
EDUCATION AND SCIENCE MINISTRY OF UKRAINE

NATIONAL AVIATION UNIVERSITY

Faculty of Aeronavigation, Electronics and Telecommunications

 Department of computer-integrated complexes

ADMIT TO DEFENSE

Head of the graduate Department

___________ V. M. Sineglazov

“_____” ____________ 2023 y.

QUALIFICATION WORK

 (EXPLANATORY NOTE)

GRADUATE OF EDUCATION AND QUALIFICATION LEVEL

 “BACHELOR”

Specialty 151 "Automation and computer-integrated technologies"

Educational and professional program "Computer-integrated technological processes

and production"

 Theme: System of digital noise filtering of hyperspectral images

Performer: student of group FAET-404 Priymachenko Roman Maximovich

Supervisor: Candidate of Technical Sciences, Oleksandr Hordiienko

Normocontroller: __________ Filyashkin M. K.

 (signature)

Kyiv 2023

МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ

НАЦІОНАЛЬНИЙ АВІАЦІЙНИЙ УНІВЕРСИТЕТ

Факультет аеронавігації, електроніки та телекомунікацій

Кафедра авіаційних комп’ютерно-інтегрованих комплексів

 ДОПУСТИТИ ДО ЗАХИСТУ

Завідувач випускової кафедри

__________В.М. Синєглазов

 “_____” ____________ 2023 р.

КВАЛІФІКАЦІЙНА РОБОТА

(ПОЯСНЮВАЛЬНА ЗАПИСКА)

ВИПУСКНИКА ОСВІТНЬО-КВАЛІФІКАЦІЙНОГО РІВНЯ

“БАКАЛАВР”

Спеціальність 151 «Автоматизація та комп'ютерно-інтегровані технології»

Освітньо-професійна програма «Комп’ютерно-інтегровані технологічні

 процеси і виробництва»

Тема: Система цифрової фільтрації шумів гіперспектральних зображень

Виконавець: студент групи ФАЕТ-404 Приймаченко Роман Максимович

Керівник: кандидат технічних наук, Гордієнко Олександр

Нормоконтролер: _________ Філяшкін М. К.

 (підпис)

Київ 2023

NATIONAL AVIATION UNIVERSITY

Faculty of aeronavigation, electronics and telecommunications

Department of Aviation Computer Integrated Complexes

Educational level: bachelor

Specialty: 151 "Automation and computer-integrated technologies"

APPROVED

Head of Department

V.M. Sineglazov

"____" __________2023

TASK

For the student's thesis

Priymachenko Roman Maximovich

1. Theme of the project: « System of digital noise filtering of hyperspectral

images»

2. The term of the work (project): 10.03.2023 – 10.06.2023

3. Output data to the work (project): Datasets of satellite images with detectable

noise, mathematical description of image filtering techniques, architecture of

neural networks for digital filtering.

4. Contents of the explanatory note (list of questions to be developed):

Section 1. Introduction to hyperspectral image noise filtering; Section 2:

Wavelets transforms in denoising; Section 3: Neural networks in digital filtering;

Section 4: Digital noise filtering realization on hyperspectral images

5. List of mandatory graphic material:

Schematic representation of filtering methods and neural network architecture

modeling.

6. Planned schedule:

№ Task Execution term
Execution

mark

1. Getting the task 01.04.2023 – 02.04.2023 Done

2. Formation of the purpose and

main objectives of the study

02.04.2023 – 14.04.2023

Done

3. Analysis of existing methods 15.04.2023 – 30.04.2023 Done

4. Theoretical consideration of

problem solving
01.05.2023 – 05.05.2023 Done

5.
Software implementation of the

hyperspectral image classification

program

06.05.2023 – 25.05.2023 Done

6. Preparation of an explanatory

note
26.05.2023 – 03.06.2023 Done

7. Preparation of presentation and

handouts
04.06.2023 – 06.06.2023 Done

7. Date of task receiving: “___” _______ 2023 y.

Diploma thesis supervisor ____________ Hordiienko O.M.

 (signature)

Issued task accepted ____________ Priymachenko R.M

 (signature)

5

НАЦІОНАЛЬНИЙ АВІАЦІЙНИЙ УНІВЕРСИТЕТ

Факультет аеронавігації, електроніки та телекомунікацій

Кафедра авіаційних комп’ютерно-інтегрованих комплексів

Освітній ступінь: бакалавр

Спеціальність: 151 "Автоматизація та комп'ютерно-інтегровані технології"

ЗАТВЕРДЖУЮ

Завідувач кафедри

В.М. Синєглазов

“ ____ ” __________ 2023 р.

ЗАВДАННЯ

на виконання дипломної роботи студента

Приймаченка Романа Максимовича

1. Тема роботи (проекту): «Система цифрової фільтрації шумів

гіперспектральних зображень».

2. Термін виконання проекту (роботи): 10.03.23 – 10.06.23

3. Вихідні дані до роботи (проекту): Датасети супутникових знімків з

найявним шумом, математичний опис технік фільтрації зображень,

архітектура нейроних мереж для цифрової фільтрації.

4. Зміст пояснювальної записки (перелік питань, що підлягають

розробці): Розділ 1. Введення в методи фільтрації гіперспектральних

зображень; Розділ 2: Вейвлет перетворення в усуненні шумів; Розділ 3:

Нейронні мережі в цифровій фільтрації; Розділ 4: Реалізація цифрової

фільтрації шуму на гіперспектральних зображеннях

6

5. Перелік обов’язкового графічного матеріалу: Схематичне зображення

методів фільтрації та моделювання архітектури нейронних мереж.

6. Календарний план-графік

№ Завдання Термін виконання
Відмітка про

виконання

1. Отримання завдання 01.04.2023 – 02.04.2023 Виконано

2.
Формування мети та

основних завдань

дослідження

02.04.2023 – 14.04.2023 Виконано

3. Аналіз існуючих методів 15.04.2023 – 30.04.2023 Виконано

4. Теоретичний розгляд рішення

задач
01.05.2023 – 05.05.2023 Виконано

5.
Програмна реалізація

програми класифікації

гіперспектральних зображень

06.05.2023 – 25.05.2023 Виконано

6. Оформлення пояснювальної

записки
26.05.2023 – 03.06.2023 Виконано

7. Підготовка презентації та

роздаткового матеріалу
04.06.2023 – 06.06.2023 Виконано

7. Дата видачі завдання: “___” ______ 2023 р.

Керівник дипломної роботи ____________ Гордієнко О.М.

 (підпис)

Завдання прийняв до виконання ____________ Приймаченко Р.М.

 (підпис)

https://classroom.google.com/u/3/c/NjA0NTQ1MjA3MDA5

7

РЕФЕРАТ

Текстова частина роботи: ___, ___ рис., ___ табл., __ літературних

джерела.

Об’єкт дослідження – Шуми на гіперспектральних зображеннях

Предмет дослідження – Методи фільтрації шумів за допомогою

нейронних мереж

Мета роботи – Визначити математичну модель з використанням

нейронних мереж та створити її програмну реалізацію за допомогою Пайтона

Методи дослідження – Теоретичний аналіз та експериментальні

дослідження з використанням комбінаторної моделі нейронної мережі.

 У роботі описано основні принципи фільтраційних підходів та їх

використання. Ефективність всього процесу видалення шумів з супутникових

зображень залежить від розпізнання типу шуму та використання вірного типу

фільтрації, або їх комбінування/модифікацій. Проведені експериментальні

дослідження комбінування нейроної мережі та традиційних методів фільтрації

та опрацьована модель на основі зворотніх та дискретних Вельвет перетворень

та згорткової нейронної мережі.

8

ABSTRACT

Text part of the work: ___, ___ fig., ___ table, ___ references.

Object of research – Hyperspectral image noises

Subject of the research - Noise filtering methods in neural networks

Purpose of the work – Define mathematical model with used of neural

networks and create a software implementation with the help of Python

Methods of research - Theoretical analysis and experimental studies using a

combinatorial neural network model.

 The paper describes the basic principles of filtering approaches and their use.

The effectiveness of the entire process of removing noise on satellite images depends

on recognizing the type of noise and using the right type of filtering, or their

combination/modifications. Experimental studies of the combination of neural

network and traditional filtering methods were carried out, and a model based on

inverse Wavelet transformations and a convolutional neural network was developed.

9

CONTENT

INTRODUCTION.. 11

GLOSSARY .. 12

PROBLEM STATEMENT .. 13

1 INTRODUCTION TO HYPERSPECTRAL IMAGE NOISE FILTERING 14

1.1 Images in remote sensing .. 14

1.2 Characteristics of the remote sensing images .. 17

1.3 Satellites with hyperspectral sensors ... 18

1.4 Noise in remote sensing .. 19

1.4.1 Amplifier Noise ... 20

1.4.2 Salt-and-Pepper Noise ... 21

1.4.3 Speckle Noise .. 22

1.5 Consideration of modern systems and methods of noise filtering 24

1.5.1 Mean Filter .. 25

1.5.2 Standard Median Filter .. 25

1.5.3 Adaptive Wiener Filter .. 26

1.5.4 Gaussian Filter ... 27

1.6 Conclusion.. 29

2 WAVELETS TRANSFORMS IN DENOISING ... 30

2.1 Wavelets Transforms .. 30

2.2 Discrete Wavelet Transform ... 32

2.3 Single Level Decomposition ... 33

2.4 Multi-level Decomposition ... 34

2.5 Thresholding in Wavelets ... 34

2.6 Inverse Wavelet Transform .. 36

10

3 NEURAL NETWORKS IN DIGITAL FILTERING ... 39

3.1 Using Deep Learning neural networks .. 39

3.2 Convolutional Neural Networks ... 41

3.2.1 Convolution Layers ... 43

3.2.2 Pooling Layer .. 44

3.2.3 Fully Connected Layer... 45

3.2.4 Activation Functions .. 46

3.3 U-Net architecture for CNN.. 47

3.3.1 Encoder Path.. 47

3.3.2 Decoder Path ... 49

3.3.3 Skip connections .. 50

3.4 Wavelets basis Neural network ... 51

3.5 Conclusion.. 52

4 DIGITAL NOISE FILTERING REALISATION ON HYPERSPECTRAL

IMAGES .. 53

4.1 Cascade Wavelets CNN model introduction ... 53

4.2 Data preparation and model training details .. 59

4.3 Filtration results .. 64

4.4 Performance evaluation .. 67

4.5 Conclusion.. 68

CONCLUSION .. 69

REFERENCE ... 70

APPENDIX A .. 73

APPENDIX B .. 79

APPENDIX C .. 85

11

INTRODUCTION

In today's world, remote sensing has become an incredibly powerful and vital

technology, changing the way we acquire information about our globe and beyond.

It entails gathering data from afar through satellites, airplanes, drones, or ground-

based sensors. The capacity of technology to collect data across wide regions for

long time periods, allowing for thorough monitoring and analysis, is an important

feature.

It is used in a wide variety of disciplines in thousands of different use cases,

including most earth sciences, such as meteorology, geology, hydrology, ecology,

oceanography, glaciology, geography, and in land surveying, as well as applications

in military, intelligence, commercial, economic, planning, and humanitarian fields.

Its importance cannot be emphasized enough, as it provides vital insights and data

for informed decision-making and long-term growth.

Remote sensing gathers samples of emitted and reflected electromagnetic

(EM) radiation from terrestrial, atmospheric, and aquatic ecosystems to detect and

monitor the physical characteristics of the area without physical contact. However,

one significant challenge that remote sensing encounters is the presence of image

noise.

Noise refers to any unwanted information that contaminates an image, causing

distortions. It arises from various sources when images are captured. The primary

cause of noise in digital images is the process of converting an optical image into a

continuous electrical signal during digital image acquisition. The introduction of

noise into an image can occur in different ways, depending on the image creation

method. For instance, satellite images often contain noise signals that result in

distorted images, making it difficult to comprehend and study them effectively. To

address this issue, appropriate filters are employed to limit or reduce the amount of

noise present.

12

GLOSSARY

CNN – Convolutional Neural Network

CWCNN – Cascade Wavelets Convolutional Neural Network

DWT – Discrete Wavelet Transform

IWT – Inverse Wavelet Transform

MF – Mean Filter

SMF – Standard Median Filter

AWF – Adaptive Wiener Filter

GF – Gaussian Filter

FCL – Fully Connected Layer

FCN – Fully Convolutional Network

GPU - Graphics Processing Units

13

PROBLEM STATEMENT

The rapid development of remote sensing technology has made it possible to

increase the number of obtaining satellite and aerial photographs for a wide range of

tasks. However, these images often suffer from various types of noise, including

Gaussian noise, impulse noise, and speckle noise, which can degrade the quality and

accuracy of the extracted information. Traditional image filtering techniques such as

mean filter, median filter, adaptive Wiener filter, and Gaussian filter are widely used

to mitigate noise in remote sensing images. But, conventional methods have their

limitations and may not provide satisfactory results in terms of noise suppression

and preservation of image details.

