequence
of actions with criteria
minimization
robot
Random Using random points
positions and
optimization
methods Use of optimization methods

Achieving optimal solutions

COMPARATIVE ANALYSIS OF EXISTING APPROACHES

Limitations:
Difficulty solving problems for
complex configurations
Limited adaptation to changing
conditions
Loss of accuracy in complex
tasks
A large number of possible
solutions in complex problems
Computationally expensive for
real time
Difficulty in use in real time
conditions

Dependence on the initial
selection of random points

The need for computing

III. PROBLEM STATEMENT

Modern requirements for automated systems
necessitate the development of new motion planning
methods to ensure the accuracy and optimality of
robotic actions in dynamic production environments.
Let the dynamics of work in discrete time occur

as fy:
X1 :fx(xk’uk)’

where x; € x and u; € U denote the state and control
input of the system at the kth search step.

The work considers static obstacles and dynamic
obstacles, the movement of which is known. For
example, for a multi-robot system, the movements of
all robots are usually planned one at a time. When
planning the movement of a given robot, the
movements of other robots are known.

In this paper, the trajectory m is defined as a
series of states and level control commands:

T =(x0, Ugs X, 5 Xpo Uy X,y eey Xy Uy, xtk),

where ¢, is the time step of the kth intermediate point
on the trajectory.

Existing  approaches  frequently  exhibit
limitations and fail to provide the required flexibility
for addressing dynamic production scenarios. This
need arises from the inherent dynamism of the
production environment in which robots operate [9].

In this paper, the proposed approach is focused
on the study of the possible solution space of traffic
planning problems from previous experience to

resources, especially for

complex tasks
improve search efficiency. In other words, the
proposed approach first learns to perceive the robot's
environment. The robot dynamics then learns to
accurately mimic realistic robot motion. Finally, the
proposed approach learns which optimal high-level
commands can move the robot to the target area with
realistic dynamics in the perceived environment
model at each search step.

For successful manipulation of the object, the

task will be divided he task:

A. Determining  the in order to

neutralize the collision

trajectory

Since studying the full solution space is very
difficult and does not scale well for other problems,
our approach starts with studying the local space of
possible solutions fiocal:

flocal ('xk’ (Pk ‘xgoal - uk )

The locally feasible solution space consists of all
possible control policies that consider only the state
of the local system (for example, the state of the
environment @, the current state of the robot x;, and
the goal state yg.) and direct the robot from the
current state to the goal area with the Ath control
command u; search steps.

B.  Analyzing the environment in order to

determine its features

Since this work considers environments with
static and dynamic obstacles, the geometric and
temporal information of the environment should be
represented as the state of the environment ¢, at the
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kth step of the search and used in the subtask the
task of determining the trajectory in order to
neutralize the collision.

controlled
in order to

C.  Determining
executive bodies
movement

influences  for
implement the

It is necessary to calculate the execution time and
interpolation of the robot's motion between two
states to check for collisions between the robot and
obstacles during the transition from one state to the
next at each search step. Thus, the proposed
approach studies realistic high-level motion-driven
robot dynamics.

IV. PROBLEM SOLUTION

To address this issue, the implementation of
intelligent control systems, specifically neural
networks, is proposed. Neural networks are
instrumental in enhancing and optimizing the
movement of robotic manipulators due to their
flexibility and adaptability to changing conditions.
They also facilitate the automation and
simplification of the calibration processes for
moving robot components, thereby ensuring
maximum accuracy and operational speed.

For precise calculation of the robot's actual
motions and trajectory, the neural network must
incorporate the robot's real motion dynamics and
motion trajectory based on actual motion execution.
Notably, the planned movement of the robot may
differ slightly from its actual movement.

For training tasks, we consider a model of a
robotic arm represented as an intelligent agent in a
constrained and simplified environment. An agent is
an entity that is capable of perceiving its
environment through sensors, as well as influencing
its environment through actuators. Agents can
traditionally perceive their own actions, but not
necessarily the effects of those actions on the
environment.

