
МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ  

НАЦІОНАЛЬНИЙ АВІАЦІЙНИЙ УНІВЕРСИТЕТ  

Факультет аеронавігації, електроніки та телекомунікацій 

Кафедра авіаційних комп’ютерно-інтегрованих комплексів 

 

ДОПУСТИТИ ДО ЗАХИСТУ 

Завідувач випускової кафедри 

_________ В. М. Синєглазов 

«___» ______________ 2023р. 

 

КВАЛІФІКАЦІЙНА РОБОТА 

(ПОЯСНЮВАЛЬНА ЗАПИСКА) 

ВИПУСКНИКА ОСВІТНЬО-КВАЛІФІКАЦІЙНОГО РІВНЯ 

“БАКАЛАВР” 

Спеціальність 151 «Автоматизація та комп'ютерно-інтегровані 

технології» 

Освітньо-професійна програма «Комп’ютерно-інтегровані технологічні 

процеси і виробництва» 

 

Тема: Класифікатор гіперспетральних зображень 

 

Виконавець: студент групи ФАЕТ-404 Люсік Богдан Адамович 

Керівник: кандидат технічних наук, Гордієнко Олександр 

 

Нормоконтролер: _________ Філяшкін М. К. 

    (підпис) 

Київ 2023 



2 

 

EDUCATION AND SCIENCE MINISTRY OF UKRAINE  

NATIONAL AVIATION UNIVERSITY 

Faculty of Aeronavigation, Electronics and Telecommunications 

 Department of computer integrated complexes 

 

ADMIT TO DEFENSE 

Head of the graduate department 

_______ Viktor M. Sineglazov 

«___» ______________ 2023 

 

QUALIFICATION WORK 

(EXPLANATORY NOTE) 

GRADUATE OF EDUCATION AND QUALIFICATION LEVEL 

“BACHELOR” 

 

Specialty 151 "Automation and computer-integrated technologies" 

Educational and professional program "Computer-integrated technological 

processes and production" 

 

Theme: Classifier of hyperspectral images 

 

Performer: student of group FAET-404 Liusik Bohdan Adamovych 

Supervisor: Candidate of Technical Sciences, Oleksandr Hordiienko 

 

Normocontroller: ________ Filyashkin M. K. 

   (signature) 

Kyiv 2023 



3 

 

NATIONAL AVIATION UNIVERSITY 

Faculty of aeronavigation, electronics and telecommunications 

Department of Aviation Computer Integrated Complexes 

Educational level: bachelor 

Specialty: 151 "Automation and computer-integrated technologies" 

 

APPROVED 

Head of Department 

Sineglazov V. M. 

«____»  __________2023 

TASK 

For the student's thesis 

Liusik Bohdan Adamovych 

 

1. Theme of project: “Classifier of hyperspectral images”. 

2. The term of the project: from May 10, 2023, until June 7, 2023 

3. Output data to the project: classification of objects in hyperspectral images 

with the help of a neural network using own method. 

4. Contents of the explanatory note: 1. Remote Earth sensing: the purpose of 

remote sensing, main characteristics of satellite images, general characteristics 

of space remote sensing systems; 2. Description of the subject of research: how 

hyperspectral images are created, their advantages over multispectral images; 

3. Modern systems and methods of object classification: description of the 

systems currently used for classification; 4. Software implementation of object 

classification on hyperspectral images. 

5. List of required illustrative material: tables, figures, diagrams, graphs. 

6. Planned schedule. 



4 

 

№ Task Execution term 
Execution 

mark 

1. Getting the task 01.04.2023 – 02.04.2023  Done 

2. Formation of the purpose 

and main objectives of the 

study 

02.04.2023 – 14.04.2023 Done 

3. Analysis of existing 

methods 

15.04.2023 – 30.04.2023 Done 

4. Theoretical consideration 

of problem solving 

01.05.2023 – 05.05.2023 Done 

5. Software implementation 

of the hyperspectral image 

classification program 

06.05.2023 – 25.05.2023 Done 

6. Preparation of an 

explanatory note 

26.05.2023 – 03.06.2023 Done 

7. Preparation of presentation 

and handouts 

04.06.2023 – 06.06.2023 Done 

 

7. Date of task receiving:  «___» ________ 2023. 

Diploma thesis supervisor ____________________ Hordiienko Oleksandr 

     (signature) 

Issued task accepted _____________ Liusik Bogdan 

(signature) 

 

 

 

 



5 

 

НАЦІОНАЛЬНИЙ АВІАЦІЙНИЙ УНІВЕРСИТЕТ 

Факультет аеронавігації, електроніки та телекомунікацій 

Кафедра авіаційних комп’ютерно-інтегрованих комплексів 

Освітній ступінь: Бакалавр 

Спеціальність: 151 «Автоматизація та комп'ютерно-інтегровані 

технології» 

ЗАТВЕРЖДУЮ 

Завідувач кафедри 

Синєглазов В. М. 

«___» __________2023 

ЗАВДАННЯ 

На виконання дипломної роботи 

Люсіка Богдана Адамовича 

1. Тема проекту: «Класифікатор гіперспктральних зображень». 

2. Термін виконання роботи: з 10.05.2023р. по 07.06.2023р. 

3. Вихідні дані роботи: класифікація об'єктів на гіперспектральних 

зображеннях за допомогою нейронної мережі використовуючи власний 

методом. 

4. Зміст пояснювальної записки: 1. Дистанційне зондування Землі: мета 

дистанційного зондування, основні характеристики супутникових 

знімків, загальна характеристика космічних систем дистанційного 

зондування; 2. Опис предмету дослідження: як створюються 

гіперспектральні зображення, їх переваги над багатоспектральними 

зображеннями; 3. Сучасні системи та методи класифікації об'єктів: опис 

систем, які використовуються для класифікації; 4. Програмна реалізація 

класифікації об'єктів на гіперспектральних зображеннях. 



6 

 

5. Перелік обов’язкового графічного матеріалу: таблиці, рисунки, діаграми, 

графіки. 

6. Календарний план-графік. 

№ Завдання Термін виконання 
Підпис 

керівника 

1. Отримання завдання 01.04.2023 – 02.04.2023  Виконано 

2. Формування мети та 

основних завдань 

дослідження 

02.04.2023 – 14.04.2023 Виконано 

3. Аналіз існуючих методів 15.04.2023 – 30.04.2023 Виконано 

4. Теоретичний розгляд 

рішення задач 

01.05.2023 – 05.05.2023 Виконано 

5. Програмна реалізація 

програми класифікації 

гіперспектральних 

зображень 

06.05.2023 – 25.05.2023 Виконано 

6. Оформлення 

пояснювальної записки 

26.05.2023 – 03.06.2023 Виконано 

7. Підготовка презентації та 

роздаткового матеріалу 

04.06.2023 – 06.06.2023 Виконано 

 

7. Дата видачі завдання: «__» _______ 2023р. 

Керівник дипломної роботи (проекту): ____________________ Гордієнко Олександр 

        (підпис)     

Завдання прийняв до виконання:    _____________ Люсік Богдан 

        (підпис)   

  



7 

 

ABSTRACT 

  

Explanatory note of the qualification work "Hyperspectral image classifier" 

58 p., 18 figs., 4 tables, 26 sources. 

HYPERSPECTRAL IMAGES, REMOTE SENSING OF THE EARTH, 

NEURAL NETWORKS, OBJECT CLASSIFICATION. 

The object of research is hyperspectral image. 

Subject of research - a detailed study of object classification in hyperspectral 

images. 

Purpose of the qualification work - software implementation of object 

classification on hyperspectral images, comparison of the method's effectiveness 

with existing ones. 

Research methods - comparative analysis, processing of literature sources, 

digital mathematical modeling. 

The paper covers the topic of object classification on hyperspectral images 

obtained by remote sensing, providing a detailed analysis of modern classification 

systems and methods. The research begins with an overview of remote sensing, 

detailing its purpose and main characteristics of satellite images, as well as a 

comprehensive study of space-based remote sensing systems. 

The main contribution of the paper is the software implementation of object 

classification in hyperspectral images. This new approach demonstrates how 

advanced machine learning algorithms can analyze and classify complex 

hyperspectral data, presenting exciting potential for expanding existing remote 

sensing capabilities. 

The results of the study promise significant progress in remote sensing, object 

classification, and hyperspectral image analysis. 
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РЕФЕРАТ 

Пояснювальна записка кваліфікаційної роботи «Класифікатор 

гіперспектральних зображень» 58 с., 18 рис., 4 табл, 26 джерел. 

ГІПЕРСПЕКТРАЛЬНІ ЗОБРАЖЕННЯ, ДИСТАНЦІЙНЕ 

ЗОНДУВАННЯ ЗЕМЛІ, НЕЙРОННІ МЕРЕЖІ, КЛАСИФІКАЦІЯ ОБ'ЄКТІВ. 

Об'єкт дослідження – гіперспектральне зображення. 

Предмет дослідження - детальне вивчення класифікації об'єктів на 

гіперспектральних знімках. 

Мета кваліфікаційної роботи - Програмна реалізація класифікації 

об'єктів на гіперспектральних знімках, порівняння ефективності методу з 

існуючими. 

Метод дослідження - порівняльний аналіз, обробка літературних джерел, 

цифрове математичне моделювання. 