To address the limitations of traditional image filtering techniques for remote

sensing images, we propose the development of a digital noise filtering system that

combines these traditional methods with neural networks to achieve better noise

reduction while preserving important image details. By leveraging the capabilities

of neural networks, which can learn complex mappings between noisy and clean

images.

14

1 INTRODUCTION TO HYPERSPECTRAL IMAGE NOISE

FILTERING

Remote sensing is a technique used to acquire information about the Earth's

surface without direct physical contact. This method involves utilizing specialized

sensors on satellites or aircraft to record various types of data about the underlying

surface. Remote sensing data holds immense value in offering insights into Earth's

ecosystems, weather patterns, land use, and much more. There are two primary

categories of remote sensing: passive and active.

Passive remote sensing entails capturing naturally available radiation, with

reflected sunlight being the most commonly detected source. Passive sensors are

limited to recording data when the observed material or object is naturally

illuminated, either during daylight or through thermal emission.

In contrast, active remote sensing involves emitting a signal and then

measuring the signal's return to the sensor. Examples of active remote sensing

include radar and LiDAR systems. These systems are advantageous as they allow

data collection irrespective of the time of day or prevailing weather conditions.

The importance of remote sensing has witnessed exponential growth in recent

years, driven by our increasing reliance on technology and new data.

1.1 Images in remote sensing

Remote sensing [1, 3] is the process of acquiring information about an object

or a phenomenon without making physical contact with the object, typically through

the use of satellite or aircraft-based sensor technologies. This field has a significant

impact on areas like environmental monitoring, meteorology, geology,

oceanography, agriculture, cartography, military intelligence, and more.

There are several types of images in remote sensing, which are primarily

categorized based on the spectral coverage of the sensors. The main types include:

15

- Panchromatic Images: These images are captured in one broad spectral

band, typically covering the visible and near-infrared parts of the spectrum. The term

'panchromatic' comes from 'pan' (all) and 'chroma' (colors), which can be misleading

because panchromatic images are grayscale, but they cover a broad range of

wavelengths.

- Multispectral Images: Multispectral imaging involves capturing data at

specific frequencies across the electromagnetic spectrum, including visible light and

infrared. The most familiar multispectral images are those produced in the three

bands of the visible spectrum (red, green, blue - RGB).

- Hyperspectral Images: Hyperspectral imaging, like multispectral

imaging, involves collecting and processing information from across the

electromagnetic spectrum. While multispectral imaging divides the spectrum into a

handful of bands, hyperspectral imaging divides it into hundreds or even thousands

of narrow, adjacent spectral bands. This results in a continuous spectrum for each

pixel in the image, providing a more detailed image of the object or scene.

- Thermal Images: Thermal images detect the heat emitted by objects,

providing information about their temperature. They are useful in environmental

studies, detecting heat loss in buildings, identifying people or animals in the dark,

etc.

- Radar and LiDAR Images: These images are created by sending a signal

(radio waves for Radar, light for LiDAR) and measuring the time it takes for the

signal to bounce back to the sensor. This can provide detailed information about

distances, shapes, and even the material properties of the objects.

As for the difference between multispectral (RGB) and hyperspectral images,

it comes down to the number and width of spectral bands.

16

In multispectral imagery [2], the electromagnetic spectrum is divided into

three broad bands that correspond to red, green, and blue light. This is much like

how human eyes see color, and so these images can be readily interpreted.

Hyperspectral images, on the other hand, divide the spectrum into many

narrow bands. Because different materials reflect light differently at different

wavelengths, hyperspectral imagery can identify the materials that make up a

scanned object or scene with high precision. For instance, hyperspectral imaging can

differentiate between types of vegetation or detect pollutants in water or air. The

disadvantage of hyperspectral imagery is that it generates a lot of data, which can be

challenging to store, process, and interpret.

Therefore, while RGB multispectral images [5] provide a broad overview of

a scene in a way that is easy for humans to interpret, hyperspectral images provide

a much more detailed view that can reveal information not visible to the human eye,

at the cost of increased complexity in data processing and interpretation.

Figure 1.1 Visualization of multispectral and hyperspectral cubes which

contain multiple images in different spectra

17

1.2 Characteristics of the remote sensing images

The effectiveness of analyzing and interpreting space images depends on the

amount and nature of information available about remote sensing objects. These

objects are determined based on the specific thematic task at hand. Space images are

generated by capturing electromagnetic radiation emitted or reflected by natural

formations and human-made objects on Earth.

 Each remote sensing object possesses distinct spectral and energy

characteristics, as well as varying geometric sizes, shapes, and temporal and spatial

behaviors. When selecting a space system for image generation, all these features of

remote sensing objects need to be taken into consideration.

Initially, the following factors are considered:

- The spectral range relevant to the objects and processes being observed and

studied.

- The level of detail required to accurately capture the geometric shape of

objects and their spatial relationships.

- Radiometric resolution, which refers to the maximum number of bits used

to represent the range of pixel brightness values in images of Earth's surface objects.

- The area, or the geometric dimensions of the survey frame, representing a

specific region on Earth's surface to be observed.

- Ensuring the capability for either one-time monitoring or periodic

observation with a specific time interval for a given geographical area.

18

1.3 Satellites with hyperspectral sensors

Satellites with hyperspectral sensors play a crucial role in gathering detailed,

comprehensive, and multi-dimensional data about the Earth's surface, enabling

better understanding, monitoring, and management of our environment and

resources. Here some of them:

- MODIS (Moderate Resolution Imaging Spectro radiometer), which is

equipped on both the Terra and Aqua satellites. NASA (USA) launched Terra in

1999, followed by Aqua in 2002. MODIS is capable of capturing high-frequency

imagery across a wide spectrum with 36 spectral bands ranging from 0.4 to 14.4 μm.

It is primarily utilized for monitoring global processes such as vegetation dynamics,

carbon cycling, and water cycles.

- Landsat series, which consists of American Earth-observing satellites.

The most recent addition to this series is Landsat 9, which was launched in 2021.

These satellites employ various instruments including the Multispectral Scanner

(MSS), Thematic Mapper (TM), Enhanced Thematic Mapper (ETM), and

Operational Land Imager (OLI). They provide imagery of the Earth's surface across

visible, near-infrared, and thermal infrared spectrums.

- The ASTER (Advanced Spaceborne Thermal Emission and Reflection

Radiometer) instrument is installed on the Terra satellite. NASA launched this

satellite in 1999. ASTER captures imagery in 14 channels spanning the visible, near-

infrared, and thermal infrared spectrums.

- The Sentinel series comprises satellites launched by the European

Space Agency as part of the Copernicus Earth observation program. For instance,

Sentinel-2 is equipped with a Multispectral Instrument (MSI) enabling observations

in the visible, near-infrared, and shortwave infrared spectrums.

- WorldView-3, launched by DigitalGlobe (now Maxar Technologies).

WorldView-3 is capable of providing high-resolution imagery as well as

multispectral images.

19

1.4 Noise in remote sensing

Noise in remote sensing refers to unwanted or random variations that are

introduced during the acquisition, transmission, or processing of remote sensing

data. It can have a detrimental effect on the quality, accuracy, and interpretability of

the acquired imagery. Understanding and mitigating noise is crucial for obtaining

reliable information and making informed decisions based on remote sensing data.

Remote sensing data can be affected by various sources of noise [3, 4], which

can arise at different stages of the data acquisition and processing pipeline, such as:

 Sensor Noise: Sensor noise originates from inherent imperfections in

the remote sensing hardware, including electronic components, detectors, and optics.

It can manifest as random variations in signal intensity, non-uniformity, or

systematic biases across the image. Sensor noise can degrade the image quality and

introduce uncertainties in the derived information.

 Transmission Noise: Noise can be introduced during the transmission

of remote sensing data from the sensor to the ground station or satellite. Interference,

signal loss, or distortion in the transmission path can corrupt the data, leading to

errors or noise-induced artifacts in the acquired imagery.

 Environmental Noise: Environmental factors such as weather

conditions, surface roughness, or topographic variations can contribute to noise in

remote sensing data. For example, variations in illumination due to cloud cover,

shadows, or sun angle changes can introduce noise or inconsistencies in image

datasets.

 Processing Noise: Noise can also be introduced during the processing

and manipulation of remote sensing data. Errors in resampling, image registration,

geometric correction, or radiometric calibration procedures can introduce noise or

artifacts that affect the final image quality.

Noise in remote sensing data poses several challenges and impacts the

interpretation and analysis of the acquired imagery. It can obscure or distort

20

important features, reduce the accuracy of derived measurements, and affect

subsequent data processing tasks such as classification or change detection.

Effective noise mitigation techniques, such as filtering, de-noising algorithms,

or sensor calibration, are crucial for improving the quality and reliability of remote

sensing data products.

Addressing noise in remote sensing involves a combination of hardware

improvements, calibration procedures, and advanced image processing techniques.

Developing robust noise modeling and estimation methods, as well as employing

sophisticated de-noising algorithms, can significantly enhance the quality and utility

of remote sensing imagery, enabling accurate and reliable analysis for various

applications in environmental monitoring, land cover mapping, disaster assessment,

and resource management [4].

There are three common types of image nose:

1.4.1 Amplifier Noise

The conventional model for amplifier noise assumes that it is additive, follows

a Gaussian distribution, and is dependent on each pixel as well as the signal intensity.

This type of noise is primarily caused by thermal effects, including the reset noise

of capacitors. Essentially, it is an idealized version of white noise, which arises due

to random fluctuations in the signal. In Gaussian noise, each pixel's value in the

image will be slightly altered from its original value.

Gaussian noise [6] can be described as a form of statistical noise that exhibits

a probability density function (PDF) identical to that of the normal distribution, also

known as the Gaussian distribution.

The probability density function 𝒫 of a Gaussian random variable 𝒵 is given

by:

 𝒫𝐺(𝒵) =
1

𝜎√2𝜋
𝑒
−
(𝒵−𝜇)
2𝜎2 (1.1)

21

𝒵 denotes the grey level, 𝜇 represents the mean grey value, and 𝜎 indicates

the standard deviation associated with the grey level.

Figure 1.2. Before and after Gaussian noise

1.4.2 Salt-and-Pepper Noise

Salt and pepper noise [7], also known as impulse noise, spike noise, random

noise, or independent noise, refers to a type of image distortion characterized by

sparse occurrences of light and dark disturbances. In this form of noise, individual

pixels within the image exhibit significantly different colors or intensities compared

to their surrounding pixels. It primarily affects a small number of pixels within the

image. Common sources of this type of noise include dust particles present inside

the camera and overheated or faulty elements of the Charge-coupled device.

Salt and pepper distribution noise can be expressed by:

 𝑝(𝑥) = {

𝑝1, 𝑥 = 𝐴

𝑝2, 𝑥 = 𝐵

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (1.2)

p1 and p2 represent the Probability Density Functions (PDFs), while p(x) represents

the distribution of salt and pepper noise within an image. A and B correspond to the

size of arrays representing the image.

22

An image affected by salt and pepper noise will exhibit dark pixels within

bright regions and vice versa. It can occur due to memory cell failures,

synchronization errors during image digitization or transmission, analog-to-digital

converter errors, or bit errors during transmission.

An example of salt and pepper noise is as follows:

Figure 1.3. Salt-and-Pepper Noise affect

1.4.3 Speckle Noise

Speckle noise [8] refers to a specific type of noise characterized by a granular

pattern commonly observed in satellite images. Its removal poses a significant

challenge and remains a relatively unexplored issue. This type of noise is

predominantly encountered in satellite images obtained through Synthetic Aperture

Radar (SAR), a specialized radar system. Speckle noise is considered an undesirable

artifact resulting from the random interference between coherent signals reflected

by numerous scatterers present on the Earth's surface, occurring on a scale

comparable to the wavelength of the incident radar wave.

Speckle noise is represented as multiplicative noise, meaning that the resulting

signal is obtained by multiplying the speckle signal with the original noise.

Let's consider I(i, j) as the distorted pixel of an observed image, and S(i, j) as

the noise-free image pixel that we aim to restore. According to the multiplicative

noise model,

23

 𝐼 (𝑖, 𝑗) = 𝑆 (𝑖, 𝑗) ∗ 𝑁 (𝑖, 𝑗) (1.3)

In which N (i, j) depicts the multiplicative noise with unit mean and standard

deviation. Example of Speckle Noise:

Figure 1.4. Original Image and Speckled Image compare

To mitigate image noise, several techniques are employed in remote sensing.

One commonly used method is image filtering [3], which aims to remove or reduce

the noise while preserving the essential features of the image. Filtering techniques

such as mean filtering, median filtering, Gaussian filtering, and wavelet filtering are

applied to remove different types of noise, depending on their characteristics [8].

