V.M. Sineglazov, D.O. Nikulin
Intelligent System of Generation of Camouflage Patterns Based on Artificial Intelligence Technologies

COMPUTER SCIENCES AND INFORMATION TECHNOLOGIES

UDC 004.032.26(045)
DOI:10.18372/1990-5548.80.18678

'V. M. Sineglazov,
’D. O. Nikulin

INTELLIGENT SYSTEM OF GENERATION OF CAMOUFLAGE PATTERNS BASED
ON ARTIFICIAL INTELLIGENCE TECHNOLOGIES

"2 Aviation Computer-Integrated Complexes Department, Faculty of Air Navigation Electronics
and Telecommunications, National Aviation University, Kyiv, Ukraine
E-mails: 'svm@nau.edu.ua  ORCID 0000-0002-3297-9060,
*dmytronikulin9@gmail.com

Abstract—The work is devoted to the development of an intelligent system for generating camouflage
patterns based on artificial intelligence technologies. A generative-competitive network is used as an
intellectual element of this system. To solve the problem of the collapse mode, the architecture of
progressively growing GANs (ProGAN) is used. The system allows you to generate completely new
camouflage patterns for the selected area by iteratively improving the pattern. Due to the mechanism of
restrictions, it is possible to fix the desired aspects of the drawing (color scheme, pattern, number of
colors) from an existing drawing and adapt it to the desired area. The system provides the possibility of
generating micropatterns on the drawings to improve camouflage at close distances. When evaluating a
camouflage pattern, the system takes into account additional parameters, such as angle (from the ground
and air), time and weather.

Index Terms—Artificial neural networks; artificial Intelligence; intelligent generation system;
generative-competitive network; progressively growing GANs; camouflage patterns.

I. INTRODUCTION

The military uniform is an integral part of the

equipment of military personnel, performing
important functions: camouflage, protection and
identification.

Traditional camouflage colors are usually based
on a combination of different colors and patterns
imitating the natural environment. However, with
the development of technologies such as thermal
imaging and infrared sensors, these camouflage
patterns may not be effective enough. Therefore,
there is a need to create more advanced camouflage
systems that would provide protection not only in
the visible range of the spectrum, but also in infrared
and other ranges.

One of the promising directions in solving this
problem is the use of artificial intelligence. The
rapid development of artificial intelligence
technologies, in particular, deep learning methods,

opens up new opportunities for automated
camouflage  design.  Generative  Adversarial
Networks (GANs) are one of the promising

approaches capable of generating realistic and
diverse camouflage patterns adapted to different
environmental conditions.

II. ANALYSIS OF MODERN APPROACHES TO
MILITARY CAMOUFLAGE DESIGN AND THEIR MAIN
DISADVANTAGES

Traditional methods of designing camouflage
patterns are usually based on the intuition and
experience of designers. They usually consist of
manually creating, modifying and selecting static
camouflage patterns (Fig. 1), which, according to the
developers, best mask objects on certain
backgrounds.
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Fig. 1. An example of camouflage patterns
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The main disadvantages of such approaches are:

* Limited versatility: Static camouflage patterns
are effective only in specific environmental
conditions, but do not adapt to changes in landscape,
lighting, or season.

* Suboptimality: Manual selection of camouflage
patterns without using formalized optimization
methods, as a rule, does not provide maximum
masking efficiency.

* High development costs: The creation of each
new camouflage pattern requires considerable
designer effort and large time and financial
resources.

Traditional camouflage design methods are often
limited by human imagination and experience. A
GAN, on the other hand, can analyze huge amounts
of data and find hidden patterns that a human might
not notice. This allows for the creation of
camouflage patterns that are more effective and
adaptive than those created by traditional methods.

For example, a GAN can take into account the
features of a particular landscape (colors, textures,
lighting) and create patterns that blend perfectly with
it. It can also take into account the type of object to
be camouflaged (tank, plane, soldier) and create
patterns that hide its shape and contours as much as
possible.

Thus, GAN opens up new opportunities for
designing military camouflage, allowing for more
effective and innovative solutions that can
significantly increase the survivability and success
of military operations.