Робота висвітлює тему класифікації об'єктів на гіперспектральних 

зображення, отриманих за допомогою дистанційного зондування, надаючи 

детальний аналіз сучасних систем і методів класифікації. Дослідження 

починається з огляду дистанційного зондування Землі, деталізації його мети та 

основних характеристик супутникових знімків, а також всебічного вивчення 

космічних систем дистанційного зондування. 

Основний внесок роботи полягає в програмній реалізації класифікації 

об'єктів на гіперспектральних зображеннях. Цей новий підхід демонструє, як 

передові алгоритми машинного навчання можуть аналізувати і класифікувати 

складні гіперспектральні дані, представляючи захоплюючий потенціал для 

розширення існуючих можливостей дистанційного зондування. 

Результати дослідження обіцяють значний прогрес у сфері 

дистанційного зондування, класифікації об'єктів та аналізу гіперспектральних 

зображень.  



9 

 

CONTENT 

 

GLOSSARY ............................................................................................... 11 

PROBLEM STATEMENT............................................................................12 

1 REMOTE SENSING OF THE EARTH ...................................................13 

1.1 The purpose of remote sensing ..........................................................13 

1.2 Main characteristics of satellite images .............................................15 

1.3 General characteristics of space remote sensing systems ...................16 

1.4 Overview of modern hyperspectral sensors .......................................18 

2 DESCRIPTION OF THE RESEARCH OBJECT ....................................21 

2.1 Creating hyperspectral images...........................................................23 

2.2 Advantages of hyperspectral images over multispectral ones ............25 

2.3 Conclusions .......................................................................................27 

3 MODERN SYSTEMS AND METHODS OF OBJECT CLASSIFICATION

..............................................................................................................................29 

3.1 Supervised classification ...................................................................29 

3.1.1 Support vector machines ................................................................30 

3.1.2 Minimum distance classification ....................................................31 

3.1.3 Maximum likelihood classification ................................................32 

3.1.4 Neural network classification .........................................................32 

3.2 Deep learning ....................................................................................33 

3.2.1  Convolutional Neural Networks ....................................................33 

3.2.1.1  CNN architecture........................................................................34 

3.2.1.2 Convolutional layer .....................................................................35 

3.2.1.3 Pooling layer ...............................................................................37 



10 

 

3.2.1.4 Fully connected layer ..................................................................37 

3.2.1.5 Spectral feature-based classification ............................................37 

3.2.1.6 Spatial-feature-based classification method .................................39 

3.2.1.7 Spectral-spatial feature-based classification method ....................41 

3.2.2 Deep belief network .......................................................................42 

3.3 Unsupervised classification ...............................................................43 

3.3.1 K-Means Classification ..................................................................44 

3.3.2 Iterative Self-Organizing Method ...................................................45 

3.4 Semisupervised Classification ...........................................................46 

3.4.1 Laplace Support Vector Machine ...................................................47 

3.4.2 Self-Training ..................................................................................49 

    3.5. Performance evaluation……………………………………………..51  

3.6 Conclusion ........................................................................................52 

4 SOFTWARE IMPLEMENTATION OF OBJECT CLASSIFICATION ON 

HYPERSPECTRAL IMAGES ..............................................................................53 

4.1 Proposed DualConvHSINet model ....................................................54 

4.2 Dataset description and training details .............................................58 

4.3 Classification results .........................................................................64 

4.4 Performance evaluation .....................................................................68 

4.5 Conclusion ........................................................................................69 

REFERENCE .............................................................................................71 

APPENDIX A .............................................................................................74 

APPENDIX B .............................................................................................80 

APPENDIX C .............................................................................................86 

 



11 

 

GLOSSARY 

 

CNN – Convolutional Neural Network 

SVM – Support Vector Machine 

ANN – Artificial Neural Network 

MDC – Minimum Distance Classifier 

MLC – Maximum Likelihood Classifier 

DBN – Deep Belief Network 

SSRN – Spectral–Spatial Residual Network 
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PROBLEM STATEMENT 

 

The field of remote sensing has seen incredible advances over the past few 

decades, with hyperspectral imaging forming a significant component of this 

progress. This cutting-edge technology, which captures and processes information 

from across the electromagnetic spectrum, enables more accurate identification of 

objects and materials than traditional imaging methods. However, despite its 

potential, the classification of hyperspectral images (HSIs) poses unique challenges 

that demand rigorous exploration. The primary aim of this diploma is to address 

these challenges, focusing on the development and evaluation of advanced 

classification techniques for hyperspectral imaging data. 

Hyperspectral images carry rich information as they consist of hundreds of 

contiguous spectral bands. This high dimensionality, however, brings about the 

'curse of dimensionality,' where the increased complexity in handling, processing, 

and interpreting these images becomes a challenge. This diploma aims to address 

this problem by developing effective dimension reduction method and feature 

extraction techniques that will simplify the classification process, while preserving 

the maximum amount of spectral information. 

Through an in-depth analysis, experimentation, and implementation, this 

diploma aims to push the frontiers of current hyperspectral image classification 

methodologies. It will strive to develop a scalable, efficient, and accurate 

classification system capable of handling the challenges associated with 

hyperspectral data, thus paving the way for a broader range of applications in areas 

like agriculture, mineralogy, environmental science, and defense. 
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1 REMOTE SENSING OF THE EARTH 

 

Remote Sensing is a scientific method used to acquire information about the 

Earth's surface without making any direct physical contact. It involves the use of 

sensors on satellites or aircraft to collect data about the environment. The sensors 

measure the radiation that is reflected or emitted from the Earth’s surface. Different 

types of remote sensing techniques include aerial photography, satellite imagery, 

radar, and sonar, each serving specific purposes in various fields [1]. 

There are two types of remote sensing: passive and active. Passive remote 

sensing involves recording radiation that is naturally reflected or emitted by the 

Earth's surface or the atmosphere, for example, sunlight reflected by forests or fields. 

On the other hand, active remote sensing systems like radar or LIDAR, emit their 

own energy to scan objects and areas where they then measure the reflection. Remote 

sensing data is processed and interpreted using sophisticated algorithms, often to 

produce a 2D or 3D image that allows for analysis and interpretation [2]. 

 

1.1 The purpose of remote sensing 

 

Space-based remote sensing systems are designed to provide socio-economic 

sectors and public authorities with observation data on natural and man-made 

objects, phenomena, and events. The development of space technology and 

information technologies has created scientific and technical capabilities for high-

resolution space sensing of the Earth [3]. To conduct such sensing, optoelectronic 

devices (OEDs), synthetic aperture radar (SAR) and space photographic equipment 

(SPE) are installed on spacecraft (SP). The experience of using space-based 

observation systems shows great potential for using the results of remote sensing of 
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the Earth in solving a wide range of problems in almost all sectors of the economy 

and social sphere. 

Remote sensing of the Earth provides unique opportunities for operational 

data collection on a global scale with high spatial, spectral and temporal resolution, 

which determines the great information capabilities of space systems, the possibility 

of their military use and potential economic efficiency. The systematic approach 

requires the division of the set of tasks of space remote sensing means by indicators 

of scientific, industrial, economic and social orientation, namely: 

- control of weather and climate factors; 

- monitoring the state of sources of air, water and soil pollution; 

- control of man-made and natural emergencies nature; 

- information support of economic activity, rational land use, rational land use; 

- information support of national security and defense; 

- creation of a dynamic model of the Earth as an ecological system. 

Nowadays, various thematic tasks are successfully performed using remote 

sensing methods to provide information on scientific, economic, national security 

and defense issues, among others: 

1. Inventory of agricultural land, allocation and identification of crop types, 

crop forecasting, and analysis of agricultural potential. 

2. Monitoring global atmospheric changes - measuring surface temperature, 

determining surface conditions, determining the state of the atmosphere, observing 

cloud cover, and studying the greenhouse effect. 

3. Search for minerals and energy resources (oil, natural gas, coal). 

4. Topographic mapping, map creation and updating, monitoring urban 

growth, and monitoring the condition of soils and pastures. 
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5. Observation of coastal zones and oceans, control of water sources - studying 

and determining ocean resources, measuring ice thickness, determining snow cover 

and its water equivalent, identifying places and sources of water pollution. 

6. Monitoring the condition of forests, determining the types of forest 

plantations and dominant species, assessing timber reserves, and logging. 

7. Monitoring of emergency situations - prevention, control and assessment 

of the effects of floods, fires and earthquakes. 

8. Defense surveillance - determining the condition of military, military-

industrial and engineering facilities, monitoring border areas, and controlling mass 

movements of troops. 

For military systems, the main task is space reconnaissance. 

 

1.2 Main characteristics of satellite images 

 

The effectiveness of space image analysis and interpretation is determined by 

the content and volume of information about remote sensing objects, the list of which 

is determined by the thematic task. As you know, space images are formed by 

recording electromagnetic radiation reflected or generated by earth formations and 

artificial (anthropogenic) objects. Different objects of remote sensing have different 

spectral and energy characteristics of radiation and differ in geometric size, shape 

and behavior in time and space [4]. All these features of remote sensing objects 

should be considered when choosing a space system that will be used to generate 

images. 

