
 
36                                                                    ISSN 1990-5548   Electronics and Control Systems  2024. N 2(80): 36-42 
 

___________________________________________________________________________________________________________ 

©National Aviation University, 2024 
http://jrnl.nau.edu.ua/index.php/ESU, http://ecs.in.ua 

UDC 621.004.8(045) 
DOI:10.18372/1990-5548.80.18682 

1V. M. Sineglazov, 
2V. P. Khotsyanovsky 

ADAPTIVE CONTROL OF MANIPULATOR ROBOTS IN A DYNAMIC ENVIRONMENT 
USING NEURAL NETWORKS 

1,2Faculty of Air Navigation, Electronics and Telecommunications, National Aviation University, 
Kyiv, Ukraine 

E-mails: 1svm@nau.edu.ua   ORCID 0000-0002-3297-9060, 
2sttt912@yahoo.com   ORCID 0000-0003-0415-777X 

Abstract—The purpose of the study is to develop an approach to planning the trajectory of the 
manipulator robot using an intelligent system based on neural networks. For this purpose, the work 
considered the processes of planning and deploying the movement of the robot. The analysis of existing 
methods of planning the movement of manipulator robots and the review of intelligent control systems 
made it possible to obtain a complete picture of the current state of this issue. A system is proposed that 
can perceive the environment and control the movement of the robot by generating the correct control 
commands. For this, 3 tasks were solved, namely: analysis of the environment in order to determine its 
features, determination of the trajectory in order to neutralize the collision and determination of 
controlled influences for the executive authorities in order to implement the movement. The functionality 
and structure of the neural network for solving each of the tasks are proposed.  

Index Terms—Machine learning; neural networks; motion planning system; intelligent system; robotic 
manipulators; dynamic obstacles; environment analysis; automated systems. 

I. INTRODUCTION 

At the early stage of the design of the robot 
manipulator, the dynamic model system and the 
system parameters associated with it must be 
accurately described when designing the controller 
[1]. In traditional control design methods, such as 
computational torque control and inverse dynamics 
control, which works well [2], by calculating the 
torque of the robot manipulator and building 
dynamic equation, you can get a good control effect 
[3]. However, this suggests the possibility of 
obtaining an accurate data model. However, 
obtaining an accurate mathematical model of the 
robot during its real operation is difficult [4]. 

Because many scenarios require robots to adapt to 
new conditions or even learn completely new 
behavior. For example, a robot that manufactures cars 
will occasionally have to adapt to new car models. 

For many real-world applications, it is sufficient 
to program the required behavior by hand, but often 
this is not possible because the environment may 
simply change too often or even be unknown in 
advance to the engineers programming the system. 

However, modern requirements for automated 
systems require the development of new motion 
planning methods to ensure the accuracy and 
optimality of robot actions in dynamic production 
conditions, as existing approaches often have 
limitations and are unable to provide flexibility in 
solving dynamic production scenarios This need is 

caused by the dynamism of the production 
environment where robots have to function. 

Motion planning taking into account dynamic 
changes opens the way to increasing the accuracy 
and efficiency of robots. This will lead to better 
performance of tasks, saving resources and 
increasing productivity. Also, this method will 
reduce the risk of collisions, as the probability of 
emergency situations will be significantly reduced 
due to better traffic planning. 

As a result, this will lead to the expansion of the 
spheres of use of robots. Because the ability to adapt 
to dynamic changes will make robots more versatile 
and allow them to be used in a wider range of tasks. 
Therefore, there is a problem of developing a 
method of planning robot movement with the 
possibility of taking into account changes in 
dynamic production scenarios. The results of this 
research are needed in practice, because they 
determine the possibility of safe and effective use of 
robots in conditions where they must interact with 
dynamic surrounding objects, for example, other 
robots. In recent years, machine learning has 
revolutionized the field of robotics and automation. 
Using algorithms, robots can be taught to perform 
various tasks and even This has made it possible to 
create more perfect works that can independently 
navigate complex environments, interact with people 
in a more natural way, and perform production tasks 
more efficiently. 
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Machine learning enables robots to process vast 
amounts of data in real time, allowing them to make 
faster and more accurate decisions. These robots 
have a better understanding of the environment and 
the objects around them. For example, they can be 
programmed to identify objects using a combination 
of visual, tactile and sound sensors. This allows it to 
recognize different objects in the environment and 
react accordingly. 