An agent can be mathematically described by an
agent function that affects the agent's action based
on its entire perceptual position. Thus, the agent's
behavior can be fully described by defining actions
for each possible perception situation [10]. The
scheme of interaction between the agent and the
environment is presented in Fig. 2.

Event
Sensors | ¢———
Environ
Agent .‘ ment
Action
or )2

Fig. 2. Interaction of components of the educational
environment

Neural networks such as convolutional neural
networks, recurrent neural networks, and deep
neural networks are best suited for manipulator robot
motion planning systems (Fig. 3).

Neural networks for motion planning
| systems for robotic manipulators

-

ENN | DNN |

CNN

Fig. 3. Neural networks for robotic manipulators

When considering the use of neural networks to
solve the described problem, it is important to focus
on the analysis and description of architectures that
optimally take into account the features of these
systems. Neural networks such as convolutional
neural networks, recurrent neural networks, and
deep neural networks are best suited for motion
planning systems of robot manipulators.

Consider a dynamic scene that includes moving
objects or a change in the state of objects over time.
The architecture of convolutional neural networks is
suitable for object recognition. The use of CNN
allows effective recognition of objects in real time,
which is key to planning the safe movement of the
manipulator around objects in the workspace [11].

However, convolutional neural networks (CNNs)
alone may not be sufficient for effective analysis of
dynamic scenes, and they do not account for the
temporal sequence of events. In such cases, it makes
sense to use recurrent neural networks (RNNs) or
their enhancements, such as long-term variants of
short-term memory (LSTM) and networks based on
the attention mechanism (Transformers). These
architectures can learn to recognize and retrieve
temporal relationships, which are critical to properly
understanding a dynamic scene.

Long short-term memory networks variants cope
well with the problem of gradient vanishing, thanks
to which they can remember information over long
time intervals [12]. This is especially useful for
tracking the trajectories of objects in time and
predicting their future position, which is important
for planning the motion of the manipulator (Fig. 4).

"y

Fig. 4. LSTM architecture
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Another promising architecture is Transformer
(Fig. 5), which uses an attention mechanism to
efficiently process a list of data. Transformers have
shown impressive results in natural language
processing tasks, but they have also been
successfully applied to video analysis and other
types of subsequent data [13]. The attention
mechanism allows you to simulate focusing on
important parts of the input situation, which
contributes to a better understanding of the context
and ensures high performance.

To solve the task of determining the trajectory in
order to neutralize collisions for the manipulator
robot, it is proposed to use a recurrent neural
network (RNN). Recurrent neural networks are used
to model motion dynamics (Fig. 6). Recurrent neural
networks are suitable for taking into account time
dependencies and modeling the dynamics of
manipulator movement, which allows predicting
future states of the system [14].

To improve work with dynamic scenes, you can
combine CNN with RNN, LSTM or Transformer,
creating hybrid models. For example, a CNN can be
used to extract spatial features from live video, after
which these features are fed to an LSTM or
Transformer to process the temporal information.

- ™
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 —
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Mutti-Head
Attention

L -

—
%, A

)

Input
Embedding

1
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Fig. 5. Transformer architecture

Fig. 6. RNN architecture

Such hybrid architectures provide a deeper
understanding of dynamic scenes, allowing the
model not only to recognize objects, but also to track
their movements and changes over time. This creates
opportunities for automated systems, such as new
robotics, where it is important not only to recognize
objects, but also to interact with them in real time.

V. RESULTS

The article resulted in recommendations for an
approach to solving the problem of increasing
positioning accuracy and response to dynamic

obstacles of manipulator robots using neural
networks. Key recommendations include the
following:

1) Combining convolutional neural networks
with recurrent neural networks, long-short-term
memories, or networks based on the attention
mechanism (Transformers) to account for temporal
dependencies in dynamic scenes. This provides a
deeper understanding of the movements of objects
and increases the accuracy of their recognition.

2) The use of LSTM and Transformer to predict
the future positions of objects allows you to
effectively plan manipulator movement trajectories,
taking into account possible obstacles. This reduces
planning time and increases overall system
efficiency.

3) Creation of a network that transforms high-
level commands into specific controlled signals for
executive bodies of the manipulator. The input layer
receives the commands, the hidden layers process
the information, and the output layer generates
specific controlled effects.