First, the following characteristics are considered: 

- The spectral range in which the objects and processes under observation and 

study are active; 
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- The degree of detail of observation and registration of the geometric shape 

of objects and spatial relationships; 

- Radiometric resolution, or the maximum number of bits that quantizes the 

dynamic range of pixel brightness’s of images of earth surface objects; 

- Area (geometric dimensions of the survey frame) of the scene - a certain area 

of the Earth's surface to be observed; 

- Guaranteed provision of one-time control or monitoring (periodic 

observation with a certain time interval) of a certain geographical area. 

 

1.3 General characteristics of space remote sensing systems 

 

A space system (SS) is a set of coordinated, functionally interconnected 

spacecraft and ground-based technical means designed to solve targeted tasks. 

The space remote sensing system includes a space complex and a ground-

based information complex (GBIC). Space observation complex is a set of 

functionally interconnected orbital and ground-based means designed to 

independently solve special tasks from space or to ensure the fulfillment of such 

tasks as part of the space observation system. The space complex includes: a 

spacecraft or a group of spacecraft, a rocket and space complex, a control and 

reference complex, a ground control complex, a spacecraft landing and maintenance 

complex. 

Thus, space observation data acquisition and dissemination systems are based 

on the following main components: 

- carriers of imaging equipment, in this case, artificial earth satellites (AES); 

- the actual remote sensing equipment; 

- onboard means of data transmission to Earth; 
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- a ground-based information system for receiving this information, processing 

it and providing it to consumers. 

The classification of remote sensing systems is their division into classes 

(subclasses, groups) based on the commonality of homogeneous essential features 

(properties), which fixes the natural relationships between classes of systems in a 

particular field of knowledge. The characteristics of the above components of the 

system of space observation data acquisition and dissemination or their parameters 

are most often the basis for the classification of space remote sensing systems. 

Modern space systems can be divided into scientific, military, and commercial 

according to the purpose and content of the tasks they solve. 

In turn, the scientific ones include research and experimental manned and 

automatic space stations, research spacecraft that conduct research on planets and 

stars, outer and interstellar space, geophysical research of the Earth, and 

experimental ones: scientific and military experimental spacecraft that conduct 

scientific experiments and test elements of advanced spacecraft. This division is 

purely arbitrary. In practice, most scientific satellites are multifunctional, i.e., they 

contain research, scientific and experimental devices. 

Commercial spacecraft are designed to solve economic problems, provide all 

types of communications and telecommunications, and facilitate the safety of land, 

air and sea traffic. Commercial spacecraft include domestic spacecraft (as a rule, 

these are dual-purpose spacecraft, i.e. only spacecraft that, if necessary, can be used 

in full or in part to solve problems in the interests of armed struggle) and domestic 

spacecraft leased by other states or launched in the interests of other states. 

The set of space complexes and systems for military purposes constitutes 

space weapons. Military space systems are divided into combat and support systems 

according to the tasks they perform. Combat spacecraft are designed to conduct 

combat operations in space or from space, or are the space part of combat ground-
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space complexes (systems). These are strike spacecraft, space-based missile defense 

and air defense systems, electronic warfare and missile launch detection spacecraft. 

Combat support spacecraft are designed to support the daily and combat activities 

of all branches of the armed forces. They are classified as reconnaissance, 

navigation, communication, meteorological, topographic, and transportation. 

According to the definition of the Scientific and Technical Subcommittee of 

the UN Committee on Space, remote sensing is "the observation and measurement 

of energy and polarization characteristics of the intrinsic and reflected radiation of 

the Earth's land, ocean and atmosphere in different ranges of electromagnetic waves, 

which help to describe the location, nature and temporal variability of natural 

parameters and phenomena, the Earth's natural resources, the environment, as well 

as anthropogenic objects and formations". As can be seen from the above definition, 

remote sensing methods allow for different types of classification: by the spectral 

range of the electromagnetic radiation used, by the type of signal recorded (own or 

reflected, natural or directed from an artificial radiation source); by image 

parameters (spatial resolution, spectral resolution, viewing frequency, frame size on 

the ground, speed of application execution, rights to distribute and copy images); by 

the characteristics of the imaging equipment carriers and its parameters, etc. Image 

parameters and overview characteristics depend on the parameters of the spacecraft 

trajectory and the characteristics of its onboard special equipment. 

 

1.4 Overview of modern hyperspectral sensors 

 

Hyperspectral sensors, such as the Reflective Optics System Imaging 

Spectrometer (ROSIS) and the Airborne Visible/Infrared Imaging Spectrometer 

(AVIRIS), are vital tools in remote sensing, used for a wide range of scientific, 

environmental, and industrial applications. They capture high-resolution image data 
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across the electromagnetic spectrum, allowing for detailed analysis and 

interpretation of the Earth's surface and atmosphere. 

 

Figure 1.1 Main characteristics for both ROSIS-03 and AVIRIS sensors. 

 

Here are several satellites they are installed on: 

1. MODIS (Moderate Resolution Imaging Spectroradiometer) – mounted on the 

Terra and Aqua satellites, launched by NASA (USA) in 1999 and 2002 

respectively. MODIS provides high-frequency imagery in a wide spectrum 

(36 spectral bands, ranging from 0.4 to 14.4 μm) and is used for monitoring 

global-level processes, including vegetation dynamics, carbon cycling, and 

water cycles. 

2. Landsat series – this is a series of American Earth-observing satellites. The 

latest of these, Landsat 9, was launched in 2021. Landsat satellites employ 

the Multispectral Scanner (MSS), Thematic Mapper (TM), Enhanced 

Thematic Mapper (ETM), and Operational Land Imager (OLI). They provide 

imagery of the Earth's surface in the visible, near-infrared, and thermal 

infrared spectrums. 
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3. Sentinel series – these are satellites from the European Space Agency, 

launched as part of the Copernicus Earth observation program. Sentinel-2, for 

example, has a Multispectral Instrument (MSI) for observations in the visible, 

near-infrared, and shortwave infrared spectrums. 

4. ASTER (Advanced Spaceborne Thermal Emission and Reflection 

Radiometer) – this instrument is mounted on the Terra satellite. Launched by 

NASA in 1999, ASTER provides imagery in 14 channels of the visible, near-

infrared, and thermal infrared spectrums. 

5. WorldView-3 – a commercial satellite, launched by DigitalGlobe (now 

Maxar Technologies) in 2014. WorldView-3 can provide high-resolution 

imagery and multispectral images. 
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2 DESCRIPTION OF THE RESEARCH OBJECT 

 

In the past several decades, the utility of satellites in various domains such as 

earth monitoring, remote sensing, communication, and navigation has been proven 

effective. Remote sensing, as per the context of my work above, is the technique of 

obtaining data from a particular object without making direct physical contact with 

it. Each object, due to differences in their molecular composition, uniquely absorbs 

and emits the incident electromagnetic radiation. This interaction of radiation with 

the object results in a specific pattern called a spectral signature, which can be 

utilized to identify any material, given its unique nature for each substance found on 

Earth's surface. 

The concept is as follows: by observing the spectral signature or spectral 

response, we can accurately identify the materials or objects featured in the 

hyperspectral image we've captured. Hence, hyperspectral sensors have been 

designed to detect radiation across an expansive wavelength range present in the 

electromagnetic spectrum. This range encompasses the visible, short, mid, and long-

wave infrared region, with each region having a breadth of about 10nm [5]. 

The emission of radiation from a scene, captured at a specific wavelength as 

an image, is organized in layers (each representing different wavelengths) to 

construct a hyper-spectral data-cube, as illustrated in Figure 2.1. 
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Figure 2.1. Hyperspectral data cube with spectral signature. 

 

The hyperspectral data-cube's spatial information is conveyed through the x-

y plane, while its spectral content is depicted in the z-plane. Every hyperspectral 

image band has a dimension where each pixel signifies a digital number (DN), which 

corresponds to the radiance value gathered by the sensor (IFOV). Notably, each band 

corresponds to a specific wavelength. Typically, the HSI data cube (a 3D hypercube) 

is represented as a 𝜒 ∈𝑛1×𝑛2×𝑛𝑏, where 𝑛 = 𝑛1 × 𝑛2 indicates the total pixel count, 

and nb denotes the number of bands. 

Each pixel in the spectral space, created by the number of bands, is 

represented as a single-dimensional vector. Materials of a similar kind are 

categorized using clustering algorithms, which are based on spectral properties that 

are close to one another. Widely used clustering algorithms in hyperspectral image 

analysis include k-means clustering, fuzzy c-means clustering, and clustering 

methods based on spectral unmixing. Given the high correlation in the spectral 

space, the data is portrayed in a lower dimensional space, smaller than the number 

of spectral bands. The reduction in data dimensionality is achieved using techniques 

such as principal component analysis (PCA) or independent component analysis 
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(ICA). In this scenario, an image is displayed as a matrix in spatial space. Similarly 

to spectral properties, spatial properties of like materials are closely related. The 

practice of grouping materials based on spatial properties is called segmentation. 

Meanwhile, the concurrent processing of a pixel based on adjacent pixels in the 

spectral space, along with band processing based on neighboring bands in the spatial 

space, is termed spectral-spatial representation [6]. 

 

2.1 Creating hyperspectral images 

 

Hyperspectral imaging, an advanced technique that collects and processes 

data from across the electromagnetic spectrum, outperforms traditional spectral 

imaging methods by providing more detailed and comprehensive information [7]. 

Unlike the human eye, which can only perceive light in three bands (red, green, and 

blue), hyperspectral imaging partitions the spectrum into numerous bands. It can 

even capture data beyond the visible range, making it versatile for a wide array of 

applications. 