II. ANALYSIS OF EXISTING AND CUSTOM ROBOTIC 
MANIPULATOR MOTION PLANNING METHODS 

Robotic arm positioning is the process of 
precisely controlling the position and orientation of a 
robotic arm limb (tool or gripper) to perform certain 
tasks. This position is crucial for the interaction of 
the hand with objects, manipulating them and 
accurately performing various operations. 

A robotic arm usually consists of several joints 
that provide degrees of freedom (DOF) to the arm. 
DOF represents the number of independent 
parameters needed to describe the arm configuration. 
Each joint allows the arm to rotate or move along a 
specific axis, allowing the arm to move in multiple 
directions (Fig. 1). 

Positioning of a robotic arm is based on the use 
of coordinate systems to determine the position and 
orientation of the arm. The most common coordinate 
system is the Cartesian system coordinates, where 
positions are defined by X, Y, and Z coordinates. 
Hand orientation can be represented by Euler angles, 
quaternions, or rotation matrices. Direct kinematics 
involves determining the position and orientation of 
the end effector based on the angles or lengths of the 
joints. On the other hand, inverse kinematics 
involves finding the angles or lengths of the joints 
necessary to achieve the desired position and 
orientation of limbs. 

Trajectory planning involves creating a smooth 
and optimal trajectory along which the robot arm 
will move when moving from one position to 
another. It takes into account factors such as obstacle 
avoidance, joint constraints and path optimization 
based on criteria such as time, energy consumption 
or traffic. Trajectory planning ensures efficient and 
safe movement of the hand to the desired position. 

In the analysis of traditional robot motion 
planning methods, key techniques such as geometric 
trajectory planning, inverse kinematics method, 
dynamic programming, and random positions and 
optimization methods should be addressed. 

Geometric trajectory planning determines the 
movement of the robot based on the geometric 
characteristics of the workspace. This method allows 

you to specify the exact position and orientation of 
the manipulator, but may be limited by the 
complexity of solving problems for complex user 
convenience, it has its limitations, particularly in the 
area of adaptation to changing conditions [5]. 

The inverse kinematics method is used to 
determine the input angles or positions of the 
manipulator to achieve a specific position or 
trajectory. This method is effective in solving 
problems for specific points in space, but may lose 
accuracy in complex problems due to a large number 
of possible solutions. Also, it is used in most 
industrial robot control systems [6]. 

The inverse kinematics method allows you to 
determine the robot's kinematic parameters based on 
its position and orientation. 

Dynamic programming considers the movement 
of the manipulator as a sequence of actions with 
criteria minimization. This method is effective for 
optimization problems and for planning trajectories, 
in particular in cases where the dynamic constraints 
of the robot are important. However, it can be 
computationally expensive for real time in complex 
environments, especially with a large number of 
dimensions of the decision space and complex 
tasks [7]. 

Regarding random positions and optimization 
methods, these approaches often use random points 
to reduce the number of intermediate points in the 
trajectories or use optimization methods to reach 
optimal solutions. 

In order to perform a comparative analysis of the 
above-mentioned approaches, a table should be 
drawn up in which their main characteristics and 
differences will be displayed (Table I). 

 
Fig. 1. Robotic Arm with 5 DOF
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TABLE I. COMPARATIVE ANALYSIS OF EXISTING APPROACHES 
 

III. PROBLEM STATEMENT 

Modern requirements for automated systems 
necessitate the development of new motion planning 
methods to ensure the accuracy and optimality of 
robotic actions in dynamic production environments. 
Let the dynamics of work in discrete time occur 
as fχ: 

 1 , ,k k kx f x u   

where xk ∈ χ and uk ∈ U denote the state and control 
input of the system at the kth search step. 