Additionally, advanced algorithms and image processing techniques are

developed to enhance the quality of remote sensing data. These algorithms involve

sophisticated statistical methods, machine learning approaches, and spectral analysis

techniques to distinguish between noise and actual signal, thereby improving the

accuracy and reliability of the data.

The importance of addressing image noise in remote sensing cannot be

overstated. By reducing noise and improving the quality of remote sensing data,

researchers, scientists, and decision-makers can make more accurate and informed

interpretations, leading to better insights, reliable assessments, and effective

decision-making processes.

24

1.5 Consideration of modern systems and methods of noise filtering

In a digital camera, if the light, which enters the lens, misaligns with the

sensors, it will create image noise. Every type of electronic device receives and

transmits some noise and sends it on to what it is creating. When the images are

transmitted over channels, they are corrupted with impulse noise due to noisy

channels. This impulse noise consists of large positive and negative spikes.

The positive spikes have values much larger than the background and thus

they appear as bright spots, while the negative spikes have values smaller than the

background and they appear as darker spots. Both the spots [5] for the positive and

negative spikes are visible to the human eye. Also, Gaussian type of noise affects

the image. Thus, filters are required for removing noises before processing. There

are many kinds of filters as linear mean filter, median filter, wiener filter and

Gaussian Filter. Due filtering process, the three primaries (R, G and B) are done

separately. It is followed by some gain to compensate for attenuation resulting from

the filter.

The filtered primaries are then combined to form the colored image.

Figure 1.5. Filtering process

25

1.5.1 Mean Filter

The Mean Filter (MF) [9] is a straightforward and easily implemented linear

filter used for the purpose of smoothing images, thereby reducing the level of

intensity variation between adjacent pixels. Its primary application is noise reduction

in images. The fundamental concept behind mean filtering involves replacing each

pixel value in an image with the average (mean) value of its neighboring pixels,

including the pixel itself. This process effectively eliminates pixel values that

deviate significantly from their surrounding values. Mean filtering is commonly

referred to as a convolution filter, as it utilizes a kernel that determines the shape and

size of the neighborhood considered for calculating the mean value.

Figure 1.6. Schematic representation of mean filtering in a 3X3 kernel

1.5.2 Standard Median Filter

The median filter (SMF) is a type of non-linear filter [10] used to adjust the

average intensity of an image when the spatial distribution of noise within the image

is not symmetrical across the window. Its primary function is to decrease the

variability of intensities present in the image. Unlike other filters, the median filter

operates on the spatial characteristics of the image by employing a 2-D mask that is

applied to every pixel in the input image. Applying the mask involves centering it

on a pixel, assessing the brightness values of the pixels it covers, and determining

the median brightness value.

26

Figure 1.7. A graphical depiction of the standard median filter operation

1.5.3 Adaptive Wiener Filter

Adaptive Wiener Filter (AWF) [11] is a type of linear filter, to an image. It

adjusts itself based on the local variance of the image, resulting in less smoothing

for images with large variance and more smoothing for images with small variance.

This approach often yields superior outcomes compared to linear filtering.

The adaptive nature of the filter makes it more discerning than a standard

linear filter, preserving important features like edges and high-frequency

components in the image. Furthermore, the wiener function takes care of all the

necessary computations and implements the filter for an input image, eliminating

the need for additional design tasks. However, wiener function requires more

computational time compared to linear filtering.

The effectiveness of the Wiener filter is particularly prominent when dealing

with constant-power ("white") additive noise, such as Gaussian noise. An alternative

method for noise reduction involves evolving the image through an anisotropic

diffusion process, which can be seen as a smoothing partial differential equation akin

to the heat equation. This technique, known as anisotropic diffusion, provides

another means of removing noise from an image.

27

Figure 1.8. Block diagram of Adaptive Wiener Filter

"k" - refers to the sample number; "x" - represents the reference input; "x" -

denotes the recent values of; "x," "d" - signifies the desired input, "W" - indicates

the filter coefficients; "ε" - represents the error output; "f" - filter impulse response,

"*" - denotes convolution; Σ - signifies summation, upper box -linear filter, and

lower box - adaption algorithm.

1.5.4 Gaussian Filter

The Gaussian low pass filter (GF) is widely used in image processing and is

known for its ability to respond to sudden changes in the input signal. Its design

focuses on minimizing overshoot and optimizing the transition time when applied to

a step function input. By utilizing the principles of Gaussian smoothing, this filter

effectively eliminates noise and blurring from images.

Gaussian filters [12] are commonly function by convolving an image with a

Gaussian kernel, which is a weighted averaging function. The Gaussian kernel

assigns higher weights to the central pixels and gradually decreases the weights for

pixels further away. This property ensures that the filter successfully reduces high-

frequency noise while preserving the overall structure and fine details of the image.

28

(a) Original

(b) 60% Noisily

(c) AWF

d) GF

(e) MF

(f) SMF

Figure 1.9. Representation of all filters work

29

1.6 Conclusion

Hyperspectral imaging has brought about a great revolution in the field of

remote sensing, ushering in an era of unparalleled detail and accuracy in data

collection. This cutting-edge technology has the remarkable ability to detect

radiation across an extensive range of wavelengths, thereby enabling the

construction of intricate hyperspectral data cubes and the identification of unique

spectral signatures. Applications of hyperspectral imaging span a wide array of

domains, encompassing agriculture, military operations, and medical advancements.

Within the realm of ongoing research, one particularly fascinating and

promising avenue of exploration lies in the domain of filtering hyperspectral images.

Researchers continuously dedicate their efforts to studying and developing a myriad

of primary filtration methods, all in the pursuit of achieving optimal results with the

least possible amount of effort. Remarkably, the scientific community is

increasingly turning to the utilization of neural networks, which seamlessly integrate

with existing approaches, thereby showcasing their exceptional efficiency and

potential in this field of study.

30

2 WAVELETS TRANSFORMS IN DENOISING

Wavelets are mathematical functions that divide a given function or set of data

into different frequency components, and then study each component with a

resolution matched to its scale. They have advantages over traditional methods in

analyzing physical situations where the signal contains discontinuities and sharp

spikes.

The appeal of wavelet-based image filtering [13] stems from the

multiresolution nature of wavelet transforms. This property enables wavelets to

analyze different frequency components with different resolutions, capturing both

global (low frequency) and detailed (high frequency) information about an image.

 Wavelets can represent an image as a sum of "wavelet coefficients," [14] each

corresponding to a certain frequency range at a certain location in the image. By

manipulating these coefficients, we can selectively enhance or suppress features in

different frequency ranges and at different scales, providing a high degree of control

over the filtering process.

2.1 Wavelets Transforms

Wavelets proven to be valuable in the field of image noise filtering. Unlike

traditional methods that focus solely on frequency analysis, wavelets offer a more

comprehensive approach by considering both frequency and spatial information.

A wavelet is a type of oscillation that resembles a wave but decays rapidly

and has a mean value of zero. In contrast to sinusoids, which extend infinitely,

wavelets have a finite duration.

31

Figure 2.1. Wave and Wavelet compare

When analyzing a signal or function f(t), it is often beneficial to express it as

an expansion, which can provide a more effective analysis.

Ψ𝑗,𝑘(𝑡) = 1/𝑗𝜓 (𝑡 −
𝑘

𝑗
) j, k ∈ ℝ (2.1)

The equation depicts the wavelet expansion functions, where the function

represents the specific wavelet function used, and j and k denote the scaling and

shifting parameters, respectively.

In the context of image noise filtering, wavelet analysis [13] allows for the

decomposition and analysis of signals at different scales. This decomposition helps

in effectively separating noise from the actual image content. By examining the

image at multiple scales, wavelet analysis can capture fine details as well as overall

features.

Coefficients that represent the signal at different scales and positions provide

insights into the presence of noise in specific frequency bands. The sparsity of noise

in the wavelet domain is exploited to selectively remove unwanted noise while

retaining the structure and details of the image.

32

The effectiveness of wavelet-based image noise filtering [19] depends on the

choice of wavelet function and thresholding strategy. Different wavelet families

offer different levels of smoothness and frequency localization, allowing for

flexibility in adapting to specific image characteristics. Additionally, the selection

of an appropriate thresholding method, such as hard or soft thresholding, determines

the extent of noise suppression and preservation of image details

2.2 Discrete Wavelet Transform

The wavelet [19] is derived from a scaling function that characterizes its

scaling properties. The requirement for the scaling functions to be orthogonal to their

discrete translations imposes certain mathematical constraints, which are widely

discussed, such as in the context of the dilation equation. These conditions are

commonly mentioned in various sources to ensure the appropriate properties of the

wavelet.

ϕ(𝑥) = ∑ 𝑎𝑘

∞

𝑘= − ∞

ϕ(𝑠𝑥 − 𝑘) (2.2)

In the given equation, S represents a scaling factor typically chosen as two.

Additionally, it is important to ensure that the area between the function is

normalized, and the scaling function is orthogonal to its integer translates.

∫ 𝜙(𝑥)𝜙(𝑥 + 𝜄)
∞

−∞

𝑑𝑥 = 𝛿0,𝜄 (2.3)

After incorporating additional conditions to address the non-uniqueness of the

solution, it is possible to derive the outcomes for all the given equations. These

outcomes consist of a finite set of coefficients denoted as 𝑎𝑘 , which not only

determine

33

the scaling function but also yield the wavelet. The wavelet can be derived

from the scaling function through the following relationship:

𝜓(𝑥) = ∑ (−1

∞

𝑘= −∞

)𝑘𝑎𝑁−1−𝑘𝜓(2𝑥 − 𝑘) (2.4)

When considering an even integer N, the collection of wavelets creates an

orthonormal basis that is utilized for signal decomposition.

2.3 Single Level Decomposition

Based on Figure 2.2, the signal s(t) data [16] is represented by cA. This data

undergoes processing through two distinct filters: a high-pass filter and a low-pass

filter. It is important to note that these filters deviate from the conventional filters

typically used in signal processing. Instead, they generate wavelet coefficients.

Adhering to the Nyquist theorem, the data is upsampled by a factor of 2. This process

yields two types of wavelet coefficients: Detailed Coefficients (cD) and

Approximation Coefficients (cA), which respectively contain high-frequency and

low-frequency information.

Figure 2.2. One-Dimensional DWT

34

2.4 Multi-level Decomposition

Multi-level decomposition [15], also often referred to as multilevel modeling,

hierarchical modeling, or nested design, is a statistical method used for handling data

that is organized at more than one level or that has a hierarchical or clustered

structure. These methods recognize the existence of data hierarchies by allowing for

residual components at each level in the hierarchy.

While a single-level decomposition is sufficient for edge detection, which is

valuable for extracting features in image processing, multilevel decomposition

offers superior data compression capabilities. This is particularly beneficial when

dealing with noisy images. At the initial level of decomposition, the detected edges

may be difficult to discern. However, as the number of levels increases, the

subsequent levels contain progressively more valuable data with reduced noise.

Figure 2.3. Wavelet Decomposition tree

2.5 Thresholding in Wavelets

Once the image has been decomposed into wavelet coefficients, the de-

noising process involves applying a thresholding operation [18, 19] to the detail

coefficients. Thresholding involves identifying coefficients that exceed a certain

threshold value and then either removing or shrinking them. By effectively

suppressing the noisy coefficients while retaining the significant image details, the

35

DWT-based de-noising technique achieves a balance between noise reduction and

preservation of important image features. Subsequently, thresholding methods are

employed to mitigate the noise within each of these coefficients. Two types of

thresholding methods are commonly used: hard and soft thresholding’s.

Soft thresholding. The soft thresholding function operates by examining the

argument and determining whether its absolute value is smaller than a specified

threshold. If the absolute value is indeed smaller, the argument is converted to zero.

However, if the absolute value exceeds the threshold, the argument is reduced

by the threshold value. This function can be mathematically represented as follows:

𝜂𝑇(𝑥) = 𝑠𝑔𝑛(𝑥) ∗ max (|𝜘| − 𝑇, 0) (2.5)

Hard thresholding. In contrast to soft thresholding, hard thresholding is a

discontinuous method. It retains the input coefficients if they are greater than the

threshold value, but sets the coefficient values to zero if they are below the threshold

value. The function for hard thresholding can be expressed as follows:

𝜓𝑡(𝑥) = 𝑥 ∗ 1 ∗ 1{|𝑥| > 𝑇} (2.6)

Thresholding selectively eliminates noise from the detailed coefficients at

each level, while leaving the approximation coefficients unaffected.

36

Figure 2.4. Image de-noising using wavelet transform algorithm

2.6 Inverse Wavelet Transform

The Inverse Wavelet Transform (IWT) [14, 19] is a mathematical operation

that reverses the process of the Wavelet Transform. The IWT, also known as the

synthesis step, reconstructs the original signal or image from its wavelet coefficients.

The process of the IWT involves combining the wavelet coefficients obtained

from the Wavelet Transform back into the original signal or image. It follows a

hierarchical structure, starting from the highest frequency components and gradually

reconstructing the lower frequency components.