4) Using feedback to adapt network parameters
based on the output signal and the results of the
performed movements. This allows the system to
learn from real data and adjust its actions to achieve
greater accuracy and efficiency.

The implementation of these recommendations
allows to significantly increase the positioning
accuracy of manipulator robots and their ability to
respond to dynamic obstacles in real time.

VI. CONCLUSIONS

As a result of the conducted research, this article
proposes and analyzes modern approaches to solving
the problem of increasing positioning accuracy and
response to dynamic obstacles of manipulators using
neural networks. Proposed combining CNN with
RNN, LSTM, or Transformer significantly increases
the system's ability to recognize objects and analyze
their movements in dynamic scenes. This ensures
high accuracy and speed of information processing,
which is critically important for robotic systems.
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Using LSTM and Transformer to predict the
future positions of objects allows you to effectively
plan manipulator trajectories, taking into account the
possibility of obstacles. This reduces planning time
and efficiency of tasks.

The proposed network for determining controlled
influences  allows  transforming  high-level
commands into specific controlled signals for
executive bodies of the manipulator. This ensures
accurate execution of movements and adaptation of
the system in real time. Use of feedback and
parameterization of output signals in accordance
with the requirements of executive bodies allows the
system to learn on the basis of real data, adjust its
actions and ensure high accuracy and reliability.

The proposed recommendations and architectural
solutions open up new opportunities for the
development of efficient and reliable robotic
systems. The implementation of these approaches in
practice allows to significantly increase the
positioning accuracy of manipulator robots, their
ability to respond to dynamic obstacles, as well as to
provide more intelligent and adaptive control in
various fields of application.
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B. M. Cunerina3os, B. II. XousiHiBcbkHil. AJanTHBHe KepyBaHHS Po0O0TAMH-MaHINMYJSITOPAaMHU y AUHAMIYHOMY
cepeIoBHIII 32 JOMOMOT 010 HEHPOHHHUX Mepe:K

Mertoto JoCHipKeHHsT € po3po0Ka MiAXOMy N0 IUIaHYBaHHS TPAEKTOPil pyxy poOoTa-MaHIMmymnsTopa 3a JOIOMOIOI0
IHTEJIEeKTYaJIbHOI CUCTEMH Ha OCHOBI HEWPOHHHMX Mepex. [ mporo B poOOTI po3IJIsiaaiucsi IPOLECH IUIaHyBaHHS Ta
posropTaHHs pyxy poOoTa. AHami3 ICHYIOYMX METOIB IUIaHYBaHHS pPYXy pOOOTIB-MaHIMyIsATOPIB Ta OIS
IHTEJIEeKTYaJIbHUX CHCTEM YIIPABIIHHS [03BOJIMB OTPUMAaTH IIOBHY KapTHHY CYYacHOrO CTaHy I[bOr0 MHTaHHS.
[IporionyeThest cucrema, sika MOXKE CIIPUAMATH HaBKOJHIIHE CEPEJOBHINE Ta KEPYBaTH PYXoM pOOOTa, TeHEepyrun
MpaBWIbHI KOMaHAW KepyBaHHA. J[sl 1boro OyJio BHPIIIEHO TPW 3aBJaHHS, a caMe: aHali3 CEepeIOBHINA 3 METOI0
BU3HAYeHHS HOro oOcOOJIMBOCTEW, BH3HAUEHHS TPAEKTOpii 3 METOK HeWTpasi3amii 3ITKHEHHS Ta BH3HAYCHHS
KOHTPOJIOBaHUX BILUIMBIB JUIS OPTaHiB BUKOHABUOI BJIA/IM 3 METOIO 31HCHEHHS PYXY.

Karw4oBi cioBa: mammHHe HaBuYaHHS; HEHPOHHI MeEpeXi; cCHCTeMa IUIAaHYBaHHsS PYXY; IHTEJEKTyaJbHa CHUCTEMA;
po0OTH MaHIMyISTOPH; AMHAMIYHI TIEPEIIKO/IU; aHAII3 CEPEOBUIA; ABTOMATH30BaH1 CHCTEMH.
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