The work considers static obstacles and dynamic 
obstacles, the movement of which is known. For 
example, for a multi-robot system, the movements of 
all robots are usually planned one at a time. When 
planning the movement of a given robot, the 
movements of other robots are known. 

In this paper, the trajectory π is defined as a 
series of states and level control commands: 

 0 10 0 1 1, , , , , , ..., , , ,
kt t k k tx u x x u x x u x   

where tk is the time step of the kth intermediate point 
on the trajectory. 

Existing approaches frequently exhibit 
limitations and fail to provide the required flexibility 
for addressing dynamic production scenarios. This 
need arises from the inherent dynamism of the 
production environment in which robots operate [9]. 

In this paper, the proposed approach is focused 
on the study of the possible solution space of traffic 
planning problems from previous experience to 

improve search efficiency. In other words, the 
proposed approach first learns to perceive the robot's 
environment. The robot dynamics then learns to 
accurately mimic realistic robot motion. Finally, the 
proposed approach learns which optimal high-level 
commands can move the robot to the target area with 
realistic dynamics in the perceived environment 
model at each search step. 

For successful manipulation of the object, the 
task will be divided he task: 

A. Determining the trajectory in order to 
neutralize the collision 

Since studying the full solution space is very 
difficult and does not scale well for other problems, 
our approach starts with studying the local space of 
possible solutions flocal: 

 local goal, .k k kf x x u   

The locally feasible solution space consists of all 
possible control policies that consider only the state 
of the local system (for example, the state of the 
environment φk, the current state of the robot xk, and 
the goal state χgoal) and direct the robot from the 
current state to the goal area with the kth control 
command uk search steps. 

B. Analyzing the environment in order to 
determine its features 

Since this work considers environments with 
static and dynamic obstacles, the geometric and 
temporal information of the environment should be 
represented as the state of the environment φk at the 

Approach Peculiarities Advantages Limitations: 
Geometric 
trajectory 
planning 
 

Determines the movement of 
the robot according to the 
geometric characteristics of 
the workspace 

Ensures the exact position and 
orientation of the robot 

Difficulty solving problems for 
complex configurations 

Convenient management for 
the user 

Limited adaptation to changing 
conditions 

The inverse 
kinematics 
method 
 

Defines the input angles or 
positions of the manipulator 
to reach a certain point 

Effective in solving problems 
for specific points 

Loss of accuracy in complex 
tasks 

Used in most control systems A large number of possible 
solutions in complex problems 

Dynamic 
programming 
 

Considers the movement of 
the manipulator as a sequence 
of actions with criteria 
minimization 

Effective for optimization and 
planning of trajectories 

Computationally expensive for 
real time 

Allows to take into account 
the dynamic limitations of the 
robot 

Difficulty in use in real time 
conditions 

Random 
positions and 
optimization 
methods 

Using random points Reducing the number of 
intermediate points in 
trajectories 

Dependence on the initial 
selection of random points 

Use of optimization methods Achieving optimal solutions The need for computing 
resources, especially for 
complex tasks 
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kth step of the search and used in the subtask the 
task of determining the trajectory in order to 
neutralize the collision. 

C. Determining controlled influences for 
executive bodies in order to implement the 
movement 

It is necessary to calculate the execution time and 
interpolation of the robot's motion between two 
states to check for collisions between the robot and 
obstacles during the transition from one state to the 
next at each search step. Thus, the proposed 
approach studies realistic high-level motion-driven 
robot dynamics. 

IV. PROBLEM SOLUTION 

To address this issue, the implementation of 
intelligent control systems, specifically neural 
networks, is proposed. Neural networks are 
instrumental in enhancing and optimizing the 
movement of robotic manipulators due to their 
flexibility and adaptability to changing conditions. 
They also facilitate the automation and 
simplification of the calibration processes for 
moving robot components, thereby ensuring 
maximum accuracy and operational speed. 