III. GENERATIVE-ADVERSARIAL NETWORK

A generative adversarial network (GAN) is a
deep learning architecture. It trains two neural
networks to compete with each other and generate
increasingly realistic new data from a given training
set (Fig. 2).
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Fig. 2. GAN block diagram

The GAN training method proposed by
Goodfellow is based on the idea of a competition
between a generator and a discriminator. This process
can be divided into several stages [1], [2]:

1) Initialization: The generator and discriminator
are initialized with random weights.

Discriminator

2) Training the discriminator: The discriminator
receives both real data from the training set and data
generated by the generator. His task is to learn to
distinguish between these two groups of data. For
this, a loss function is used, which penalizes the
discriminator for misclassifying the data.

3) Learning the generator: The generator takes
random noise as input and generates new data. These
data are passed to the discriminator, which evaluates
their reality. The task of the generator is to learn to
generate data that the discriminator cannot distinguish
from real data. For this, a loss function is used, which
penalizes the generator for the fact that the
discriminator was able to detect a fake.

4) Repetition: Steps 2 and 3 are repeated many
times. With each iteration, the generator and
discriminator get better at their jobs. The generator
creates more and more realistic data, and the
discriminator becomes more and more demanding
about the quality of the fakes.

This competition process continues until
equilibrium is reached, when the generator learns to
generate data that the discriminator cannot distinguish
from the real thing. At this point, it can be assumed
that the GAN has learned to generate data that
matches the distribution of the real data.

A. Generator

The generator (G) in generative adversarial
networks (GANSs) is a neural network responsible for
generating new, realistic data such as images. He acts
as a kind of artist who learns from examples of real
images and then creates new ones similar to them. In
the context of camouflage generation, the generator
aims to create patterns that will be as effective as
possible for camouflage in various environments.

The architecture of the generator can be varied,
but the following types are most often used [3]:

e Fully Connected Networks: This is the
simplest type of architecture, where each neuron of
one layer is connected to each neuron of the next
layer. Such networks are good for generating simple

images, but not very effective for complex
camouflage patterns.
e Convolutional Neural Networks (CNN):

CNNs are specially designed to work with images.
They use convolutional layers to detect local image
features such as edges, textures, and shapes. This
makes them an ideal tool for generating complex
camouflage patterns.

e Deconvolutional Networks: These networks
are the inverse of CNN. They are used to increase the
image size and add details. In GAN generators, they
are often used to generate high-resolution images.
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e Variational Autoencoders (VAE): A VAE is a
type of generative model that learns to compress
data to a smaller size (latent space) and then
reconstructs it from that compressed representation.
In GANs, VAEs can be used to create more diverse
and controlled images.

The generator works according to the following
principles [1], [4]:

1) Input data: the generator receives as input
random noise (a vector of numbers) or other data
that can be used to control the generation process
(for example, the type of landscape, the color of the
object, etc.).

2) Data processing: The generator processes the
input data using its layers of neurons. Each layer
performs certain operations on the data, such as
convolution, activation, normalization, etc.

3) Image generation: At the last layer, the
generator creates an image that is the result of
processing the input data. This image should be as
similar as possible to the real image from the
training set.

A generator's loss function measures how well
the generator performs its task. It evaluates how
similar the generated image is to a real image from
the training set, as well as how well it fools the
discriminator. The smaller the value of the loss
function, the better the generator performs its task.

The generator learns by backpropagation. This
means that after each training iteration, the weights
of the generator neurons are adjusted in such a way
as to reduce the value of the loss function. This
process is repeated until the generator learns to
create images that are as close as possible to the real
ones and that the discriminator cannot distinguish
from the real ones.

Choosing the optimal generator architecture
depends on the specific task. Fully connected
networks can be used to generate simple images. For
generating complex images such as camouflage
patterns, it is better to use CNN or VAE.

As a conclusion, we can say that the generator is
the key component of GAN, responsible for
generating new, realistic data. Its architecture and
operation are critical to the quality of the data
generated. Choosing the optimal architecture and
setting the parameters of the generator is a complex
task that requires a deep understanding of the
principles of GAN operation and conducting
experiments with different configurations.