The IWT can be performed using different wavelet basis functions. These

wavelet functions determine the time-frequency resolution and other properties of

the reconstructed signal.

The IWT is particularly useful in applications such as signal compression, de-

noising, image reconstruction, and feature extraction. By performing the IWT, one

can obtain a representation of the original signal or image in the time or spatial

domain, allowing further analysis or visualization.

37

Wavelet Transform and its inverse, the IWT, form a pair of operations that

preserve the information of the original signal or image. This property makes them

valuable tools in various fields of signal and image processing.

Figure 2.6. Basic scheme of IWT

2.7 Conclusion

 Wavelet transforms, particularly in the form of Discrete Wavelet

Transform (DWT) and Inverse Wavelet Transform (IWT), have emerged as

indispensable tools in numerous applications including signal and image processing,

data compression, and noise reduction. Wavelet transforms, compared to classical

Fourier transforms, offer superior flexibility and precision as they allow for both

time and frequency localization, thereby providing a multi-resolution analysis.

 The DWT, by dividing a signal into a coarse approximation and detail

information, serves to efficiently capture both high-frequency and low-frequency

components of a signal. This division helps isolate the noise from the signal in many

real-world applications, making DWT especially beneficial for noise reduction and

signal enhancement. The IWT, being the reverse process of DWT, is used to

reconstruct the original signal from wavelet coefficients, ensuring that no

information is lost during the process of transformation and reconstruction.

 The process of thresholding, which follows the DWT, allows for further

noise reduction. This is achieved by setting all wavelet coefficients that are less than

38

a certain threshold to zero, effectively eliminating negligible details that are often

attributed to noise.

Finally, both single-level and multilevel decompositions play a significant

role in the practical application of wavelet transforms. Single-level decomposition

divides the signal into one level of approximation and detail, while multilevel

decomposition further divides the approximation, providing a deeper level of signal

analysis.

39

3 NEURAL NETWORKS IN DIGITAL FILTERING

Neural networks have emerged as powerful tools in various fields of computer

science and artificial intelligence, including image processing and filtering. It’s

using in a lot of areas, but in image noise filtering especially, neural networks have

shown remarkable performance.

Traditional approaches to image noise filtering [21] involve handcrafted

algorithms that rely on specific assumptions about the noise characteristics.

However, these methods may struggle to handle complex noise patterns and

variations in different image domains. Neural networks, on the other hand, offer a

data-driven approach to noise filtering, allowing for more robust and adaptive

solutions.

In previous years, significant advancements have been made in leveraging

neural networks for image noise filtering tasks. Convolutional neural networks

(CNNs) have been particularly successful in learning and extracting meaningful

features from noisy images. By training on large datasets containing both noisy and

clean images, these networks can effectively learn the underlying noise patterns and

enhance the quality of the corrupted images.

Moreover, the flexibility and scalability of neural networks enable the

development of more sophisticated models for image noise filtering.

3.1 Using Deep Learning neural networks

Deep learning, [20] a subset of machine learning, leverages artificial neural

networks to automatically learn hierarchical representations of data. With the

availability of large-scale annotated datasets and computational resources, deep

learning has revolutionized the field of image processing. Traditional image de-

noising methods often rely on handcrafted features and assumptions about noise

characteristics, limiting their effectiveness. In contrast, deep learning approaches

40

can automatically learn noise patterns from large amounts of training data, enabling

more accurate and adaptive noise filtering.

To perform image noise filtering, deep learning models are trained using pairs

of noisy and clean images. The goal is to teach the network to capture the complex

mapping between noisy input images and corresponding clean outputs. The training

process involves optimizing the network parameters based on a specified loss

function, typically minimizing the pixel-wise difference between the network’s

output and the clean target image. Especially in this case, the use of deep

convolutional neural networks (CNNs) is common due to their ability to efficiently

capture spatial correlations in images.

One of the key advantages of deep learning for image noise filtering is its end-

to-end learning capability. Unlike traditional methods that involve multiple stages

(such as noise estimation and filtering), deep learning models can directly map noisy

images to de-noised outputs. By learning an end-to-end mapping, the network can

implicitly model noise characteristics and adaptively remove noise while preserving

important image details. This end-to-end approach eliminates the need for

handcrafted features and intermediate steps, leading to more efficient and effective

noise filtering.

Deep learning techniques are versatile and can be trained to handle various

types of image noise, including additive noise (such as Gaussian noise), Poisson

noise, salt-and-pepper noise, and more. By exposing the network to diverse noise

patterns during training, it can learn to generalize and effectively remove different

types of noise in real-world scenarios.

Another notable advantage of deep learning-based image noise filtering is its

potential for real-time and parallel processing. With the availability of modern

graphics processing units (GPUs) and specialized hardware accelerators, deep

learning models can be efficiently implemented and deployed for fast and parallel

computation. This enables real-time noise filtering, making it feasible for

applications that require low-latency processing.

41

Figure 3.1. Simple Deep Learning network scheme

3.2 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are a class of deep learning

algorithms designed to process and analyse visual data efficiently. They are inspired

by the organization of the visual cortex in the human brain, allowing them to capture

spatial dependencies and hierarchical representations in images. Unlike traditional

neural networks, CNNs exploit the concept of convolution to perform localized

feature extraction.

CNNs consist of multiple convolutional layers that extract various features

from the input images. Each layer comprises learnable filters or kernels that

convolve across the input, performing element-wise multiplications and

summations. The resulting feature maps highlight specific patterns, edges, or

textures at different spatial scales. These convolutional layers enable CNNs to

automatically learn relevant image representations for noise filtering.

42

Figure 3.2. Convolutional Neural Network scheme

The architecture of a Convolutional Neural Network (CNN) consists of two

primary components.

 Convolutional tool that effectively separates and identifies various

features present in an image, a process commonly known as Feature Extraction. This

feature extraction network typically comprises multiple pairs of convolutional or

pooling layers.

 Fully connected layer that takes the output generated by the convolution

process and employs it to predict the class of the image based on the features

extracted in earlier stages.

 The CNN model's objective in feature extraction is to reduce the

number of features within a dataset. It accomplishes this by generating new features

that encapsulate the essential information contained in the original set of features.

The CNN architecture diagram typically illustrates the presence of multiple CNN

layers, each contributing to the overall feature extraction process.

43

3.2.1 Convolution Layers

A CNN architecture consists of three fundamental types of layers:

convolutional layers, pooling layers, and fully – connected layers (FCL). These

layers are stacked together to form the structure of the CNN. However, apart from

these three layers, two additional crucial components contribute to the overall

functionality of the network [20]. These components are the dropout layer and the

activation function, each playing a significant role in the CNN’s performance.

Figure 3.3. Convolution between a kernel (filter) and an image

The initial layer in the convolutional neural network (CNN) serves as the

primary stage for extracting diverse features from input images. Within this layer,

the convolution operation takes place, involving the input image and a filter of

specific dimensions, typically MxM. Through the process of sliding the filter across

the input image, a dot product is computed between the filter and different segments

of the input image, relative to the size of the filter (MxM).

44

Figure 3.4. Convolution process

The resulting output is referred to as the feature map, which provides valuable

information regarding various characteristics of the image, such as corners and

edges. Subsequently, this feature map is passed on to subsequent layers to further

learn and identify additional features within the input image.

The convolution layer within a CNN effectively transmits the outcome to the

subsequent layer after performing the convolution operation on the input.

Convolutional layers in CNNs offer significant advantages by preserving the spatial

relationship between pixels, ensuring that important spatial details are retained

throughout the network's processing.

3.2.2 Pooling Layer

In most cases, a Convolutional Layer is followed by a Pooling Layer. The

main purpose of this layer is to reduce the size of the convolved feature map, thereby

minimizing computational costs. It achieves this by reducing the interconnections

between layers and independently operating on each feature map. Various types of

Pooling operations exist, depending on the chosen method. The primary function of

Pooling is to condense the information extracted by the convolution layer.

45

In Max Pooling, the largest element from the feature map is selected. Average

Pooling computes the average of elements within a predetermined image section.

Sum Pooling calculates the total sum of elements in the predefined section. The

Pooling Layer commonly acts as a connector between the Convolutional Layer and

the Fully Connected Layer (FCL).

Figure 3.5. Matrix formation using Max-pooling and average pooling

The Convolutional Neural Network (CNN) model enables the extraction of

generalized features by the convolution layer. This allows the network to

independently recognize the extracted features. Consequently, this aids in reducing

computations within the network.

3.2.3 Fully Connected Layer

The Fully Connected layer (FCL) serves as a connection between neurons

from different layers in a neural network. Typically, these layers are positioned

before the output layer and are found towards the end of a Convolutional Neural

Network (CNN) architecture.

The Fully Connected layer comprises weights, biases, and neurons. Its

purpose is to receive the flattened input image from the preceding layers and process

it. This involves performing mathematical operations through a series of FCL. At

this stage, the classification process begins to unfold. Connecting two FCL is

46

advantageous as it generally yields better performance compared to a single

connected layer. These layers within a CNN contribute to reducing the level of

human supervision involved in the network's operations.

3.2.4. Dropout

Typically, connecting all features to the fully connected (FCL) layer of a

model can lead to overfitting on the training dataset. Overfitting occurs when a

model performs exceptionally well on the training data but struggles when presented

with new, unseen data.

To address this issue, a dropout layer is often employed. This layer randomly

drops a subset of neurons from the neural network during the training process,

effectively reducing the model's size. By setting a dropout rate of 0.3, approximately

30% of the nodes are randomly dropped from the neural network.

Introducing a dropout layer helps improve the performance of machine

learning models by mitigating over fitting. By making the network simpler through

dropout, the model becomes more robust and less prone to over-relying on specific

features or patterns observed in the training data.

3.2.5 Activation Functions

The activation function stands as one of the crucial parameters within the

CNN model, enabling it to learn and approximate complex relationships among

network variables. Essentially, it plays a role in determining which information

within the model should be activated in the forward direction, while disregarding

others towards the end of the network.

By introducing non-linearity, the activation function enhances the network's

capabilities. Among the commonly utilized activation functions are Softmax and

Sigmoid. Each of these functions serves specific purposes. In the case of a binary

47

classification CNN model, Sigmoid and Softmax functions are preferred, while

Softmax is generally used for multi-class filtering. In simpler terms, activation

functions in a CNN model decide whether a neuron should be activated or not. They

ascertain the significance of the input to the predictive process through mathematical

operations.

3.3 U-Net architecture for CNN

The U-Net architecture [23], originally proposed for biomedical image

segmentation, has gained popularity in various image processing tasks, including

image noise filtering. The architecture derives its name from its characteristic U-

shaped structure, which consists of an encoder path and a decoder path.

Figure 3.6. Representation of U-Net architecture

3.3.1 Encoder Path

The encoder path of the U-Net architecture [20, 23] is responsible for

capturing hierarchical features from the input image. It consists of several

convolutional layers, each followed by a non-linear activation function. The encoder

gradually reduces the spatial resolution of the input image while increasing the

number of feature channels, enabling the extraction of abstract representations.

48

The encoder path consists of a series of convolutional layers. Each

convolutional layer applies a set of filters to the input image, convolving them across

the spatial dimensions. The filters learn to extract different features, such as edges,

textures, or patterns, from the image. As the encoder progresses deeper into the

network, the number of filters typically increases, allowing for a more complex and

abstract representation of the input.

Figure 3.7. Encoder Path used for image filtering

The process involves utilizing convolutional layers and pooling layers to

achieve this. The convolution layer operates by traversing across each pixel in an

image, employing a mapping or kernel. This mapping is acquired during the model-

training phase. Afterwards, through the utilization of a predetermined function, the

pooling layers effectively decrease the output's dimensionality.

49

Figure 3.8. Convolutional and pooling layers

By combining multiple convolutional and pooling layers, we can extract finer

details, progressing from edges and colors to objects like houses, trees, and vehicles.

The network learns which features are important for filtering and creates a compact

representation of the image.

3.3.2 Decoder Path

The decoder path of the U-Net architecture aims to recover the spatial

resolution and reconstruct the filtered image based on the encoded features. It

consists of upsampling operations, which progressively increase the spatial

resolution, and concatenation of feature maps from the corresponding encoder path

layers. This design allows the decoder to exploit both low-level and high-level

features, facilitating accurate reconstruction of the filtered image.

As illustrated in Figure 4.7, this section start after the conv4 block. In the

decoding process, the objective is to reconstruct an image using the compact

representation. Similar to the encoder, the decoder has convolutional blocks, and it's

own deconvolution layers that stands to enhance the image's quality and clarity.

50

3.3.3 Skip connections

A distinctive feature of the U-Net architecture is the presence of skip

connections [24] that connect the corresponding encoder and decoder path layers.

These connections allow for the direct propagation of spatial information from the

encoder to the decoder, enabling precise localization of image details during the

reconstruction process. Skip connections help to overcome the information loss that

can occur in deeper layers and improve the model's ability to preserve fine image

structures.