For precise calculation of the robot's actual 
motions and trajectory, the neural network must 
incorporate the robot's real motion dynamics and 
motion trajectory based on actual motion execution. 
Notably, the planned movement of the robot may 
differ slightly from its actual movement. 

For training tasks, we consider a model of a 
robotic arm represented as an intelligent agent in a 
constrained and simplified environment. An agent is 
an entity that is capable of perceiving its 
environment through sensors, as well as influencing 
its environment through actuators. Agents can 
traditionally perceive their own actions, but not 
necessarily the effects of those actions on the 
environment. 

An agent can be mathematically described by an 
agent function that affects the agent's action based 
on its entire perceptual position. Thus, the agent's 
behavior can be fully described by defining actions 
for each possible perception situation [10]. The 
scheme of interaction between the agent and the 
environment is presented in Fig. 2. 

 
Fig. 2. Interaction of components of the educational 

environment 

Neural networks such as convolutional neural 
networks, recurrent neural networks, and deep 
neural networks are best suited for manipulator robot 
motion planning systems (Fig. 3). 

 
Fig. 3. Neural networks for robotic manipulators 

When considering the use of neural networks to 
solve the described problem, it is important to focus 
on the analysis and description of architectures that 
optimally take into account the features of these 
systems. Neural networks such as convolutional 
neural networks, recurrent neural networks, and 
deep neural networks are best suited for motion 
planning systems of robot manipulators. 

Consider a dynamic scene that includes moving 
objects or a change in the state of objects over time. 
The architecture of convolutional neural networks is 
suitable for object recognition. The use of CNN 
allows effective recognition of objects in real time, 
which is key to planning the safe movement of the 
manipulator around objects in the workspace [11].  

However, convolutional neural networks (CNNs) 
alone may not be sufficient for effective analysis of 
dynamic scenes, and they do not account for the 
temporal sequence of events. In such cases, it makes 
sense to use recurrent neural networks (RNNs) or 
their enhancements, such as long-term variants of 
short-term memory (LSTM) and networks based on 
the attention mechanism (Transformers). These 
architectures can learn to recognize and retrieve 
temporal relationships, which are critical to properly 
understanding a dynamic scene. 

Long short-term memory networks variants cope 
well with the problem of gradient vanishing, thanks 
to which they can remember information over long 
time intervals [12]. This is especially useful for 
tracking the trajectories of objects in time and 
predicting their future position, which is important 
for planning the motion of the manipulator (Fig. 4). 

 
Fig. 4. LSTM architecture 
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Another promising architecture is Transformer 
(Fig. 5), which uses an attention mechanism to 
efficiently process a list of data. Transformers have 
shown impressive results in natural language 
processing tasks, but they have also been 
successfully applied to video analysis and other 
types of subsequent data [13]. The attention 
mechanism allows you to simulate focusing on 
important parts of the input situation, which 
contributes to a better understanding of the context 
and ensures high performance. 

To solve the task of determining the trajectory in 
order to neutralize collisions for the manipulator 
robot, it is proposed to use a recurrent neural 
network (RNN). Recurrent neural networks are used 
to model motion dynamics (Fig. 6). Recurrent neural 
networks are suitable for taking into account time 
dependencies and modeling the dynamics of 
manipulator movement, which allows predicting 
future states of the system [14]. 

To improve work with dynamic scenes, you can 
combine CNN with RNN, LSTM or Transformer, 
creating hybrid models. For example, a CNN can be 
used to extract spatial features from live video, after 
which these features are fed to an LSTM or 
Transformer to process the temporal information. 

 
Fig. 5. Transformer architecture 

 
Fig. 6. RNN architecture 

Such hybrid architectures provide a deeper 
understanding of dynamic scenes, allowing the 
model not only to recognize objects, but also to track 
their movements and changes over time. This creates 
opportunities for automated systems, such as new 
robotics, where it is important not only to recognize 
objects, but also to interact with them in real time. 

