ON GENERALIZATION OF NAGUMO-BREZIS THEOREM

K. EFTEKHARINASAB, R. HORIDKO

The Nagumo-Brezis theorem gives the criterion of verifying the invariance of a set with respect to the flow generated by a vector field. For the category of MC^k -Fréchet manifolds, the existence and uniqueness of the integral curve of an MC^k -vector field was proved in [1]. Moreover, the existence of the MC^k -flow generated by an MC^k vector field was proved in [2]. We extend the Nagumo and Brezis theorem to the category of MC^k -Fréchet manifolds. We give a criterion for a closed subset of an MC^k -Fréchet nuclear manifold to be invariant under the flow defined by an MC^k vector field on these manifolds. Then, we will apply this result to locate critical points of real-valued mappings. Let M be a nuclear MC^k -Fréchet manifold, and D the derivative of functions.

Theorem 1. [3] Let $X : M \to TM$ be an MC^1 -vector field and let $A \subset M$ be closed. Then, A is flow-invariant with respect to X if and only if for each $x \in M$ there is a chart $(x \in U, \phi)$ such that $\lim_{s\to 0} t^{-1}\rho(\phi(x) + s D \phi(x)X(x), \phi(U \cap A)) = 0$.

Theorem 2. [3] Let $\varphi : M \to \mathbb{R}$ be an MC^1 -mapping, $A \subset M$ a closed subset, and $\varphi \mid_A$ bounded from below. Let $X : M \to TM$ be an MC^1 -vector field such that for each $x \in M$ there is a chart $(x \in U, \phi)$ such that $\lim_{s\to 0} t^{-1}\varrho(\phi(x) +$ $s D \phi(x)X(x), \phi(U \cap A)) = 0$. Suppose that $c = \inf_A \varphi(a)$ and we have the following conditions: if $(x_n) \subset M$ is a sequence such that $\varphi(x_n) \to c$ and $D \varphi(x_n)(X(x_n)) \to 0$, then (x_n) has a convergent subsequence. Also, There is ϵ_0 such that for $x \in \varphi_{c+\epsilon_0}$ $(\varphi_c = \{x \in M : \varphi(x) \leq c\}), \mathbf{F}(x,t)$ (the flow generated by X) is defined, and $\varphi(\mathbf{F}(x,t))$ is non-increasing for $t \in [0, 1]$. Then, c is a critical value of φ .

References

- Eftekharinasab K. (2016). Geometry of bounded Fréchet manifolds. Rocky Mountain J. Math., vol. 46, no. 43, pp. 895-913.
- [2] Eftekharinasab K. and Petrusenko V. (2020). Finslerian geodesics on Fréchet manifolds Bulletin of the Transilvania University of Brasov, Series III: Mathematics, Informatics, Physics. vol. 13, no. 1, pp. 129–152.
- [3] Eftekharinasab K. and Horidko R. (2023). On Generalization of Nagumo-Brezis Theorem submitted to Acta et Commentationes Universitatis Tartuensis de Mathematica.

Institute of mathematics of NAS of Ukraine, Kyiv, Ukraine $Email \ address: kaveh@imath.kiev.ua$

HIGHER MATHEMATICS DEP., NATIONAL AVIATION UNIVERSITY, KYIV, UKRAINE *Email address*: ruslana.horidko@npp.nau.edu.ua