What is critical is that the position of the feature retrieved by convolutional

layers be passed. That is, the skip connections indicate the network where the

features in the picture came from.

The process involves the concatenation of the final layer in the convolutional

block with the initial layer of the corresponding deconvolutional block. It is

important to note that the U-Net architecture is designed to be symmetrical, ensuring

that the dimensions of the opposing layers are identical. This symmetry facilitates

the seamless combination of these layers into a unified tensor. Subsequently, the

convolution operation is performed conventionally by applying the kernel across the

concatenated tensor.

Figure 3.7. Concatenating layers

51

At the core of the U-Net architecture [20] lies the fundamental concept of

concatenation. This operation serves to merge two crucial elements of information:

 Feature extraction: The features extracted from the preceding layer are

transmitted to the up sampled layer (depicted in blue).

 Feature localization: The positional information of the feature is relayed

from the corresponding convolutional layer (highlighted in orange).

By effectively amalgamating these distinct pieces of information, can be

enhance the efficacy of semantic models and concurrently diminish the quantity of

data necessary for training the network

3.4 Wavelets basis Neural network

Neural networks combined with wavelets have emerged as a powerful

approach for image noise filtering. This hybrid technique leverages the strengths of

both neural networks and wavelet analysis to achieve effective noise filtering results.

In this approach, a neural network is trained to learn the relationship between

the wavelet coefficients of noisy images and their corresponding clean versions. The

network takes the noisy wavelet coefficients as input and outputs the denoised

wavelet coefficients. By learning from a large dataset of noisy-clean image pairs,

the neural network learns to generalize and effectively remove noise from

unseen images.

Wavelets play a crucial role in this process by providing a multi-scale analysis

of the image. The image is decomposed into different frequency bands using the

wavelet transform, and the neural network operates on the wavelet coefficients at

each scale. This allows the network to capture both local and global image details,

which can aid in better noise estimation and removal.

The hybrid neural network-wavelet approach offers several advantages.

Firstly, the wavelet decomposition provides a sparse representation of the image,

which helps in reducing the computational complexity of the neural network. The

52

neural network focuses on learning the relationship between the wavelet

coefficients, rather than operating on the entire image, which can lead to more

efficient and faster filtering.

Secondly, the wavelet decomposition enables the neural network to handle

different types of noise at various scales. Wavelets can effectively capture noise

characteristics in different frequency bands, allowing the neural network to adapt its

de-noising strategy accordingly.

Learned neural network can be applied to real-time de-noising tasks since it

operates in the wavelet domain, where the filtering process is usually faster

compared to pixel-based approaches.

Currently, approaches are being actively developed to improve the efficiency

of wavelet transformations using neural networks. The direction is newly emerged

and has many ways of further development.

3.5 Conclusion

Neural networks, specifically convolutional neural networks (CNNs), have

shown great promise in noise filtering applications. The ability of CNNs to

automatically learn hierarchical representations from data makes them well-suited

for handling complex noise patterns in various domains, including image and signal

processing.

U-Net is a specific CNN architecture that has gained popularity in the field of

image segmentation, which is closely related to noise filtering tasks. It is

characterized by a U-shaped architecture that includes both a contracting path and

an expansive path. The contracting path captures context and spatial information

through convolutional and pooling operations, while the expansive path enables

precise localization of the objects or features being segmented.

The U-Net architecture has demonstrated excellent performance in various

remote sensing image denoising tasks, where noise filtering is often a crucial

preprocessing step. The network's ability to learn intricate features and capture fine

details makes it particularly effective for denoising applications.

53

4 DIGITAL NOISE FILTERING REALISATION ON HYPERSPECTRAL

IMAGES

Image restoration is a crucial and long-standing problem in remote sensing,

aiming to recover the original clean image (x) from its degraded observation (y).

Over the years, numerous methods have been proposed to address image restoration,

considering both prior modeling and discriminative learning approaches. In recent

times, convolutional neural networks (CNNs) have gained significant attention and

have achieved remarkable performance in various image restoration tasks, including

image denoising [20].

The widespread adoption of CNNs in image restoration can be attributed to

two main factors. Firstly, existing CNN-based solutions have demonstrated

substantial improvements over other methods, particularly in simple tasks like image

denoising. Secondly, recent studies have shown that CNN-based denoisers can be

integrated into model-based optimization methods to tackle more complex image

restoration tasks [21, 22]. This integration has further encouraged the extensive use

of CNNs in this field. Essentially, in image restoration, a CNN functions as a

mapping from a degraded observation to a latent clean image. To ensure consistent

input and output image sizes, a common strategy involves employing a fully

convolutional network (FCN) by removing pooling layers.

Typically, a larger receptive field, which considers more spatial context,

enhances the restoration performance. However, for FCNs without pooling,

enlarging the receptive field can be achieved either by increasing the network depth

or by using larger filters. It is worth noting that these approaches also lead to higher

computational costs.

4.1 Cascade Wavelets CNN model introduction

In this research paper, I am introducing a novel model called the Cascade

Wavelet CNN (CWCNN) with the aim of enhancing the receptive field to achieve a

54

better balance between performance and efficiency. CWCNN model is built upon

the well-known U-Net architecture, which consists of a contracting subnetwork and

an expanding subnetwork. In the contracting subnetwork, incorporate the discrete

wavelet transform (DWT) as a replacement for traditional pooling operations. By

using DWT, we ensure that the downsampling process is reversible, thus preserving

all the information within the feature maps.

In the expanding subnetwork, we employ the inverse wavelet transform (IWT)

to upsample low-resolution feature maps and obtain high-resolution counterparts.

This enables to enhance the representation of features while minimizing the

computational burden.

The main principle underlying СWCNN architecture is the incorporation of a

CNN block following each level of DWT. In Fig. 4.1, we can observe that each CNN

block consists of four layers of FCN, omitting pooling, and utilizes all subband

images as inputs. In contrast, distinct CNNs are employed for the low-frequency and

high-frequency bands within the deep convolutional framelets [20]. It is important

to note that the subband images following DWT remain interdependent, and

disregarding their interdependence could have detrimental effects on the restoration

performance.

When the input image x comes, are employing a two-dimensional discrete

wavelet transform (2D DWT) [22] using four convolutional filters: a low-pass

filter𝑓𝐿𝐿, and three high-pass filters 𝑓𝐿𝐻, 𝑓𝐻𝐿, and 𝑓𝐻𝐻. By this, image x decompose

into the four subband images:𝑥𝐿𝐿, 𝑥𝐿𝐻, 𝑥𝐻𝐿, and𝑥𝐻𝐻 These four filters have

predetermined parameters and utilize a convolutional stride of 2 during the

transformation process. Take the Haar wavelet as an illustration, where these four

filters are specifically defined.

𝑓𝐿𝐿 = ⌈
1 1
1 1

⌉ , 𝑓𝐿𝐻 = [
−1 −1
1 1

] , 𝑓𝐻𝐿 = [
−1 1
−1 1

] , 𝑓𝐻𝐻 = [
1 −1
−1 1

] (4.1)

55

Vectors 𝑓𝐿𝐿 , 𝑓𝐿𝐻 , 𝑓𝐻𝐿 , and 𝑓𝐻𝐻 are mutually perpendicular to each other and

collectively form a 4 × 4 invertible matrix. The DWT operation can be defined as

follows: 𝑥𝐿𝐿 is obtained by convolving x with 𝑓𝐿𝐿 and then downsampling the result

by a factor of 2. Similarly, 𝑥𝐿𝐻 is obtained by convolving x with 𝑓𝐿𝐻 and

downsampling, 𝑥𝐻𝐿 is obtained by convolving x with 𝑓𝐻𝐿 and downsampling, and

𝑥𝐻𝐻 is obtained by convolving x with 𝑓𝐻𝐻 and downsampling. Here, the symbol ⊗

represents the convolution operator, and ↓2 indicates the standard downsampling

operation with a factor of 2. In simple terms, the DWT utilizes four fixed convolution

filters with a stride of two to perform downsampling. Additionally, as per the

principles of the Haar transform [56], the (i, j)-th values of 𝑥𝐿𝐿, 𝑥𝐿𝐻, 𝑥𝐻𝐿, and 𝑥𝐻𝐻

after a 2D Haar transform can be expressed as

{

𝑥𝐿𝐿(i, j) = x(2i − 1, 2j − 1) + x(2i − 1, 2j) + x(2i, 2j − 1) + x(2i, 2j)

𝑥𝐿𝐻(i, j) = −x(2i − 1, 2j − 1) − x(2i − 1, 2j) + x(2i, 2j − 1) + x(2i, 2j)

𝑥𝐻𝐿(i, j) = −x(2i − 1, 2j − 1) + x(2i − 1, 2j) − x(2i, 2j − 1) + x(2i, 2j)

𝑥𝐻𝐻(i, j) = x(2i − 1, 2j − 1) − x(2i − 1, 2j) − x(2i, 2j − 1) + x(2i, 2j).

 (4.2)

The downsampling process is utilized in order to maintain the biorthogonal

characteristic of the DWT. This property ensures that the original image, denoted as

x, can be reconstructed accurately through the IWT without any loss of information.

This reconstruction can be expresse as x = IWT (𝑥𝐿𝐿, 𝑥𝐿𝐻, 𝑥𝐻𝐿,𝑥𝐻𝐻), where 𝑥𝐿𝐿, 𝑥𝐿𝐻,

𝑥𝐻𝐿, and 𝑥𝐻𝐻 represent the wavelet coefficients obtained from the DWT.

Specifically, for the Haar wavelet, the IWT can be defined as follows:

{

 x(2i − 1, 2j − 1) = (xLL(i, j) − xLH(i, j) − xHL(i, j) + xHH(i, j))/4

x(2i − 1, 2j) = (xLL(i, j) − xLH(i, j) + xHL(i, j) − xHH(i, j))/4

x(2i − 1, 2j) = (xLL(i, j) + xLH(i, j) − xHL(i, j) − xHH(i, j))/4
x(2i, 2j) = (xLL(i, j) + xLH(i, j) + xHL(i, j) + xHH(i, j))/4

 (4.3)

In order to facilitate subsequent processing the subband images 𝑥𝐿𝐿, 𝑥𝐿𝐻, 𝑥𝐻𝐿,

and 𝑥𝐻𝐻 can be sequentially decomposed using discrete wavelet transformation

56

(DWT). To obtain the outcomes of a two-level WPT, DWT is independently applied

to decompose each subband image xi (where i = LL, LH, HL, or HH) into four

subband images: 𝑥i,LL, 𝑥i,LH, 𝑥i,HL, and 𝑥i,HH. This recursive process can be extended

to obtain the results of three or more levels of WPT.

Each layer of the CNN block comprises convolution using 3 × 3 filters (Conv),

batch normalization (BN), and rectified linear unit (ReLU) [24] operations. For the

last layer of the final CNN block, Conv without BN and ReLU is employed to predict

the residual image. Fig 4.2 provides an overview of the comprehensive architecture

of СWCNN, which encompasses both a contracting subnetwork and an expanding

subnetwork. In essence, СWCNN introduces modifications to the U-Net framework

from three distinct perspectives.

Denote by Θ the network parameters of CWCNN, and F(y; Θ) be the network

output. Let {(𝑦𝑖 , 𝑥𝑖)}𝑖=1
𝑁 be a training set, with 𝑦𝑖 representing the i-th input picture

and 𝑥𝑖 being the associated ground-truth image. The learning goal function for

CWCNN is then given by

ℒ(Θ) =
1

2𝑁
∑||𝐹 (𝑦𝑖 , Θ) − 𝑥𝑖

𝑁

𝑖=1

||𝐹
2 (4.4)

To train the CWCNN, we employ the ADAM algorithm [25] which minimizes

the objective function.

Program realisation for hyperspectral image filtering is done by Python and

usage of deep learning and data processing libraries. For creation and working with

CCN - basis of CWCCN model, was used TensorFlow as the most releitable.

Spectral library was used for opening and reading the hyperspectral image file,

displaying images, and saving created RGB images and it’s cumulative histograms

which neural network will use to work with. Utility libraries like Matplotlib, Panda

and NumPy are employed for data visualization representation and processing,

respectively.

57

The key functions in the whole program are:

1. hdr.read_bands([nr, ng, nb]): Function is creating a standard RGB image

from the hyperspectral image by using the bands corresponding to the red, green,

and blue wavelengths.

2. cv2.calcHist(): The function calculated histogram of the image. A

histogram of shows the distribution of pixel intensities (number of pixels of each

intensity value from 0 to 255).

3. train_test_split(noisy_array_paths, gt_array_paths, test_size,

random_state): This function the splits dataset into training and testing sets.

4. create_model() :This function creates a sequential model with encoder-

decoder architecture style, where the upsampling is done by Conv_bkloc:

downsampling is done by DWT in the first half, then upsampling is done in the

second half by IWT.