V. RESULTS 

The article resulted in recommendations for an 
approach to solving the problem of increasing 
positioning accuracy and response to dynamic 
obstacles of manipulator robots using neural 
networks. Key recommendations include the 
following: 

1) Combining convolutional neural networks 
with recurrent neural networks, long-short-term 
memories, or networks based on the attention 
mechanism (Transformers) to account for temporal 
dependencies in dynamic scenes. This provides a 
deeper understanding of the movements of objects 
and increases the accuracy of their recognition. 

2) The use of LSTM and Transformer to predict 
the future positions of objects allows you to 
effectively plan manipulator movement trajectories, 
taking into account possible obstacles. This reduces 
planning time and increases overall system 
efficiency. 

3) Creation of a network that transforms high-
level commands into specific controlled signals for 
executive bodies of the manipulator. The input layer 
receives the commands, the hidden layers process 
the information, and the output layer generates 
specific controlled effects. 

4) Using feedback to adapt network parameters 
based on the output signal and the results of the 
performed movements. This allows the system to 
learn from real data and adjust its actions to achieve 
greater accuracy and efficiency. 

The implementation of these recommendations 
allows to significantly increase the positioning 
accuracy of manipulator robots and their ability to 
respond to dynamic obstacles in real time.  

VI. CONCLUSIONS 

As a result of the conducted research, this article 
proposes and analyzes modern approaches to solving 
the problem of increasing positioning accuracy and 
response to dynamic obstacles of manipulators using 
neural networks. Proposed combining CNN with 
RNN, LSTM, or Transformer significantly increases 
the system's ability to recognize objects and analyze 
their movements in dynamic scenes. This ensures 
high accuracy and speed of information processing, 
which is critically important for robotic systems. 
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Using LSTM and Transformer to predict the 
future positions of objects allows you to effectively 
plan manipulator trajectories, taking into account the 
possibility of obstacles. This reduces planning time 
and efficiency of tasks. 

The proposed network for determining controlled 
influences allows transforming high-level 
commands into specific controlled signals for 
executive bodies of the manipulator. This ensures 
accurate execution of movements and adaptation of 
the system in real time. Use of feedback and 
parameterization of output signals in accordance 
with the requirements of executive bodies allows the 
system to learn on the basis of real data, adjust its 
actions and ensure high accuracy and reliability. 

The proposed recommendations and architectural 
solutions open up new opportunities for the 
development of efficient and reliable robotic 
systems. The implementation of these approaches in 
practice allows to significantly increase the 
positioning accuracy of manipulator robots, their 
ability to respond to dynamic obstacles, as well as to 
provide more intelligent and adaptive control in 
various fields of application. 
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В. М. Синєглазов, В. П. Хоцянівський. Адаптивне керування роботами-маніпуляторами у динамічному 
середовищі за допомогою нейронних мереж 
Метою дослідження є розробка підходу до планування траєкторії руху робота-маніпулятора за допомогою 
інтелектуальної системи на основі нейронних мереж. Для цього в роботі розглядалися процеси планування та 
розгортання руху робота. Аналіз існуючих методів планування руху роботів-маніпуляторів та огляд 
інтелектуальних систем управління дозволив отримати повну картину сучасного стану цього питання. 
Пропонується система, яка може сприймати навколишнє середовище та керувати рухом робота, генеруючи 
правильні команди керування. Для цього було вирішено три завдання, а саме: аналіз середовища з метою 
визначення його особливостей, визначення траєкторії з метою нейтралізації зіткнення та визначення 
контрольованих впливів для органів виконавчої влади з метою здійснення руху.  
Ключові слова: машинне навчання; нейронні мережі; система планування руху; інтелектуальна система; 
роботи маніпулятори; динамічні перешкоди; аналіз середовища; автоматизовані системи. 
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