This technology plays a crucial role in diverse fields such as agriculture, 

mineralogy, physics, surveillance systems, and forensics. The backbone of 

hyperspectral imaging is the hyperspectral sensor which investigates an object by 

using most of the electromagnetic spectrum. Unique 'fingerprints' are produced by 

certain objects across this spectrum range, identified as spectral features of matter. 

This information can be used to identify and characterize the materials present in the 

subject of the study. For instance, mineralogists can locate new oil deposits by 

analyzing the distinctive spectral lines of oil. 

Hyperspectral detectors generate data as a collection of "images", where each 

image represents a different spectral range within the electromagnetic spectrum. 

These images are subsequently merged to form a three-dimensional hyperspectral 
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data volume. This data structure is conducive for comprehensive analysis and 

processing, granting a thorough insight into the object under investigation. 

The efficiency of hyperspectral cameras is gauged primarily by the spectral 

resolution, or the width of each band of the captured spectrum. If the object's 

spectrum contains a large number of adequately narrow frequency bands, the 

identification of objects is possible even if they only span a few pixels in the image. 

However, spatial resolution plays a complementary role to spectral resolution. A 

large pixel size can capture multiple objects within the same pixel, complicating 

differentiation. Conversely, a small pixel size can result in low light energy reception 

per sensor pixel, leading to a decrease in the signal-to-noise ratio and compromised 

parameter measurement accuracy. 

Three main methods are employed in hyperspectral image processing 

technology: 

1. Spatial image scanning sequentially captures total spectral data. 

2. Spectral image scanning sequentially captures complete spatial 

information. 

3. The "snapshot" method captures all spectral and spatial information 

simultaneously. 

Two key benefits of this type of spectrometer, which influence its speed, 

include: 

1. Absence of spectral scanning allows for real-time examination of all 

spectral components (a concept known as Fellgett's advantage in metrology). 

2. FT-IR spectrometers feature larger apertures than those in dispersive 

spectrometers due to their high bandwidth (also known as the Jacquinot or 

bandwidth advantage). 

Two predominant types of interferometers - the Michelson interferometer and 

the Fabry-Perot interferometer - are commonly utilized in this technology. These 
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devices offer superior speed performance compared to other spectral or spatial 

instruments, contributing to the enhanced efficiency of hyperspectral imaging. 

 

2.2 Advantages of hyperspectral images over multispectral ones 

 

Hyperspectral imaging offers a key benefit by capturing the entire spectrum 

at each point, eliminating the need for the operator to possess prior knowledge of the 

sample. Through postprocessing, it becomes possible to extract all the valuable 

information from the dataset. Moreover, hyperspectral imaging leverages the spatial 

connections between various spectra in a given area, enabling the use of 

sophisticated spectral-spatial models that enhance the precision of image 

segmentation and classification. 

Hyperspectral imaging surpasses multispectral imaging [8, 9, 10] in terms of 

its numerous advantages, which are as follows: 

1. Hyperspectral remote sensing data exhibits high spatial resolution, 

providing detailed and precise information about the observed area. This level of 

detail allows for more accurate analysis and interpretation of the data. 

2. Hyperspectral data is typically collected within a specific and well-defined 

spectral range. This focused range enables targeted analysis of specific materials, 

phenomena, or characteristics within the captured scene. 

3. The bands of hyperspectral data are contiguous and overlapping, ensuring 

that no valuable information is missed. This continuous coverage allows for the 

detection of subtle variations and nuanced features in the scene, enhancing the 

overall understanding of the data. 

4. The contiguous spectrum obtained from hyperspectral imaging facilitates 

the identification of atmospheric windows. This information is crucial for effectively 

removing atmospheric interference from the radiance signal, resulting in cleaner and 
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more accurate data. In contrast, multispectral sensors lack the continuous spectrum 

necessary for identifying atmospheric windows. 

5. The signal-to-noise ratio of hyperspectral data can be improved by 

comparing pixel spectra. This comparative analysis helps reduce noise and enhance 

the quality of the data. Conversely, multispectral data, with its non-contiguous 

bands, does not lend itself well to this type of pixel-based noise reduction. 

6. Hyperspectral imaging provides a solution to the challenge of mixed 

spectra. By directly deriving the relative abundance of materials, it becomes possible 

to identify and analyze the composition of complex scenes accurately. This 

capability is particularly valuable in applications such as environmental monitoring, 

geology, and agriculture. 

7. Hyperspectral images offer the flexibility to derive information from 

various spaces. This includes the spectral space, where the unique spectral signatures 

of objects or classes can be identified; the image space, which allows for spatial 

analysis and pattern recognition; and the character space, where additional 

contextual information about the scene can be extracted. This multi-dimensional 

approach enhances the overall comprehension and utilization of hyperspectral data. 
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Figure 3.1 In multispectral imaging, image stacks consist of multiple images 

captured in different spectra, while hyperspectral imaging involves image stacks 

with a much larger number of images taken in numerous spectra. 

 

2.3 Conclusions 

 

Hyperspectral imaging has revolutionized remote sensing by providing a high 

level of detail and precision in the acquisition of data. Its ability to detect radiation 

across a vast wavelength range, construct a detailed hyperspectral data-cube, and 

identify unique spectral signatures have proven to be invaluable in various 

applications from environmental monitoring to military usage and medical 

diagnostics. Importantly, the advances in hyperspectral imaging have enabled a 

superiority over multispectral imaging, offering numerous advantages including 
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high spatial resolution, the detection of subtle variations, and the ability to analyze 

complex scenes accurately. 

The recent ease of acquiring high-resolution hyperspectral remote sensing 

images has increased the application of this technology in various fields. The 

primary focus of ongoing research in this domain is the classification of 

hyperspectral images. However, several challenges exist, such as high 

dimensionality, limited availability of labeled samples, spatial variability of spectral 

information, and image quality. A plethora of classification methods and dimension 

reduction techniques are continually being explored and developed, including the 

use of machine learning techniques such as support vector machines, random forests, 

neural networks, and more recently, deep learning networks. 

Despite these challenges, the potential of hyperspectral imaging is vast and 

continues to expand with technological advancements. The continuous 

improvements in image acquisition, processing, and classification techniques will 

further enhance the quality of data derived from hyperspectral imaging and broaden 

its application range. 
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3 MODERN SYSTEMS AND METHODS OF OBJECT 

CLASSIFICATION 

 

In recent years, the acquisition of hyperspectral remote sensing images with 

high spatial and spectral resolution has become relatively easier, finding wide 

applications in environmental, military, mining, and medical fields. These images, 

captured using imaging spectrometers, possess high spectral resolution, numerous 

bands, and abundant information. Hyperspectral image processing includes image 

correction, noise reduction, transformation, dimensionality reduction, and 

classification. Classification [13] remains the most active research area within the 

hyperspectral domain, as the rich spectral information reflects the physical structure 

and chemical composition of objects. 

However, hyperspectral image classification faces challenges such as high 

dimensionality, lack of labeled samples, spatial variability of spectral information, 

and image quality. Researchers have developed various classification methods, 

including support vector machines, random forests, and neural networks, as well as 

dimension reduction techniques like principal component analysis and linear 

discriminant analysis. More recently, the incorporation of spatial context 

information has gained attention, with deep learning networks like convolutional 

neural networks and deep belief networks being used in remote sensing image 

processing. Hyperspectral image classification methods are broadly categorized into 

supervised, unsupervised, and semisupervised classifications. 

 

3.1 Supervised classification 

 

Supervised classification is a frequently employed method for hyperspectral 

image classification. The fundamental procedure involves establishing discriminant 
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criteria based on known sample categories and prior knowledge, followed by 

calculating the discriminant function. Widely used supervised classification 

techniques encompass support vector machine, artificial neural network 

classification, decision tree classification, and maximum likelihood classification 

methods. 

 

3.1.1 Support vector machines 

 

The Support Vector Machine (SVM) [12], a supervised classification 

approach, was formulated by Boser and his team. It leverages statistical theory and 

the principle of structural risk minimization and is instrumental in the realms of 

image and signal processing and recognition. SVM finds the optimal classification 

surface by applying structural risk minimization to linear classifiers. In practice, not 

all situations are linearly separable, so slack variables are introduced. For nonlinear 

cases, kernel functions [13] are used, transforming the input space into a high-

dimensional space, and finding the optimal linear classification surface in the new 

space. Commonly used kernel functions include linear, polynomial, and Gaussian 

kernel functions. Figure 3.1 illustrates a conceptual representation of a support 

vector machine using a kernel function. 

 

Fig. 3.1 Kernel function support vector machine diagram. 
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3.1.2 Minimum distance classification 

 

The Minimum Distance Classifier (MDC) [14] is a supervised classification 

technique that operates based on the proximity of pixels within a feature space. It 

assumes that feature points of the same class cluster in space, using the mean vector 

as the category center and the covariance matrix to describe dispersion. Various 

distance calculations, such as Mahalanobis and Barth-Parametric distances, are used 

to measure similarity. MDC is an early method for image classification research, and 

its simplicity and intuitiveness make it widely used even today. For classifications 

with limited training samples, it can yield better results than more complex 

classifiers. Figure 3.2 is a flowchart of the minimum distance classification method. 