5. model.fit() : Function trains the model for a fixed number of epochs. It

uses training and validation data, with the previously defined steps per epoch and

callbacks.

All of the above functions are part of a sequential system that takes care of

loading data, preprocessing datasets, building a neural network model, and then

training and validating it using wavelet transforms. The loss and accuracy curves are

plotted using the Matplotlib library and the model is saved in .h5 format. Developed

model onsistent with the stated theoretical base, effectively copes with the task of

noise filtering on satellite hyperspectral images and can be improved in the future.

A complete implementation for training a noise filtering model on

hyperspectral images is provided in Appendix B.

58

F
ig

u
re

 4
.1

.
C

W
C

N
N

 f
il

te
ri

n
g
 p

ro
ce

ss

F
ig

u
re

 4
.2

.
C

W
C

N
N

 a
rc

h
it

ec
tu

re

59

4.2 Data preparation and model training details

One open source hyperspectral imaging dataset, Urban_210, was used for the

study. The image consists of a 307 by 307 pixel grid, where each pixel represents an

area of 2x2 square meters. There are a total of 210 different wavelengths in this

image, ranging from 400 nm to 2500 nm, resulting in a spectral resolution of 10 nm.

However, some channels (specifically channels 1-4, 76, 87, 101-111, 136-153, and

198-210) were excluded due to the presence of dense water vapor and weathering.

As a result, we have 162 remaining channels to work with.

The training of the network involved utilizing mini-batches, where each batch

contained 256 examples. The training process was iterated over 100 epochs,

incorporating batch normalization and data augmentation techniques. These

methods were employed to enhance the neural network's performance, stability, and

accuracy.

All the experimental work was conducted in the Colab Research environment,

utilizing a computing setup equipped with an A100 GPU and 24 GB of RAM. In

order to process the neural network, the hyperspectral image was resized to

dimensions of 256x256 and encompassed 3 RGB channels.

Let's look at the code in Appendix A, where we can follow the process of

preparing the Urban_210 dataset for further work with the CWCNN neural network.

For a more precise image filtering process, bitmap graphics with a high color depth

are best suited, which can offer us a hyperspectral image format (RGB). The code

then reads the number of rows, columns, and channels (spectral channels) in the

image. It then reads the image data for the RGB bands and displays the RGB image.

We read the number of rows, columns and channels (spectral channels) in an

image using ENVI library. Then, the image data for the RGB stripes is displayed as

an RGB image.

Hyperspectral imaging captures images in numerous narrow and contiguous

spectral bands, resulting in high-dimensional data. To convert a hyperspectral image

to a multispectral representation, a subset of spectral bands, corresponding to the

60

RGB bands, is selected. This reduction in dimensionality simplifies the data and

enables visualization using familiar color.

Histogram equalization is then applied to the multispectral image to enhance

contrast. The process involves three main steps:

- Normalized Cumulative Histogram: The histogram of the image is

calculated and normalized by dividing the bin counts by the total number of pixels.

A cumulative histogram is computed by summing the normalized histogram values.

- Pixel Mapping Lookup Table: A lookup table is created to map each

original intensity value to its corresponding equalized value. This mapping is

obtained by multiplying the cumulative histogram values by the maximum intensity

value (255) and rounding to the nearest integer.

- Transformation: The image is flattened into a 1D list, and each pixel

value is replaced with its equalized value based on the lookup table. The list is then

reshaped back into the original image shape.

- The result is an equalized image with improved contrast and visual

quality. This allows you to visualize and analyze spectral data that would otherwise

be invisible to the eye.

Figure 4.3. Representation of Multispectral image from

hyperspectral and it’s Histogram

61

Figure 4.4. Multispectral image and applied Histogram equalization

When we examine these images, we observe the result displayed in Figure

4.3, along with a comprehensive explanation and evaluation of the model's

parameters. The output represents a concise overview of a specialized Convolutional

Neural Network (CNN) structure tailored for the purpose of effectively filtering out

noise artifacts from images.

Based on the provided model summary, here is the description of each section

of the neural model:

- Input Layer: The input layer receives the input images with a shape of (256,

256, 3). The images used in this study have spatial dimensions of the feature maps

256x256, with 3 channels representing different shades of colors, which is the

standard for color images. The decision to use a size of 256x256 is based on previous

research findings indicating that patches of this size provide sufficient spatial context

for making accurate predictions. To handle the high dimensionality of the images

and generate additional training examples, patches are extracted from the entire

image and utilized for training the model.

- Conv_block: This section consists of a Convolutional layer, which applies

four convolutional operations with 64 filters and a kernel size of 3x3. Each

convolutional operation is followed by a ReLU] activation function. The output

62

shape of this section is (256, 256, 64). This section will be repeated and increase

filters numbers two times, but decrease spatial dimensions in a same amount

,because of DWT_downsampling. Since Conv_block6, model start using

IWT_upsampling doing reverse process to DWT until Conv_block 9 takes the same

value as origin image.

- DWT_downsampling: This section performs down-sampling using a

downsampling layer on each conv_block, which reduces the spatial dimensions of

the feature maps by a factor of 2, end will repeat every time soon. The output shape

after down-sampling is (128, 128, 256).

- Batch Normalization: Batch normalization is applied to normalize the

activations of the Conv_block_4 layer, resulting in (16, 16, 512) output shape.

- Conv2D_: A convolution layer that operates in 2 dimensions (height and

width). It is used here for further spatial feature extraction from the reshaped data.

- IWT_upsampling: This section performs inverse wavelet transform (IWT)

up-sampling on the feature maps, restoring their spatial dimensions to the original

size before down-sampling. The output shape is None (depends on the input size).

- Add: The upsampled feature maps are added element-wise to the feature

maps from the corresponding DWT_downsampling layers, promoting skip

connections. The output shape is (32, 32, 512).

The total number of trainable parameters in the model is 58,814,019. During

training, the weights and biases in this network are updated. This means that all

parameters in the network are trainable and do not remain constant throughout the

training.

63

Figure 4.5. Results of model parameters for Urban_F210 dataset

64

4.3 Filtration results

The complete implementation can be found in Appendix B. The overall

method described involves the following steps: data preparation, model loading,

prediction generation, performance evaluation, and result visualization.

- Data Augmentation. Data augmentation techniques such as flipping,

rotating, adjusting the hue, brightness, saturation, and contrast of the images are used

to create variations of the images to had more data for training

- After image preparation done in previous section, we can work with

neural network now. It consist of 3 repeatable parts

- Encoder: The encoder part of the model consists of several

Convolutional Blocks (Conv_blocks) followed by DWT_downsampling layers.

Each Conv_block consists of multiple 2D convolutional layers, each followed by a

Rectified Linear Unit (ReLU) activation function. The purpose of the encoder is to

extract hierarchical features from the input image.

- Intermediate Convolutional Block: After the last Conv_block in the

encoder, there is an additional Conv_block without downsampling, followed by a

Conv2D layer with 2048 filters and a 3x3 kernel size.

- Decoder: The decoder part of the model consists of several

IWT_upsampling layers followed by Conv_blocks. The IWT_upsampling layers

perform inverse wavelet transformations to upsample the feature maps. The feature

maps are then combined with the corresponding feature maps from the encoder using

skip connections (via Add() operation). The purpose of the decoder is to reconstruct

the high-resolution image from the learned features.

65

Given that the model generates a probability distribution for our image, we

proceed by selecting the class that exhibits the highest probability as our predicted

image.

After all, we receive output data in form of prediction image, which represent

noise filtering efficiency of model. Compare this to the noisy image and ground truth

version, it can been seen visual difference that show network work.

Figure 4.6. Ground Truth image (clear image)

(a) (b)

66

 (c) (d)

 (e) (f)

Figure 4.7 Urban_F210 image noise filtering using CWCNN model.

(a,c,e) – represent Gaussian, Salt & Pepper and it’s combine noises.

(b,d,f) –result of filtering by CWCNN.

67

4.4 Performance evaluation

This comparison uses three separate measurements, namely the Peak Signal

to Noise Ratio (PSNR), Structural Similarity Index (SSIM), and Noise Level (Q), to

evaluate the effectiveness of noise filtering in a hyperspectral image. PSNR

quantifies the relationship between the maximum achievable image power and the

noise power generated by the noise reduction process, while SSIM evaluates the

similarity between two images in terms of their brightness, contrast and texture. The

noise level (Q) corresponds to the amount of noise present in the image.

To evaluate the performance of the CWCNN model, we compared it with

supervised methods such as X-y Source Pairs (no model), Mean Filter (MF), and

DnCNN [27]. To provide more accurate results, three types of noise were used:

Gaussian, Salt and Pepper, as well as a combination of them. Examples Fig 4.7

The data set was divided into training (20%) and test (80%) segments. The

results were calculated using a publicly available code specific to the above

comparative methods.

As shown in Table 4.1, PSNR, SSIM, and noise figure results are presented

for various methods. CWCNN, as shown in Table 4.1, outperforms all other

comparison methods for every data set.

The original x, y pairs basically compare the raw data: an image with noise

without applying any filtering and Ground Truth, a crisp image.

The CWCNN architecture has much in common with the DnCNN (Denoising

Convolutional Neural Network) [27]neural network and is also based on CNN at its

core, but the models have gone different ways in achieving the result. When DnCNN

uses the ReLU activation function, CWCNN uses the transform wavelet to get the

best result, as shown in Table 4.1.

Comparison is important to understand the potential of the whole model and

the ability to compete with other solutions.

68

MF works by replacing the value of each pixel in the image with the mean

(average) value of the intensity of the pixels in its vicinity, but since this is not part

of any neural network, it may not perform better than expected.

4.5 Conclusion

CWCNN present a unique and effective approach to image analysis tasks by

integrating wavelet transforms (DWT and IWT) with the robust capabilities of

Convolutional Neural Networks (CNNs). The strengths of these two components

combined often outperform either method used separately.

Wavelets provide a multi-resolution analysis of an image. This effectively

captures both the coarse-scale global structures (via low-frequency components) and

fine-scale local details (via high-frequency components) of an image. When used

independently, wavelets are good at signal decomposition and noise reduction but

lack the ability to learn and adapt to complex features in the data.

On the other hand, CNNs excel at learning hierarchical features and adapting

to complex patterns in data. However, when used alone, they might struggle with

multi-scale and multi-resolution image information.

69

CONCLUSION

Hyperspectral images possess high-resolution data across multiple spectral

ranges but are susceptible to various types of noise due to factors such as limitations

in sensors, environmental influences, and transmission errors. This noise can

significantly degrade the quality of these images and hinder their subsequent

analysis and applications.

To address this issue, I have developed a System of Digital Filtering for

Hyperspectral Images. This system incorporates a Convolutional Wavelet

Convolutional Neural Network (CWCNN) that combines the reliable capabilities of

Convolutional Neural Networks (CNN) with a unique approach to filtering

hyperspectral images by integrating wavelet transforms, namely the Discrete

Wavelet Transform (DWT) and the Inverse Wavelet Transform (IWT). The synergy

between these two components often yields superior results compared to using either

method individually.

Wavelets play a crucial role in image analysis by providing different

resolutions. They effectively capture both the global structures at coarse scales

(through low-frequency components) and the fine local details (through high-

frequency components) of the image.

Empirical results of image denoising have demonstrated that CWCNNs

frequently outperform traditional filtering methods and some neural networks,

showcasing their effectiveness in enhancing image quality.

70

REFERENCE

1. Lillesand, T., Kiefer, R. W., & Chipman, J. (2007). Remote Sensing and

Image Interpretation. John Wiley & Sons.

2. Richards, J. A., & Jia, X. (2006). Remote sensing digital image analysis: an

introduction. Springer.

3. J. R. Jensen, "Remote Sensing of the Environment: An Earth Resource

Perspective," Proceedings of the IEEE, March 2013.

4. J. Bioucas-Dias, A. Plaza, G. Camps-Valls, N. Nasrabadi, P. Scheunders,

and J. Chanussot, “Hyperspectral remote sensing data analysis and future

challenges,” IEEE Geoscience and Remote Sensing Magazine, vol. 1, no. 2, pp. 6–

36, June 2013.

5. P. Ghamisi, N. Yokoya, J. Li, W. Liao, S. Liu, J. Plaza, B. Rasti, and A.

Plaza, “Advances in hyperspectral image and signal processing: A comprehensive

overview of the state of the art,” IEEE Geoscience and Remote Sensing Magazine,

vol. 5 no 4, pp. 37–78, Dec 2017.

6. Metzler, G.R., "The Noise Figure of Radio Receivers: Y-Factor Method vs.

Amplifier Method," 2020 IEEE Conference on Antenna Measurements &

Application.

7. Srinivasan, K.S. and Ebenezer, D., "A New Fast and Efficient Decision-

Based Algorithm for Removal of High-Density Impulse Noises," IEEE Signal

Processing Letters, vol. 14, no. 3, March 2007.