B. Discriminator

The discriminator (D) in generative adversarial
networks (GANs) is a neural network that acts as an

expert evaluator, distinguishing real images (from
the training set) from fakes generated by the
generator. In the context of camouflage generation,
the discriminator evaluates how convincingly the
generated pattern mimics real-world textures and
colors, and how effectively it camouflages an object
in a given environment.

Discriminator architectures can vary, including
fully connected networks, convolutional neural
networks (CNNGs), and residual connection networks
(ResNets). Fully connected networks are suitable for
simple classification tasks, but are not always
optimal for analyzing complex images. CNNs are
the most common choice for a discriminator in
GANs because they effectively detect local image
features such as edges, textures, and shapes, which is
important for camouflage analysis. ResNet, as a type
of CNN, allows training very deep networks without
loss of accuracy, which can be useful for learning
complex image features.

Regardless of the chosen architecture, the
discriminator receives an image as input, which can
be either real or generated by a generator. It
processes this image using its layers of neurons,
performing various operations such as convolution,
activation, and pooling. At the last layer, the
discriminator outputs the probability that the input
image is real. If the probability is high, the
discriminator considers the image to be real, if it is
low, it is considered generated.

A discriminator's loss function measures how
well it distinguishes between real and generated
images. The smaller the value of the loss function,
the better the discriminator copes with its task. The
discriminator is trained by backpropagating the
error, adjusting the neuron weights to minimize the
loss function. This process continues until the
discriminator learns to accurately distinguish
between real and generated images.

Choosing the optimal architecture and tuning the
discriminator parameters is critical for successfully
training a GAN and generating high-quality
camouflage patterns. The discriminator plays a key
role in the GAN, acting as a critic and expert to help
the generator improve its skills in creating realistic
images.

IV. PROBLEM STATEMENT

The purpose of this work is to develop a method
of generating military camouflage using GAN,
which will allow creating a universal camouflage
pattern that will effectively mask an object on a
certain landscape from different angles.
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To achieve this goal, an approach based on GAN
training on a set of 10 photos of the same landscape
taken from different angles will be used. This will
allow the GAN to take into account the variety of
visual characteristics of the landscape and create a
camouflage pattern that will be effective when
viewed from different angles.

As a generative-competitive network, it is
proposed to use Conditional GAN (CGAN) (Fig. 3),
which is an extension of the original GAN
architecture, which allows you to control the image
generation process with the help of additional
conditional data. This conditional data can be in the
form of class labels, text descriptions, images, or any
other additional input provided to both the generator
and the discriminator.

Discriminator

@0009 00000

Fig. 3. Architecture Conditional GAN

The basic idea of CGAN is to guide the image
generation process according to given conditional data.
The generator attempts to generate images that match the
given conditional data, and the discriminator must not
only determine whether the generated image is realistic,
but also verify that it matches the given conditional data.

A CGAN architecture typically consists of the
following components.

o Generator: the CGAN generator takes as input a
noise vector and conditional data (eg class labels or
textual descriptions). The conditional data can be
combined with the noise vector at different stages of the
architecture, for example, at the input or in intermediate
layers.

o Discriminator: the CGAN discriminator takes as
input an image (real or generated) and conditional data. It
must determine whether the image is realistic and whether
it corresponds to the conditional data provided.

o Loss function: the CGAN loss function takes into
account both the realism of the generated images and their
correspondence to the conditional data. It can be an
extension of the loss function of the original GAN or
WGAN with an additional term that takes conditional
data into account:

mGin max V(D,.G)=E_, [log D(x|y)]
+E._, ., [log(l - D(G(z|y)))].

Conditional GAN is widely used in various
applications where it is necessary to generate images
with certain specified characteristics or attributes,
such as:

1) Generation of images of objects of certain
categories or classes.

2) Generation of face images
attributes (gender, age, emotions, etc.).

3) Generation of images of landscapes or
interiors with certain styles or lighting conditions.

4) Conversion of text descriptions into images
(text-to-image synthesis).

However, successfully training CGANs can be
challenging and requires careful tuning of the
architecture and hyperparameters to ensure that the
generated images match the conditional data. In
addition, the quality of the results depends on the
quality and completeness of the provided conditional
data.