 

Figure 3.2 Schematic diagram of minimum distance classification. 
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3.1.3 Maximum likelihood classification 

 

Maximum Likelihood Classifier (MLC) [15] is a nonlinear classification 

method based on the Bayesian criterion. It calculates statistical feature values of 

training samples to establish a discriminant function, which is used to determine the 

probability of each pixel in a hyperspectral image belonging to various classes. The 

test sample is classified into the category with the highest probability. MLC 

generally obtains better results, especially when training samples are normally 

distributed. It assumes a normal distribution of hyperspectral data and uses a 

likelihood decision function to determine conditional probability. 

 

3.1.4 Neural network classification 

 

Artificial Neural Networks (ANN) are prevalent artificial intelligence 

classification systems that mimic the information processing of human neurons. 

They find utility in intelligent control, information processing, and combinatorial 

optimization. Nevertheless, they come with certain limitations such as the need for 

vast amounts of training data, reduced processing speeds, and challenges in deriving 

decision boundaries in the feature space. Backpropagation [17] neural networks are 

the most widely used ANN model, consisting of input, hidden, and output layers. 

The implementation process includes two stages: network self-learning to optimize 

connection weights and using learning results to classify image data. 

Compared to other methods, SVM requires fewer training samples but 

struggles with large-scale samples and multi-classification problems. Minimum 

distance classification is fast but less accurate, while maximum likelihood, minimum 

distance, and neural network methods can be used in practice with human 

supervision to ensure accuracy. 
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3.2 Deep learning 

 

In recent years, hyperspectral image classification techniques have 

incorporated spatial information from hyperspectral images, leading to the 

development of methods based on combined spatial-spectral features. Deep learning 

[18], derived from artificial neural networks, offers more robust feature extraction 

capabilities compared to its predecessor. Deep learning models possess multiple 

layers, further enhancing feature information extraction. This section primarily 

explores deep learning techniques, such as convolutional neural networks (CNN), 

deep belief networks (DBN), and stacked autoencoders (SAE). 

 

3.2.1  Convolutional Neural Networks 

 

Convolutional Neural Networks (CNNs) [18] are analogous to traditional 

Artificial Neural Networks (ANNs) as they consist of self-optimizing neurons. Each 

neuron takes an input, performs an operation, and contributes to the final class score, 

just like in ANNs. The final layer contains class-associated loss functions, and all 

common ANN strategies still apply. 

However, CNNs stand out in their primary use for pattern recognition in 

images, enabling us to incorporate image-specific features into the network 

architecture. This makes CNNs more suitable for image-related tasks and reduces 

the parameters needed for the model. 

A key limitation of ANNs is their struggle with the computational complexity 

of image data. For instance, they can handle datasets like the MNIST database of 

handwritten digits, with its manageable 28 × 28 image dimensionality. However, for 

a larger colored image input of 64 × 64, the number of weights for a single neuron 
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in the first layer jumps to 12,288, necessitating a significantly larger network. This 

showcases the challenges of using such models for larger, more complex image data. 

 

3.2.1.1  CNN architecture 

 

CNNs are designed primarily for image inputs, structuring the architecture to 

handle this data type effectively. Neurons in CNNs are organized in three 

dimensions: height, width, and depth of the input. The depth refers to the third 

dimension of an activation volume, not the total number of layers. Neurons in a layer 

connect only to a small region of the preceding layer. So, for a 64 × 64 × 3 input 

volume (height, width, depth), the final output layer will have a 1 × 1 × n 

dimensionality, where n represents possible classes. 

 

3.2.1.2 Overall architecture 

 

CNNs consist of three primary types of layers: convolutional layers, pooling 

layers, and fully connected layers. The stacking of these layers creates a CNN 

architecture. Figure 3.3 showcases a simplified representation of a CNN architecture 

designed for MNIST classification. 

 

Figure 3.3 represents a basic CNN structure composed of merely five layers. 
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The primary functions of the aforementioned CNN example can be divided 

into four main aspects: 

1. The input layer holds the image’s pixel values. 

2. Within the convolutional layer, neurons that are linked to local areas of the 

input perform the dot product of their weights and the region tied to the input 

volume. The rectified linear unit (ReLu) applies an activation function such as the 

sigmoid function to the output originating from the preceding layer. 

3. The pooling layer downsamples along the spatial dimensionality of the 

input, reducing the number of parameters within the activation. 

4. The fully connected layers perform standard ANN tasks, producing class 

scores from the activations for classification. ReLu may improve performance 

between these layers. 

Through these transformations, CNNs can process the original input using 

convolutional and downsampling techniques to produce class scores for 

classification and regression. However, understanding the overall architecture isn’t 

enough. Creating and optimizing these models takes time and can be complex. Next, 

we’ll explore the individual layers, their hyperparameters, and connectivities in 

detail. 

 

3.2.1.2 Convolutional layer 

 

Convolutional layers, essential in CNNs, revolve around learnable kernels. 

These kernels, small in spatial size but spanning the input's depth, produce a 2D 

activation map when convolved across the input's spatial dimension. This process 

calculates the scalar product for each kernel value, letting the network learn kernels 

that activate upon detecting specific features, known as activations. Each kernel 
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generates an activation map, stacked along the depth dimension to form the layer's 

full output volume. 

To address the challenge of large model sizes in ANNs due to fully connected 

neurons, each neuron in a convolutional layer only connects to a small input volume 

region, or the neuron's receptive field size. For instance, in an RGB image of 64 × 

64 × 3, setting the receptive field size as 6 × 6 results in 108 weights per neuron in 

the convolutional layer, a dramatic reduction compared to standard ANNs. 

 

 

Figure 3.4 Visual representation of a convolutional layer. The kernel's central 

element is positioned over the input vector, which is then computed and replaced 

by a weighted sum of itself and the neighboring pixels. 

 

Convolutional layers reduce model complexity through output optimization, 

managed via three hyperparameters: depth, stride, and zero-padding. Depth, or the 

output volume's dimension, can be manually set by the number of neurons within 

the layer. Stride determines the depth setting around the input's spatial 

dimensionality to position the receptive field. Zero-padding, or input border 

padding, helps control the output volumes' dimensionality. 

Adjusting these hyperparameters alters the convolutional layer's output spatial 

dimensionality. Parameter sharing, a technique assuming a feature useful in one 

spatial region will be useful in others, further reduces parameters by constraining 
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each activation map within the output volume to share the same weights and bias. 

Consequently, during backpropagation, each output neuron represents the total 

gradient across the depth, updating only a single weight set. 

 

3.2.1.3 Pooling layer 

 

Pooling layers aim to progressively downscale the representation's 

dimensionality, thereby decreasing the model's parameters and computational 

complexity. They operate on each input's activation map, using the "MAX" function 

to resize it. Most CNNs employ max-pooling layers with 2 × 2 kernels and a stride 

of 2, reducing the activation map to 25% of its original size while keeping the depth 

unchanged. 

Given its destructive nature, max pooling typically employs two methods: 

using both 2 × 2 stride and filters to cover the input's entire spatial dimension, or 

using overlapping pooling with a stride of 2 and kernel size of 3. A kernel size above 

3 generally hampers model performance due to the destructive aspect of pooling. 

Apart from max-pooling, CNNs can utilize general-pooling layers that 

perform multiple operations such as L1/L2-normalisation and average pooling. 

Nonetheless, this description primarily focuses on the concept of max-pooling. 

 

3.2.1.4 Fully connected layer 

 

In the fully-connected layer, neurons are directly linked to neurons in the 

layers immediately preceding and succeeding them, without any interconnections 

within those layers. 

 

3.2.1.5 Spectral feature-based classification 
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Now let's move on to looking at CNN on the classification of hyperspectral 

images. 

Hyperspectral images possess abundant spectral data and incredibly high 

spectral resolution. Each pixel generates one-dimensional spectral vectors consisting 

of spectral details. Classifying solely based on these one-dimensional spectral 

vectors is known as spectral information-based classification. Typically, this 

approach involves extracting spectral information or specific features from a pixel's 

spectral data through feature extraction for classification purposes. To classify 

hyperspectral images' spectral features, one-dimensional convolutional neural 

networks (1D-CNN) [19] are employed to extract spectral features and perform 

classification. The process is illustrated in Figure 2.3. 

 

Figure 3.5 Schematic diagram of 1D-CNN. 

 

The procedure involves feeding labeled hyperspectral data into the 1D-CNN, 

training the 1D-CNN using class labels, and iteratively updating the network weights 

using algorithms like SGD. Ultimately, the trained 1D-CNN is employed to classify 

each pixel, yielding classification outcomes. A one-dimensional convolution kernel 
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is utilized in the one-dimensional convolution operation to perform convolution on 

a one-dimensional feature vector. The operation is expressed as follows: 

 𝑣𝑙,𝑗
𝑥 = 𝑓 (∑ ∑ 𝑘(𝑙−1),𝑚

(𝑥+ℎ)
+ 𝑏𝑙,𝑗

𝐻𝑖−1

ℎ=0𝑚

) (3.1) 

 

Among them, 𝑘𝑙,𝑗,𝑚
ℎ represents the value of the 𝑙-th convolution kernel in the 

𝑗-th layer at ℎ, and the convolution kernel is connected to the 𝑚-th feature vector in 

the (l-1) layer network. 𝐻𝑖 represents the length of the one-dimensional convolution 

kernel. 𝑏𝑙,𝑗 represents the offset of the 𝑗-th feature map of the 𝑙-th layer. 𝑣(𝑙−1),𝑚
(𝑥+ℎ)

 

represents the specific value of the 𝑚-th feature map at the (𝑥 + ℎ, 𝑦 + 𝑤) position 

in the 𝑙-1st layer. 