8. Yu, L. and Acton, S.T., "Speckle Reducing Anisotropic Diffusion," IEEE

Transactions on Image Processing, vol. 11, no. 11, Nov. 2002.

9. Coatrieux, G. and Sankur, B., "A Detailed Analysis of the Mean Filter in

the Transform Domain," IEEE Transactions on Acoustics, Speech, and Signal

Processing, vol. 31, no. 1, Feb. 1983.

10. Astola, J. and Kuosmanen, P., "Nonlinear Filters for Image Processing,"

IEEE Potentials, vol. 15, no. 1, Feb.-March 1996.

71

11. Farsiu, S., Robinson, D., Elad, M., and Milanfar, P., "Adaptive Wiener

Filter Super-Resolution of Color Filter Array Images," 2006 IEEE Computer Society

Conference on Computer Vision and Pattern Recognition (CVPR'06), vol. 2, 2006.

12. Lee, J.S., Kuo, W.J., Chung, P.C., and Chen, T.C., "Adaptive Gaussian

Filter for Noise Reduction and Edge Detection," Proceedings of 1996 IEEE

International Conference on Neural Networks, 1996.

13. A. Graps, "An Introduction to Wavelets," IEEE Computational Science

and Engineering, vol. 2, no. 2, pp. 50-61, Summer 1995. DOI: 10.1109/99.388960.

14. I. Daubechies, "Ten Lectures on Wavelets," IEEE Transactions on

Information Theory, vol. 36, no. 5, pp. 961-1005, September 1990. DOI:

10.1109/18.57199.

15. N. G. Kingsbury, "Image Processing with Complex Wavelets," IEEE

Transactions on Image Processing, vol. 12, no. 12, pp. 1415-1425, December 2003.

DOI: 10.1109/TIP.2003.819229.

16. H. Wang, X. Chen, and Q. Ding, "Single Level Decomposition-Based

Time-Frequency Feature Extraction for Gear Fault Diagnosis," IEEE Transactions

on Industrial Electronics, vol. 64, no. 5, pp. 3899-3909, May 2017. DOI:

10.1109/TIE.2016.2642639.

17. J. Tian, Z. Zhong, and G. Li, "A Multi-Level Decomposition Method for

Image Fusion," IEEE Transactions on Geoscience and Remote Sensing, vol. 55, no.

2, pp. 805-819, February 2017. DOI: 10.1109/TGRS.2016.2614932.

18. D. L. Donoho, "De-Noising by Soft-Thresholding," IEEE Transactions on

Information Theory, vol. 41, no. 3, pp. 613-627, May 1995. DOI:

10.1109/18.382009.

19. C. S. Burrus, R. A. Gopinath, and H. Guo, "Introduction to Wavelets and

Wavelet Transforms: A Primer," Proceedings of the IEEE, vol. 84, no. 4, pp. 518-

533, April 1996. DOI: 10.1109/5.488544.

20. Y. LeCun, Y. Bengio, and G. Hinton, "Deep learning," Nature, vol. 521,

no. 7553, pp. 436-444, May 2015. DOI: 10.1038/nature14539.

72

21. K.Zhang,W.Zuo,andL.Zhang.FFDNet:Toward a fast and flexible solution

or CNN based image denoising.IEEE Transactionson Image Processing,2018.

22. A.S.LewisandG.Knowles. Image compression using the 2-D wavelet

transform.IEEETransactionsonImageProcessing,1(2):244–250,1992.

23. O. Ronneberger, P. Fischer, and T. Brox, "U-Net: Convolutional Networks

for Biomedical Image Segmentation," in International Conference on Medical Image

Computing and Computer-Assisted Intervention (MICCAI), Munich, Germany,

October 2015. DOI: 10.1007/978-3-319-24574-4_28.

24. R. He, X. Zhang, S. Ren, and J. Sun, "Deep Residual Learning for Image

Recognition," Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), Las Vegas, NV, USA, June 2016, pp. 770-778. DOI:

10.1109/CVPR.2016.90.

 25. D. Kingma and J. Ba. Adam: A method for stochastic optimization. In

International Conference for Learning Representations, 2015.

 26. K. Zhang, W. Zuo, Y. Chen, D. Meng, and L. Zhang. Beyond a Gaussian

denoiser: Residual learning of deep cnn for image denoising. IEEE Transactions on

Image Processing, PP (99):1–1, 2016.

73

APPENDIX A

Data preparations for CWCNN training and testing

import spectral as sp

import os

from google.colab import drive

drive.mount('/content/drive')

hdr =

sp.envi.open("/content/drive/MyDrive/dataset/Urban_F210.hdr

")

rows, cols, bands = hdr.nrows, hdr.ncols, hdr.nbands

nr, ng, nb = [int(x) for x in hdr.metadata['default

bands']]

rgb = hdr.read_bands([nr, ng, nb])

sp.imshow(rgb)

import cv2

import matplotlib.pyplot as plt

import numpy as np

hist1 = cv2.calcHist([rgb],[0],None,[256],[0,256])

plt.subplot(221),plt.imshow(rgb);

plt.subplot(222),plt.plot(hist1);

img_array = rgb

"""

STEP 1: Normalized cumulative histogram

"""

#flatten image array and calculate histogram via binning

histogram_array = np.bincount(img_array.flatten(),

minlength=256)

#normalize

num_pixels = np.sum(histogram_array)

histogram_array = histogram_array/num_pixels

#cumulative histogram

chistogram_array = np.cumsum(histogram_array)

"""

STEP 2: Pixel mapping lookup table

"""

transform_map = np.floor(255 *

chistogram_array).astype(np.uint16)

74

"""

STEP 3: Transformation

"""

flatten image array into 1D list

img_list = list(img_array.flatten())

transform pixel values to equalize

eq_img_list = [transform_map[p] for p in img_list]

reshape and write back into img_array

eq_img_array = np.reshape(np.asarray(eq_img_list),

img_array.shape)

hist2 = cv2.calcHist([eq_img_array],[0],None,[256],[0,256])

plt.subplot(223),plt.imshow(eq_img_array);

plt.subplot(224),plt.plot(hist2);

sp.save_rgb('/content/drive/My Drive/Colab

Notebooks/rgb1_heq.tif',eq_img_array)

sp.imshow(eq_img_array, stretch=(0.02, 0.98))

plt.subplot(121),plt.imshow(rgb), plt.axis('off');

plt.subplot(122),plt.imshow(eq_img_array), plt.axis('off');

sp.save_rgb('/content/drive/My Drive/rgb_urban.tif',rgb)

"""

Data Preparation

"""

%matplotlib inline

import warnings

warnings.filterwarnings("ignore")

import os

import pathlib

from matplotlib import pyplot as plt

import seaborn as sns

import pickle

import pandas as pd

import numpy as np

import cv2

import skimage

from skimage.util import random_noise

import tensorflow as tf

from tqdm.notebook import tqdm

import random

def add_noise(img):

75

 # Getting the dimensions of the image

 row , col = img.shape

 # Randomly pick some pixels in the

 # image for coloring them white

 # Pick a random number between 300 and 10000

 number_of_pixels = random.randint(300, 10000)

 for i in range(number_of_pixels):

 # Pick a random y coordinate

 y_coord=random.randint(0, row - 1)

 # Pick a random x coordinate

 x_coord=random.randint(0, col - 1)

 # Color that pixel to white

 img[y_coord][x_coord] = 255

 # Randomly pick some pixels in

 # the image for coloring them black

 # Pick a random number between 300 and 10000

 number_of_pixels = random.randint(300 , 10000)

 for i in range(number_of_pixels):

 # Pick a random y coordinate

 y_coord=random.randint(0, row - 1)

 # Pick a random x coordinate

 x_coord=random.randint(0, col - 1)

 # Color that pixel to black

 img[y_coord][x_coord] = 0

 return img

salt-and-pepper noise can

be applied only to grayscale images

Reading the color image in grayscale image

img =

cv2.imread('/content/drive/MyDrive/dataset/rgb_urban.tif',

 cv2.IMREAD_GRAYSCALE)

#Storing the image

cv2.imwrite('/content/drive/MyDrive/dataset/NOISYrgb_urnab.

tif',

 add_noise(img))

if 'rgb_urban' not in os.listdir():

76

 !gdown

https://drive.google.com/uc?id=104UHeL1RKVb6fKaPZUIDGx0tulg

5cRCU

def get_images_paths(root_dir_ssid, root_dir_mi,

root_dir_nind):

 # Getting Urban dataset (noised and clear) images

 root = pathlib.Path(root_dir_ssid)

 img_paths = list(root.rglob("*.tif*"))

 img_paths_lst = [str(path) for path in img_paths]

 gt_lst = []

 noisy_lst= []

 for p in img_paths_lst:

 img_type = p.split("/")[-1].split('_')[-3]

 if img_type=="NOISY":

 noisy_lst.append(p)

 else

 gt_lst.append(p)

noisy_array = np.asarray(noisy_lst)

 gt_array = np.asarray(gt_lst)

 return noisy_array, gt_array

from sklearn.model_selection import train_test_split

noisy_array_paths, gt_array_paths =

get_images_paths("rgb_urban")

noisy_train_paths, noisy_test_paths, gt_train_paths,

gt_test_paths = train_test_split(noisy_array_paths,

gt_array_paths, test_size=0.20, random_state=42)

Get gt_images in memory

def get_images_in_mem(images_paths):

 images_lst = []

 for img_path in tqdm(images_paths):

 img = cv2.imread(img_path)

 img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)

 img = cv2.resize(img, (256, 256))

 images_lst.append(img)

 return np.array(images_lst)

noisy_train_images = get_images_in_mem(noisy_train_paths)

noisy_test_images = get_images_in_mem(noisy_test_paths)

gt_train_images = get_images_in_mem(gt_train_paths)

77

gt_test_images = get_images_in_mem(gt_test_paths)

print(noisy_train_images.shape)

print(noisy_test_images.shape)

print(gt_train_images.shape)

print(gt_test_images.shape)

f, axarr = plt.subplots(1,2, figsize=(14,14))

axarr[0].imshow(noisy_train_images[5])

axarr[0].set_title("Noisy image")

axarr[1].imshow(gt_train_images[5])

axarr[1].title.set_text("Ground Truth image")

Augmentation techniques

def _up_down_flip(image, label):

 image = tf.image.flip_up_down(image)

 label = tf.image.flip_up_down(label)

 return image, label

def _left_right_flip(image, label):

 image = tf.image.flip_left_right(image)

 label = tf.image.flip_left_right(label)

 return image, label

def _rotate(image, label):

 random_angle = tf.random.uniform(shape=[], minval=0,

maxval=4, dtype=tf.int32)

 image = tf.image.rot90(image, random_angle)

 label = tf.image.rot90(label, random_angle)

 return image, label

def _hue(image, label):

 rand_value = random.uniform(-1,1)

 image = tf.image.adjust_hue(image, rand_value)

 label = tf.image.adjust_hue(label, rand_value)

 return image, label

def _brightness(image, label):

 rand_value = random.uniform(-0.08,0.25)

 image = tf.image.adjust_brightness(image, rand_value)

 label = tf.image.adjust_brightness(label, rand_value)

 return image, label

def _saturation(image, label):

 rand_value = random.uniform(1, 5)

 image = tf.image.adjust_saturation(image, rand_value)

 label = tf.image.adjust_saturation(label, rand_value)

78

 return image, label

def _contrast(image, label):

 rand_value = random.uniform(1, 3)

 image = tf.image.adjust_contrast(image, rand_value)

 label = tf.image.adjust_contrast(label, rand_value)

 return image, label

def tf_data_generator(X, y, batch_size=32,

augmentations=None):

 dataset = tf.data.Dataset.from_tensor_slices((X, y))