Pix2Pix, introduced by UC Berkeley researchers
in 2016, is one of the most popular CGAN
architectures (Fig. 4). It specializes in transforming
images from one domain to another using paired
data. This means that training Pix2Pix requires
image pairs where one image is the input image and
the other is the desired output image. This means
that Pix2Pix can learn to transform, for example,
black and white photos into color, segmentation
masks into photorealistic images, or even maps into
satellite imagery.
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Fig. 4. Architecture Pix2Pix

Pix2Pix consists of two main components: a
generator and a discriminator. The generator takes as
input an image from one domain (for example, a
black and white image) and tries to generate a
corresponding image from another domain (for
example, a color image). The discriminator
evaluates the realism of the generated image, trying
to distinguish it from a real image from the target
domain.
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During training, Pix2Pix minimizes two losses:
adversarial loss, which forces the generator to
produce images that the discriminator cannot
distinguish from real ones, and L1 loss, which
measures the difference between the generated
image and its corresponding real image. This helps
preserve the structure and content of the image
during conversion.

Pix2Pix typically uses a U-Net-like architecture
for the generator and a patch discriminator
(PatchGAN) for the discriminator. The U-Net
architecture is well-suited for image transformation
tasks because it allows efficient transfer of
information from low-level layers to high-level ones.
PatchGAN evaluates image realism at the patch
level, allowing it to focus on local details.

Pix2Pix is able to generate high-quality images
with high resolution and realistic details, making it
an ideal tool for creating camouflage that is difficult
to distinguish from the real environment. By using
L1 loss, Pix2Pix preserves the structure and content
of the image during conversion. This allows you to
create camouflage that not only masks the object,
but also preserves its shape and contours. Pix2Pix
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can be used for many tasks, not only for creating
camouflage. It can be used to colorize black and
white photos, convert satellite images into maps,
create photorealistic images from segmentation
masks, etc.

However, Pix2Pix requires paired data for
training, i.e. for each input image there must be a
corresponding output image. This can be a limitation
in some cases, especially when it is difficult to
obtain sufficient paired data. Additionally, Pix2Pix
may have difficulty performing complex
transformations that require significant changes in
image structure. For example, converting an image
of a summer forest to a winter forest can be a
difficult task for Pix2Pix.

V. SELF-ATTENTION GAN

Self-attention GAN (SAGAN) is an improved
GAN architecture that wuses a self-attention
mechanism to better capture global dependencies in
the image. The idea of self-attention is to allow the
model to focus on different parts of the input image
and take into account their relationships regardless
of their distance (Fig. 5).

attention
map
® softmax self-attention
feature maps (0)
® i

Fig. 5. Simplified architecture SAGAN

Self-attention GAN integrates a self-attention
module into both the generator and the
discriminator, allowing the model to efficiently
capture long-term dependencies between pixels in an
image. The key components of SAGAN are:

o self-attention module: This module calculates
a weighted sum of the pixel values in the input
image, where the weights are determined based on
the similarity between pixels. This allows the model
to focus on relevant parts of the image and take into
account their relationships.

o multi-level framework: SAGAN uses a multi-
level self-attention framework, where the self-
attention module is applied at different image scales,
allowing both local and global dependencies to be
captured.

o spectral normalization: To stabilize training
and improve performance, SAGAN uses spectral
weight normalization instead of packet normalization.

e enhanced attention: SAGAN uses an
enhanced attention mechanism that allows the model
to focus on the most relevant parts of the image
during generation.

Self-attention GAN has demonstrated superiority
over previous GANSs architectures in high-quality
image generation tasks, especially for complex
scenes and objects. The ability to capture global
dependencies allows SAGAN to generate more
coherent and detailed images. However, SAGAN
has higher computational complexity compared to
traditional GANs due to additional self-attention
operations.



14 ISSN 1990-5548 Electronics and Control Systems 2024. N 2(80): 9-15

Self-attention GAN 1is able to generate images
with high resolution and realistic details, thanks to
the consideration of global dependencies. This is
especially important for creating camouflage that
must closely mimic natural textures and patterns.
The self-attention mechanism allows SAGAN to
generate complex and diverse structures that would
be difficult to generate using traditional GANSs. In
addition, SAGAN exhibits greater stability in
learning compared to traditional GANs.