 

3.2.1.6 Spatial-feature-based classification method 

 

This approach focuses on contextual or spatial information. In this 

classification process, rather than utilizing the spectral data obtained from individual 

pixels, the neighboring pixel's spatial details are employed. Owing to the high 

dimensionality of hyperspectral data, the common practice for extracting spatial 

information is to initially compress the dataset, followed by employing two-

dimensional convolutional neural networks (2D-CNN) [20] to derive more profound 

spatial insights, which are then used for classification. The detailed procedure is 

illustrated in Figure 3.6. 
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Figure 3.6 Schematic diagram of 2D-CNN. 

 

The dimensions of the convolution layer and pooling layer are the primary 

distinction between the two-dimensional convolution operation and the one-

dimensional convolution operation. In the case of two-dimensional convolution, a 

two-dimensional convolution kernel is employed to perform the convolution 

operation on two-dimensional data. 

 𝑚𝑎𝑝𝑙,𝑗
𝑥,𝑦

= 𝑓 (∑ ∑ ∑ 𝑘𝑙,𝑗,𝑚
ℎ,𝑤 𝑚𝑎𝑝(𝑙−1),𝑚

(𝑥+ℎ)(𝑦,𝑤)
+ 𝑏𝑙.𝑗

𝑊𝑙−1

𝑤=0

𝐻1−1

ℎ=0𝑚

) (3.2) 

   

Among them, 𝑘𝑙,𝑗,𝑚
ℎ,𝑤

represents the value of the 𝑙-th convolution kernel in the 

𝑙-th layer at (ℎ, 𝑤), and this convolution kernel is connected to the 𝑚-th feature 

vector in the (l-1) layer network. 𝐻𝑖 and 𝑊𝑙, respectively, represents the height and 

width of the convolution kernel, and 𝑏𝑙,𝑗 represents the offset of the 𝑗-th feature map 

of the 𝑙-th layer. 𝑚𝑎𝑝(𝑙−1),𝑚

(𝑥+ℎ),(𝑦+𝑤)
 represents the specific value of the 𝑚-th feature 
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map at the (𝑥 + ℎ, 𝑦 + 𝑤) position in the 𝑙-1st layer, and 𝑚𝑎𝑝𝑙,𝑗
𝑥,𝑦

 represents the 

output data of the 𝑗-th feature map at the 𝑙-th layer at (𝑥, 𝑦). 

 

3.2.1.7 Spectral-spatial feature-based classification method 

 

Traditional hyperspectral image classification primarily relies on spectral 

data. Nevertheless, external environmental factors can cause identical ground 

features to exhibit different spectral curves, while distinct ground features may have 

the same spectral curve, leading to occurrences of heterospectrum within the same 

object and same-spectrum phenomena in foreign objects. For instance, when 

adjacent pixels are categorized as parking lots, those with spectral characteristics 

resembling metal are likely to represent cars. Similarly, if the surrounding pixels are 

grass, the central pixel is probably grass as well. Hyperspectral data comprises a 

three-dimensional structure, encompassing one-dimensional spectral and two-

dimensional spatial details. A three-dimensional convolutional neural network (3D-

CNN)[21] can extract both spectral and spatial information simultaneously. This 

specific procedure is depicted in Figure 2.4. 

 

Figure 3.7 Schematic diagram of 3D-CNN. 
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3.2.2 Deep belief network 

 

The implementation of a deep belief network (DBN) [22] relies on the 

utilization of restricted Boltzmann machines (RBMs). DBN is a network model that 

is built by sequentially stacking multiple RBM layers. A typical DBN consists of 

several RBMs and a backpropagation (BP) layer. The schematic diagram depicting 

its structure can be observed in Figure 3.4. 

 

Figure 3.8 Classic DBN structure diagram. 

 

Parameters are learned using an unsupervised approach that operates on a 

layer-by-layer basis during training. Initially, the data and the first hidden layer are 

treated as an RBM, with the parameters of this RBM being trained. Afterward, once 
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the parameters of the RBM are set, the first hidden layer is treated as a visible vector, 

while the second hidden layer is treated as a hidden vector. This process is repeated 

in a loop, with the following specific steps: 

Train each layer of the RBM network independently and unsupervisedly, 

ensuring that feature vectors retain as much information as possible when mapped 

to different feature spaces. 

Incorporate a backpropagation (BP) network at the final layer of the DBN, 

taking the RBM's output feature vector as input, and utilize it to supervise the 

training of the entity relationship classifier. Due to the limitations of each RBM layer 

in optimizing weights and feature vector mapping within its own layer, the 

backpropagation network propagates error information downwards across each 

RBM layer, refining both the DBN and RBM network training models. This process 

can be viewed as the initialization of a deep BP network's weight parameters, 

allowing the DBN to overcome the BP network's shortcomings of falling into local 

optimization and having lengthy training times due to random weight parameter 

initialization. 

When using DBN to classify hyperspectral image spectral features, the 

primary approach is to employ DBN to extract deeper features from spectral 

information gathered from pixel locations to be classified, and then complete the 

classification using deep features. The classification method for hyperspectral image 

spatial features based on DBN is quite similar to the SAE-based method.  

 

3.3 Unsupervised classification 

 

The method of unsupervised classification relates to categorizing based on the 

spectral likeness of hyperspectral data, essentially a clustering approach that doesn't 

require any previous information. Given that it doesn't use any pre-existing 
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knowledge, unsupervised classification can merely presume initial parameters, 

create groups through preliminary classification procedures, and then repeatedly 

adjust until the related parameters fall within acceptable boundaries. 

 

3.3.1 K-Means Classification 

 

The fundamental concept underlying the K-means [23] clustering technique 

is to minimize the total sum of squared distances between each pixel within a cluster 

and the centroid of that particular cluster. The initial clustering process starts by 

randomly selecting a center point, and then other pixels are classified into one of the 

clusters based on set criteria, thereby completing the initial clustering. The next step 

involves recalculating the center point for each cluster, adjusting it, and 

reclassifying, repeating these steps until the clustering center points no longer shift. 

The optimal clustering center is then determined, yielding the best cluster results and 

ending the iteration process. Figure 8 illustrates the algorithm flow of K-means 

clustering. One limitation of K-means clustering is that the number of chosen 

categories remains fixed throughout the calculation, and the initially selected cluster 

center point position can influence the clustering outcome, leading to potentially 

significant variations in experimental results each time. To address this issue, 

auxiliary methods can be used to identify a more accurate initial clustering center, 

thus enhancing classification precision. 
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Figure 3.9 Schematic of -means algorithm. 

 

3.3.2 Iterative Self-Organizing Method 

 

The ISODATA [24] algorithm, like the K-means algorithm, is a frequently 

used clustering method. It's essentially an enhancement of the K-means 

classification technique. The ISODATA algorithm provides some clear advantages 

over K-means clustering. First, instead of continuously adjusting the cluster center 

during the calculation, all categories are computed and the samples are then 

collectively adjusted. Second, unlike K-means clustering, the ISODATA algorithm 

can automatically modify the number of categories during clustering based on the 

actual scenario, leading to more reasonable clustering results. 
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The primary benefits of these two classification methods include the lack of 

need for extensive understanding of the classification area; only sufficient 

knowledge is needed to interpret the classified cluster groups. This reduces the risk 

of human error and minimizes the initial parameters required for input. The clusters 

with small but distinctive spectral characteristics are more homogeneous than in 

supervised classification, and categories with unique and small coverage can be 

identified. The main drawbacks include the need for significant analysis and post-

processing to achieve reliable classification outcomes. The classified clusters and 

land categories may or may not align due to the common phenomena of "same 

spectrum" and "foreign material," complicating the matching of cluster groups and 

categories. Moreover, as the spectral characteristics of each category vary with time 

and terrain, the spectral cluster groups across different images lack continuity and 

are challenging to compare. 

 

3.4 Semisupervised Classification 

 

The primary drawback of supervised methods is their reliance on the volume 

of training data sets with label points to determine the classification model and 

accuracy. Acquiring a significant amount of class labels for hyperspectral images is 

both time-consuming and expensive. Unsupervised methods aren't as affected by 

labeled samples, but their lack of prior knowledge makes the relationship between 

clustering categories and actual categories uncertain [19]. Semi-supervised 

classification addresses these limitations by utilizing a combination of labeled and 

unlabeled data for training the classifier. This approach is grounded in the 

assumption that in feature space, labeled and unlabeled samples of the same type are 

closer. Since numerous unlabeled samples provide a comprehensive depiction of the 
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data's overall characteristics, a classifier trained using both types of samples possess 

better generalization. 

Semi-supervised classification is frequently employed in hyperspectral image 

classification. Notable semi-supervised classification methods encompass model 

generation algorithms, semi-supervised support vector machines, graph-based semi-

supervised algorithms, and self-training, co-training, and tri-training. 

Considering these issues, this paper presents a review of a semi-supervised 

classification method. Semi-supervised learning has garnered significant interest in 

the realm of hyperspectral image classification due to its requirement for only a 

minimal number of labeled samples. This learning approach merges labeled and 

unlabeled data to enhance classification accuracy. 