This is the main step for data generation

 dataset = dataset.shuffle(1000,

reshuffle_each_iteration=True)

 if augmentations:

 for f in augmentations:

 if np.random.uniform(0,1)<0.5:

 dataset = dataset.map(f,

num_parallel_calls=2)

 dataset = dataset.repeat()

 dataset = dataset.batch(batch_size=batch_size,

drop_remainder=True)

 dataset =

dataset.prefetch(tf.data.experimental.AUTOTUNE)

 return dataset

BATCH_SIZE=4

augmentation_lst = [_up_down_flip, _left_right_flip,

_rotate]

image_generator_train =

tf_data_generator(X=noisy_train_images, y=gt_train_images,

batch_size=BATCH_SIZE, augmentations=augmentation_lst)

image_generator_test =

tf_data_generator(X=noisy_test_images, y=gt_test_images,

batch_size=BATCH_SIZE)

image_generator_train

79

APPENDIX B

Software realization of using CWCNN model for image noise filtering

import tensorflow as tf

from tensorflow.keras import models, layers

from tensorflow.keras.models import Model

from tensorflow.keras.layers import Conv2D,

Conv2DTranspose,\

 GlobalAveragePooling2D,

AveragePooling2D, MaxPool2D, UpSampling2D,\

 BatchNormalization,

Activation, ReLU, Flatten, Dense, Input,\

 Add, Multiply,

Concatenate, Softmax

from tensorflow.keras import initializers, regularizers

from tensorflow.keras.optimizers import Adam

from tensorflow.keras.activations import softmax

tf.keras.backend.set_image_data_format('channels_last')

import keras.backend as K

class Conv_block(tf.keras.layers.Layer):

 def __init__(self, num_filters=200, kernel_size=3,

**kwargs):

 super().__init__(**kwargs)

 self.num_filters=num_filters

 self.kernel_size=kernel_size

 self.conv_1 = Conv2D(filters=self.num_filters,

kernel_size=self.kernel_size, padding='same')

 self.conv_2 = Conv2D(filters=self.num_filters,

kernel_size=self.kernel_size, padding='same')

 self.conv_3 = Conv2D(filters=self.num_filters,

kernel_size=self.kernel_size, padding='same')

 self.conv_4 = Conv2D(filters=self.num_filters,

kernel_size=self.kernel_size, padding='same')

 self.bn_1 = BatchNormalization()

 self.bn_2 = BatchNormalization()

 self.bn_3 = BatchNormalization()

 self.bn_4 = BatchNormalization()

 def get_config(self):

 config = super().get_config().copy()

 config.update({

 'num_filters': self.num_filters,

 'kernel_size':self.kernel_size

 })

 return config

80

 def call(self, X):

 X = self.conv_1(X)

 # X = self.bn_1(X)

 X = ReLU()(X)

 X = self.conv_2(X)

 # X = self.bn_2(X)

 X = ReLU()(X)

 X = self.conv_3(X)

 # X = self.bn_3(X)

 X = ReLU()(X)

 # X = self.conv_4(X)

 # # X = self.bn_4(X)

 # X = ReLU()(X)

 return X

class DWT_downsampling(tf.keras.layers.Layer):

 def __init__(self, **kwargs):

 super().__init__(**kwargs)

 def call(self, x):

 x1 = x[:, 0::2, 0::2, :] #x(2i−1, 2j−1)

 x2 = x[:, 1::2, 0::2, :] #x(2i, 2j-1)

 x3 = x[:, 0::2, 1::2, :] #x(2i−1, 2j)

 x4 = x[:, 1::2, 1::2, :] #x(2i, 2j)

 x_LL = x1 + x2 + x3 + x4

 x_LH = -x1 - x3 + x2 + x4

 x_HL = -x1 + x3 - x2 + x4

 x_HH = x1 - x3 - x2 + x4

 return Concatenate(axis=-1)([x_LL, x_LH, x_HL,

x_HH])

class IWT_upsampling(tf.keras.layers.Layer):

 def __init__(self, **kwargs):

 super().__init__(**kwargs)

 def call(self, x):

 x_LL = x[:, :, :, 0:x.shape[3]//4]

 x_LH = x[:, :, :, x.shape[3]//4:x.shape[3]//4*2]

 x_HL = x[:, :, :, x.shape[3]//4*2:x.shape[3]//4*3]

 x_HH = x[:, :, :, x.shape[3]//4*3:]

 x1 = (x_LL - x_LH - x_HL + x_HH)/4

 x2 = (x_LL - x_LH + x_HL - x_HH)/4

81

 x3 = (x_LL + x_LH - x_HL - x_HH)/4

 x4 = (x_LL + x_LH + x_HL + x_HH)/4

 y1 = K.stack([x1,x3], axis=2)

 y2 = K.stack([x2,x4], axis=2)

 shape = K.shape(x)

 return K.reshape(K.concatenate([y1,y2], axis=-1),

K.stack([shape[0], shape[1]*2, shape[2]*2, shape[3]//4]))

Create Model

def create_model():

 tf.keras.backend.clear_session()

 input = Input(shape=(256,256,3))

 cb_1 = Conv_block(num_filters=64)(input)

 dwt_1 = DWT_downsampling()(cb_1)

 cb_2 = Conv_block(num_filters=128)(dwt_1)

 dwt_2 = DWT_downsampling()(cb_2)

 cb_3 = Conv_block(num_filters=256)(dwt_2)

 dwt_3 = DWT_downsampling()(cb_3)

 cb_4 = Conv_block(num_filters=512)(dwt_3)

 dwt_4 = DWT_downsampling()(cb_4)

 cb_5 = Conv_block(num_filters=512)(dwt_4)

 cb_5 = BatchNormalization()(cb_5)

 cb_5 = Conv_block(num_filters=512)(cb_5)

 cb_5 = Conv2D(filters=2048, kernel_size=3, strides=1,

padding='same')(cb_5)

 up = IWT_upsampling()(cb_5)

 up = Conv_block(num_filters=512)(Add()([up, cb_4]))

 up = Conv2D(filters=1024, kernel_size=3, strides=1,

padding='same')(up)

 up = IWT_upsampling()(up)

 up = Conv_block(num_filters=256)(Add()([up, cb_3]))

 up = Conv2D(filters=512, kernel_size=3, strides=1,

padding='same')(up)

 up = IWT_upsampling()(up)

 up = Conv_block(num_filters=128)(Add()([up, cb_2]))

 up = Conv2D(filters=256, kernel_size=3, strides=1,

padding='same')(up)

 up = IWT_upsampling()(up)

82

 up = Conv_block(num_filters=64)(Add()([up, cb_1]))

 up = Conv2D(filters=128, kernel_size=3, strides=1,

padding='same')(up)

 out = Conv2D(filters=3, kernel_size=(1, 1),

padding="same")(up)

 return Model(inputs=[input], outputs=[out])

model = create_model()

model.summary()

Training

steps_per_epoch_train = len(noisy_train_images)

steps_per_epoch_validation = len(noisy_test_images)

callbacks_lst = [

 tf.keras.callbacks.ReduceLROnPlateau(monitor='val_loss'

, min_lr=0.0000009, min_delta=0.0001, factor=0.70,

patience=3, verbose=1, mode='min'),

 tf.keras.callbacks.EarlyStopping(monitor='val_loss',

mode='min', verbose=1, min_delta=0.0001, patience=10)

]

model.compile(loss=tf.keras.losses.MeanSquaredError(),

optimizer=Adam(learning_rate=0.0009))

model.fit(image_generator_train,

 validation_data=image_generator_test,

 steps_per_epoch=steps_per_epoch_tra

in,

 validation_steps=steps_per_epoch_va

lidation,

 epochs=100,

 verbose=1,

 callbacks=callbacks_lst)

history = model.fit(x= image_generator_train, y=

image_generator_test, batch_size=256, epochs=100,

validation_split=0.2)

Inference

def inference_single_image(model, noisy_image):

 input_image = np.expand_dims(noisy_image, axis=0)

 predicted_image = model.predict(input_image)

 return predicted_image[0]

def inference_batch_images(model, noisy_images):

83

 predicted_image = model.predict(noisy_images)

 return predicted_image

def visualize_predictions(model, X_test, y_test, n):

 random_numbers = random.choices(range(X_test.shape[0]),

k=n) # Get n random indices

 for i in random_numbers:

 noisy_image = X_test[i]

 gt_image = y_test[i]

 predicted_image = inference_single_image(model,

X_test[i])

 predicted_image/=255

 f, axarr = plt.subplots(1,3, figsize=(21,21))

 axarr[0].imshow(noisy_image)

 axarr[0].set_title("Noisy image")

 axarr[0].set_axis_off()

 axarr[1].imshow(gt_image)

 axarr[1].set_title("Ground truth image")

 axarr[1].set_axis_off()

 axarr[2].imshow(predicted_image)

 axarr[2].set_title("Predicted image")

 axarr[2].set_axis_off()

visualize_predictions(model, noisy_test_images,

gt_test_images, 10)

Test image prediction

urban = "No"

img_path = "/content/drive/MyDrive/Colab

Notebooks/data/CWCNN/"+urban

img = cv2.imread(img_path)

img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)

img = cv2.resize(img, (256, 256))

predicted_image = inference_single_image(model, img)

predicted_image/=255

f, axarr = plt.subplots(1,2, figsize=(14,14))

axarr[0].imshow(img)

axarr[0].title.set_text("Noisy image")

axarr[0].set_axis_off()

axarr[1].imshow(predicted_image)

axarr[1].title.set_text("Predicted image")

axarr[1].set_axis_off()

84

#get PSNR data

from skimage.metrics import peak_signal_noise_ratio

predicted_images = inference_batch_images(model,

noisy_test_images)

psnr_original_mean = 0

psnr_prediction_mean = 0

for gt_img, noisy_img, predicted_img in zip(gt_test_images,

noisy_test_images, predicted_images):

 psnr_original_mean += peak_signal_noise_ratio(gt_img,

noisy_img)

 psnr_prediction_mean += peak_signal_noise_ratio(gt_img,

predicted_img)

psnr_original_mean/=gt_test_images.shape[0]

psnr_prediction_mean/=gt_test_images.shape[0]

print("Original average gt-noisy PSNR ->",

psnr_original_mean)

print("Predicted average gt-predicted PSNR ->",

psnr_prediction_mean)

#get data SSIM

from skimage.metrics import structural_similarity as ssim

predicted_images = inference_batch_images(model,

noisy_test_images)

ssim_original_mean = 0

ssim_prediction_mean = 0

for gt_img, noisy_img, predicted_img in zip(gt_test_images,

noisy_test_images, predicted_images):

 ssim_original_mean += ssim(gt_img, noisy_img,

multichannel=True, data_range=noisy_img.max() -

noisy_img.min())

 ssim_prediction_mean += ssim(gt_img, predicted_img,

multichannel=True, data_range=predicted_img.max() -

predicted_img.min())

ssim_original_mean/=gt_test_images.shape[0]

ssim_prediction_mean/=gt_test_images.shape[0]

print("Original average gt-noisy SSIM ->",

ssim_original_mean)

print("Predicted average gt-predicted SSIM ->",

ssim_prediction_mean)

85

APPENDIX C

Noise

type
𝜎

Original X-y pair

s
MF DnCNN CWCNN

Gaussian

5

15

30

28.4561/0.7344

26.3779/0.6000

24.5390/0.5513

30.2114/0.7967

28.6278/0.7221

25.7463/0.6782

32.4890/0.8394

30.5713/0.7932

28.7051/0.6520

35.1901/0.9210

32.5220/0.8397

30.3067/0.7645

Salt and

Paper

5

15

30

27.6784/0.6858

25.2800/0.6055

23.4581/0.5367

31.1149/0.8183

29.4108/0.7064

27.6743/0.6267

30.7839/0.7856

28.5467/0.6440

27.2908/0.6290

33.2451/0.7998

31.4398/0.7459

29.8974/0.7143

Combine

5

15

30

25.4360/0.6148

24.3781/0.5750

22.5304/0.4864

29.3401/0.6873

27.3902/0.6173

26.2105/0.5847

30.5789/0.7231

29.4306/0.6947

27.9860/0.6703

32.3902/0.7640

31.1042/0.7212

29.5490/0.6991

Table 4.1. Filtration performance improvements by chosen model

	INTRODUCTION
	GLOSSARY
	PROBLEM STATEMENT
	1 INTRODUCTION TO HYPERSPECTRAL IMAGE NOISE FILTERING
	1.1 Images in remote sensing
	1.2 Characteristics of the remote sensing images
	1.3 Satellites with hyperspectral sensors
	1.4 Noise in remote sensing
	1.4.1 Amplifier Noise
	1.4.2 Salt-and-Pepper Noise
	1.4.3 Speckle Noise

	1.5 Consideration of modern systems and methods of noise filtering
	1.5.1 Mean Filter
	1.5.2 Standard Median Filter
	1.5.3 Adaptive Wiener Filter
	1.5.4 Gaussian Filter

	1.6 Conclusion

	2 WAVELETS TRANSFORMS IN DENOISING
	2.1 Wavelets Transforms
	2.2 Discrete Wavelet Transform
	2.3 Single Level Decomposition
	2.4 Multi-level Decomposition
	2.5 Thresholding in Wavelets
	2.6 Inverse Wavelet Transform

	3 NEURAL NETWORKS IN DIGITAL FILTERING
	3.1 Using Deep Learning neural networks
	3.2 Convolutional Neural Networks
	3.2.1 Convolution Layers
	3.2.2 Pooling Layer
	3.2.3 Fully Connected Layer
	3.2.5 Activation Functions

	3.3 U-Net architecture for CNN
	3.3.1 Encoder Path
	3.3.2 Decoder Path
	3.3.3 Skip connections

	3.4 Wavelets basis Neural network
	3.5 Conclusion
	4.1 Cascade Wavelets CNN model introduction
	4.2 Data preparation and model training details
	4.3 Filtration results

	4.4 Performance evaluation
	4.5 Conclusion

	CONCLUSION
	REFERENCE
	APPENDIX A
	APPENDIX B
	APPENDIX C