However, the use of the self-attention mechanism
leads to an increase in the computational complexity
of the model, especially for high-resolution images.
In addition, SAGAN, like other GANs, requires a
large amount of data for efficient training.

VI. RESULTS

Analysis of the GAN training results shows a
gradual improvement in the quality of the generated
camouflage patterns with each epoch. At the initial
stages of training (100 epochs), the pattern has high
repeatability and insufficient diversity. As the
number of epochs increases (200—500), the pattern
becomes more complex, elements resembling
natural objects such as tree branches, leaves and
shadows appear.

However, even at the late stages of training (600—
1000 epochs), the pattern still does not reach the
desired level of realism. This is due to the limitation
and heterogeneity of the input data. Using only 10
photos, even with magnification, may not provide
enough variety to train the generator to produce
high-quality and diverse camouflage patterns.

To further improve the results, it is recommended
to expand the training data set to include more
images with different angles, lighting and weather
conditions. It is especially important to use more
uniform images that have similar visual
characteristics, such as color scheme, texture and
structure. This will allow the generator to better
generalize the features of the landscape and create
more realistic and effective camouflage patterns
(Figs 6 and 7).

VII. CONCLUSION

An intelligent system for generating camouflage
patterns based on artificial intelligence technologies
has been developed, which includes a conditional
generative-competitive Pix2Pix network. Analysis of
the training results of the generative-competitive

network shows a gradual improvement in the quality
of the generated camouflage patterns with each
epoch. At the initial stages of training (100 epochs),
the pattern has high repeatability and insufficient
diversity. As the number of epochs increases (200-
500), the pattern becomes more complex, elements
resembling natural objects such as tree branches,
leaves and shadows appear.

Fig. 6. Input images
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Fig. 7. Output images
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B. M. Cunernasos, /I. O. Hikyain. IHTesekTyanbHa cucTeMa reHepanii pucyHKIB Kamyduisiaky Ha OCHOBI
TeXHOJIOTif IITYYHOr0 iHTEJIeKTy

PoGoty npucBsdeHO po3pOOIIEHHIO IHTENEKTYalIbHOI CHCTEMHU T'eHepalii pUCYHKIB KaMy(IIshKy Ha OCHOBI TEXHOJOTIH
IITYYHOTO 1HTENEKTYy. B sKOCTI IHTENEKTyaJbHOrO EJIEMEHTY JaHOi CHCTEMH BUKOPUCTOBYETHCS T€HEpaTHBHO-
3MarajbHa Mepeka. J[is BUpINIEHHS NPOOIEeMH PEeXHMY KOJAlCy BHKOPHUCTOBYETHCS apXITEKTypa INPOTrPECUBHO
3pocratounx GAN (ProGAN). Cucrema /103BOIIsIE TeHEpYBAaTH aOCOJIOTHO HOBI PUCYHKH KaMy(QuIshKy JUis oOpaHOl
MICIICBOCTI ITEPATUBHO MOKPAIYIOUH PUCYHOK. 32 paXyHOK MEXaHi3My OOMEXeHb MOJKHA 3a(hikCyBaTH OakaHi aClIeKTH
PHUCYHKY (KOJIbOPOBA TamMa, malJIoH, KibKICTh KOJNBOPIB) 3 BXKE iICHYIOUOro PHCYHKA 1 MPUCTOCYBATH HOro 10 OakaHol
MicreBocti. Cucrema nependayae MOXIIMBICTh TeHEpalii MiKpOIIaTepHIB Ha PUCYHKaX JUIsl TIOKPAIIeHHsS MacKyBaHHS
Ha ONMU3BKUX IUcTaHIisX. OIiHIOIOYH PUCYHOK KaMy(QIIsHKy CUCTEMa BPaxOBYE JIOJATKOBI apaMeTpH, TaKi SIK paKypc
(3 3emuIi Ta MOBITPs), Yac Ta MOrOAA.

Karwu4oBi cioBa: mrydHi HEHpOHHI Mepexi; IITYYHUH 1HTENEKT; IHTeNeKTyaJbHa CUCTeMa TeHepallii; reHepaTHBHO-
3MarajbHa Mepexa; nmporpecuBHo 3pocratodi GAN; kaMmy(IIsDKHI pUCYHKH.
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