 

3.4.1 Laplace Support Vector Machine 

 

The Laplacian Support Vector Machine (LapSVM) [25] is an advancement of 

the conventional Support Vector Machine (SVM). By incorporating manifold 

regularization terms, LapSVM is able to leverage the geometric information derived 

from both labeled and unlabeled samples to construct a classifier that effectively 

predicts the labels of forthcoming test samples. Additionally, it is characterized by 

its robust adaptability and capacity for global optimization. 

Given labeled samples and unlabeled samples {𝑥𝑖}𝑖=𝑙+1
𝑙+𝑢 , 𝑥𝑖 ∈ 𝑅𝑚, and 𝑦𝑖 ∈

{−1, +1}, the decision function is 𝑓. The 

 𝐿 =
1

𝑙
∑  

𝑙

𝑖=1

𝑉(𝑥𝑖 , 𝑦𝑖 , 𝑓) + 𝛾𝐿 ∥ 𝑓 ∥𝐻
2 + 𝛾𝑀 ∥ 𝑓 ∥𝑀

2  (3.3) 
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In this context, 𝑉 stands for the mis-segmentation cost function of labeled samples, 

while 𝑌𝐿 regulates the intricacy of function 𝑓 within Hilbert space, and 𝑌𝑀 manages 

the complexity of the geometric features of the data distribution within the maximum 

distance of 𝑓. The architecture of LapSVM is elaborated further below. Initially, 

LapSVM employs the same loss function as the conventional SVM: 

 𝑉(𝑥𝑖 , 𝑦𝑖 , 𝑓) = 𝑚𝑎𝑥{0,1 − 𝑦𝑖𝑓(𝑥𝑖)}. (3.4) 

 

Among them, 𝑓 represents the classification decision function 𝑓(𝑥) =

⟨𝑤, 𝜑(𝑥)⟩ + 𝑏 of the selected classifier, where 𝜑(⋅) denotes a non-linear mapping 

function that transforms data from a low-dimensional space to a high-dimensional 

Hilbert space, where 

 𝑤 = ∑  

𝑙+𝑁

𝑖=1

𝛼𝑖𝜑(𝑥𝑖) = Φ𝛼, Φ = [𝜑(𝑥1), ⋯ , 𝜑(𝑥𝑙+𝑢)]𝑇 , (3.5) 

 

𝛼 = [𝛼1, ⋯ , 𝛼𝑙+𝑢], is a decision function after finishing: 

 𝑓(𝑥) = ∑  

𝑙+𝑢

𝑖=𝑙

𝛼𝑖𝐾(𝑥𝑖 , 𝑥) + 𝑏. (3.6) 

 

The kernel function K represents different learner functions, which can be 

achieved by choosing various kernel functions, so there are 

 ∥ 𝑓 ∥𝐻
2 =∥ 𝑤 ∥2= (Φ𝛼)𝑇(Φ𝛼) = 𝛼𝑇𝐾𝛼. (3.7) 

 

The LapSVM algorithm emulates the geometric arrangement of data by 

creating a graph based on both labeled and unlabeled samples. By applying the 

smoothing assumption to normalize the graph, the penalty classification function 

undergoes adjustments, particularly in its rapidly changing segment. 
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 ∥ 𝑓 ∥𝐻
2 =

1

(𝑙 + 𝑢)2 ∑  

𝑙+𝑢

𝑖,𝑗=1

𝑊𝑖𝑗 (𝑓(𝑥𝑖) − 𝑓(𝑥𝑗))
2

= 𝑓𝑇𝐿𝑓 (3.8) 

   

Substituting the above formula into 

 

 

𝑚𝑖𝑛
𝜉𝑖∈𝑅1,𝛼∈𝑅1+𝑀

  {
1

𝑙
∑  

𝑙

𝑖=𝑙

𝜉𝑖 + 𝛾𝐿𝛼𝑇𝐾𝛼 +
𝛾𝑀

(𝑙 + 𝑢)2
𝛼𝑇𝐾𝐿𝐾𝛼}

 s.t. 𝑦𝑖 ( ∑  

𝑙+𝑢

𝑖,𝑗=1

𝛼𝑖𝐾(𝑥𝑖 , 𝑥𝑗) + 𝑏) ≥ 1 − 𝜉𝑖

𝜉𝑖 ≥ 0, 𝑖 = 1, ⋯ , 𝑙,

 

 

(3.9) 

where 𝜉𝑖  represents the relaxation factor of the labeled sample. 

The LapSVM algorithm effectively incorporates the influence of unlabeled 

samples in the classification process by considering the geometric attributes of the 

data. However, it often necessitates significant computational resources due to its 

high computational cost. 

 

3.4.2 Self-Training 

 

Self-training [26] is a frequently employed semi-supervised classification 

algorithm. In executing this algorithm, a classifier is initially trained with labeled 

samples, followed by the labeling of a plethora of unlabeled samples using this 

classifier. High-confidence data is chosen from these labeled samples and added, 

along with their labels, to the initial training set for retraining the classifier. This 
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process is repeated until a termination condition is met. The general progression of 

self-training is as follows: 

(1) Train the classifier using the initial set of labeled samples 

(2) Apply the classifier to label the data within the set of unlabeled samples, 

select the samples with the greatest confidence, and record them 

(3) Retrain the classifier with the newly acquired sample set 

(4) Repeat steps 2) and 3) until the termination condition is satisfied 

Self-training algorithms are extensively utilized. Although this classification 

approach is simple and convenient, it becomes challenging to train a classifier with 

strong generalization capabilities and high accuracy due to the initially limited 

number of training samples. Additionally, when unlabeled samples are labeled, a 

significant number of mislabeled samples may be generated. These samples act as 

noise samples when added to the original training set, and as the iteration proceeds, 

errors accumulate, invariably leading to a degradation in the classifier's classification 

performance. 

 

3.5 Evaluation measures 

 

Within the domain of hyperspectral image categorization, three key accuracy 

measures, namely, OA, AA, and Kappa coefficient, are typically employed for 

impartial assessment. Herein, we provide a detailed explanation of these three 

accuracy assessment indicators. 

OA represents the ratio of correctly categorized instances to the total count of 

test instances. The computation is detailed below: 

 OA = ∑  

𝐶

𝑖=1

𝐌𝑖𝑖/𝑁 (3.10) 
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𝐶 denotes the total count of categories. The confusion matrix, 𝑀, is derived 

by juxtaposing the classification map against the actual results. 𝑀𝑖𝑖 signifies the 

count of instances that are part of class 𝑖 and are also classified as such. 𝑁 stands for 

the aggregate count of instances in the test set. 

AA symbolizes the average proportion of correctly identified pixels per class, 

as defined below: 

 AA = (∑  

𝐶

𝑖=1

(𝐌𝑖𝑖/ ∑  

𝐶

𝑖=1

𝐌𝑖𝑗)) /𝐶 (3.11) 

 

The Kappa coefficient signifies the proportion of agreement adjusted by the 

count of concurrences that could randomly occur, coupled with the accuracy specific 

to each class. 

 

 Kappa = (𝑁 (∑  

𝐶

𝑖=1

𝐌𝑖𝑖) − ∑  

𝐶

𝑖=1

(∑  

𝐶

𝑗=1

𝐌𝑖𝑗 ∑  

𝐶

𝑗=1

𝐌𝑗𝑖))

/ (𝑁2 − ∑  

𝐶

𝑖=1

(∑  

𝐶

𝑗=1

𝐌𝑖𝑗 ∑  

𝐶

𝑗=1

𝐌𝑗𝑖)) .

 (3.11) 

 

The Kappa coefficient holds the benefit of considering the impact of 

uncertainty on the classification outcomes when determining accuracy. The above-

mentioned accuracy measures are all computed through the juxtaposition of 

classification maps and actual results. Hence, it can be easily deduced that the actual 

results will affect the precision of the measurements obtained. 
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3.6 Conclusion 

 

The categorization and identification of hyperspectral images constitute a 

crucial aspect of hyperspectral image processing. This paper has examined several 

techniques for hyperspectral image classification, encompassing supervised, 

unsupervised, and semi-supervised classification. While the supervised and 

unsupervised methods presented in this discussion each offer varying degrees of 

benefits, there are inherent constraints when implementing these methods. For 

instance, supervised classification necessitates specific preconditions, and human 

influences can notably affect the outcomes of the classification. Hence, depending 

on the particular application requirements and considering the vast information 

obtained through hyperspectral images, a combination of multiple methods is 

required to achieve the desired classification results. As hyperspectral image 

technology continues to evolve, its classification has found widespread application. 

However, existing theories and techniques still encounter certain limitations when 

dealing with more complex hyperspectral image classifications. Therefore, in the 

future, it will be crucial to focus on researching and developing more specialized 

methods for hyperspectral image classification. 
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4 SOFTWARE IMPLEMENTATION OF OBJECT CLASSIFICATION 

ON HYPERSPECTRAL IMAGES 

 

Convolutional Neural Networks have recently gained a lot of popularity 

thanks to their dramatic performance improvement over manually created features. 

In many applications where processing of visual information is necessary, such as 

image classification, object identification, semantic segmentation, colon cancer 

classification, depth estimation, face anti-spoofing, etc., the CNN has demonstrated 

highly promising performance. Deep learning for hyperspectral image analysis has 

made significant advancements in recent years as well. For the HSI classification, a 

dual-path network (DPN) is proposed by fusing the residual network and dense 

convolutional network. To represent the remote sensing images in unsupervised 

training, Yu et al. developed a greedy layer-wise technique. A pixel-block pair (PBP) 

based data augmentation strategy was presented by Li et al. to extend deep learning 

for HSI classification. Deep feature fusion network was proposed by Song et al. 

while Cheng et al. employed pre-built CNN models for HSI classification. In 

essence, they retrieved the deep spatial features in a hierarchical fashion and utilized 

SVM for training and classification. 

The literature makes it clear that utilizing only 2D-CNN or 3D-CNN had 

several drawbacks, such as lacking channel relationship information or requiring 

very complex models, respectively. Additionally, it hindered these techniques from 

improving their accuracy when used with hyperspectral pictures. The primary cause 

is that hyperspectral images are volumetric data with a second spectral dimension. 

The spectral dimensions cannot be effectively extracted into appropriate 

discriminating feature maps by the 2D-CNN alone. A deep 3D-CNN is similarly 

more computationally intensive and appears to perform worse on its own for classes 
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with similar textures over numerous spectral bands. This is what inspired me to 

suggest a Dual Convolution HIS Net (DualConvHSINet) model that corrects these 

earlier models' flaws. For the proposed model, the 3D-CNN and 2D-CNN layers are 

put together in a way that fully utilizes both the spectral and spatial feature maps to 

reach the highest level of accuracy. 

 

4.1 Proposed DualConvHSINet model 

 

Let 𝐈 ∈ ℛ𝑀×𝑁×𝐷 be the symbol for the spectral-spatial hyperspectral data 

cube, where 𝐈 stands for the initial input, 𝑀 for the width, 𝑁 for the height, and 𝐷 

for the quantity of spectral bands/depth. Each HSI pixel in 𝐈 comprises 𝐷 spectral 

measurements, which together create the one-hot label vector  

𝑌 = (𝑦1, 𝑦2, … 𝑦𝐶 ) ∈ ℛ1×1×𝐶, where 𝐶 stands for the various types of land cover. 

The mixed land-cover classes in the hyperspectral pixels, however, introduce 

considerable intra-class variability and inter-class similarity into 𝐈. Any model must 

overcome a huge challenge to solve this issue. The original HSI data (𝐈) along 

spectral bands are initially subjected to the conventional principal component 

analysis (PCA) to reduce the spectral redundancy. The PCA keeps the same spatial 

dimensions (i.e., width 𝑀 and height 𝑁) while reducing the number of spectral bands 

from 𝐷 to 𝐵. 

The spectral bands have been selectively minimized to maintain the crucial 

spatial information required for object recognition. The data cube, which has 

undergone PCA reduction, can be represented as 𝐗 ∈ ℛ𝑀×𝑁×𝐵. In this 

representation, 𝑋 is the adjusted input following the PCA process, 𝑀 signifies the 

width, 𝑁 stands for the height, and 𝐵 represents the count of spectral bands post-

PCA. 
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The Hyper Spectral Imaging (HSI) data cube is segmented into minute, 

intersecting 3D sections, the authentic labels of these are decided by the middle 

pixel's label to apply image categorization methods.  We have constructed 3D 

adjacent patches 𝑃 ∈ ℛ𝑆×𝑆×𝐵 from 𝐗, situated at the spatial point (𝛼, 𝛽), 

encapsulating the 𝑆 × 𝑆 window or spatial range and all 𝐵 spectral bands. The 

aggregate quantity of created 3D patches (𝑛) from 𝑋 is given by (𝑀 − 𝑆 + 1) ×

(𝑁 − 𝑆 + 1). Hence, the 3D patch situated at position (𝛼, 𝛽), denoted by 𝑃𝛼,𝛽, 

covers the width from 𝛼 − (𝑆 − 1)/2 to 𝛼 + (𝑆 − 1)/2, height from 𝛽 − (𝑆 − 1)/2 

to 𝛽 + (𝑆 − 1)/2 and includes all 𝐵 spectral bands of the Principal Component 

Analysis (PCA) condensed data cube 𝑋. 

In 2D Convolutional Neural Networks (2D-CNN), the incoming data are 

processed with 2D kernel functions. This convolution operation involves calculating 

the aggregate of the dot product between the input data and the kernel. The kernel 

slides across the input data to encompass its complete spatial dimensions. The output 

from this convolution, also known as convolved features, are fed into an activation 

function to incorporate nonlinearity into the model. In 2D convolution, the activation 

value at spatial coordinate (𝑥, 𝑦) in the 𝑗th  feature map of the 𝑖𝑡ℎ layer, denoted as 

𝑣𝑖,𝑗
𝑥,𝑦

, is computed based on the subsequent equation, 

 𝑣𝑖,𝑗
𝑥,𝑦

= 𝜙 (𝑏𝑖,𝑗 + ∑  

𝑑𝑙−1

𝜏=1

  ∑  

𝛾

𝜌=−𝛾

  ∑  

𝛿

𝜎=−𝛿

 𝑤𝑖,𝑗,𝜏
𝜎,𝜌

× 𝑣𝑖−1,𝜏
𝑥+𝜎,𝑦+𝜌

) (4.1) 

 

where 𝜙 is the activation function, 𝑏𝑖,𝑗 signifies the bias parameter for the 𝑗th  

feature map of the 𝑖th  layer, 𝑑𝑙−1 is the number of feature map in (𝑙 − 1)𝑡ℎ layer and 

the depth of kernel 𝑤𝑖,𝑗 for the 𝑗th  feature map of the 𝑖th  layer, 2𝛾 + 1 is the width 
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of kernel, 2𝛿 + 1 is the height of kernel, and 𝑤𝑖,𝑗 is the value of weight parameter 

for the 𝑗th  feature map of the 𝑖th  layer. 

The process of 3D convolution involves convolving a 3D kernel with 3D data. 

In the suggested model tailored for Hyper Spectral Imaging (HSI) data, the 

convolution layer's feature maps are created by applying a 3D kernel across several 

adjacent bands in the input layer, thereby encompassing the spectral data. During 3D 

convolution, the activation value located at the spatial coordinates(𝑥, 𝑦, 𝑧) in the 𝑗𝑡ℎ 

feature map of the 𝑖𝑡ℎ layer, denoted as 𝑣𝑖,𝑗
𝑥,𝑦,𝑧

, is generated as follows, 

 𝑣𝑖,𝑗
𝑥,𝑦,𝑧

= 𝜙 (𝑏𝑖,𝑗 + ∑  

𝑑𝑙−1

𝜏=1

  ∑  

𝜂

𝜆=−𝜂

  ∑  

𝛾

𝜌=−𝛾

  ∑  

𝛿

𝜎=−𝛿

 𝑤𝑖,𝑗,𝜏
𝜎,𝜌,𝜆

× 𝑣𝑖−1,𝜏
𝑥+𝜎,𝑦+𝜌,𝑧+𝜆

) (4.2) 

 

where 2𝜂 + 1 is the depth of kernel along spectral dimension and other 

parameters are the same as in (Eq. 4.1). 

CNN parameters, including the bias 𝑏 and the kernel weight 𝑤, are commonly 

trained using supervised methods with the aid of gradient descent optimization 

techniques. Traditional 2D CNNs perform convolutions exclusively across the 

spatial dimensions, incorporating all the feature maps of the preceding layer to 

derive the 2D discriminative feature maps. However, when it comes to HSI 

classification, it's crucial to capture not only spatial information but also spectral 

data, which is distributed across multiple bands. This is something that 2D-CNNs 

fall short in managing. On the other hand, a 3D-CNN kernel can simultaneously 

extract both spectral and spatial features from HSI data, but this comes with the 

drawback of elevated computational complexity. To leverage the automatic feature 

learning strengths of both 2D and 3D CNN, we introduce a mixed feature learning 

framework dubbed DualConvHSINet for HSI classification. The flow diagram of 

the proposed DualConvHSINet network is shown in Figure 4.1. It includes three 3D 
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convolutions (Eq. 4.2), a single 2D convolution (Eq. 4.1), and three fully connected 

layers. 

 

Figure 4.1 The DualConvHSINet model is suggested, which combines 3D 

and 2D convolution methods for the classification of hyperspectral images (HSI). 

 

The software implementation for hyperspectral image classification is 

primarily done in Python and leverages a number of machine learning and data 

processing libraries. Key among them is TensorFlow, a powerful machine learning 

library used for creating the Convolutional Neural Network model. Additionally, the 

Scikit-learn library is used for Principal Component Analysis (PCA), an operation 

essential for reducing the spectral redundancy in the initial hyperspectral data cube. 

Other utility libraries like Matplotlib and NumPy are also employed for data 

visualization and manipulation, respectively. 

To summarize, the key functions in the program include: 

1. load_data(name): This function is implemented to load the initial 

hyperspectral data (I) and labels using the Scipy library. This process corresponds to 

the initial theoretical definitions of I and Y. 

2. apply_pca(X, numComponents=75): This function implements PCA via 

Scikit-learn to reduce the spectral redundancy of the initial hyperspectral data (I), in 
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accordance with the theoretical concept. It transforms the initial data cube I to X 

with reduced spectral bands. 

3. pad_with_zeros(X, margin=2): This function is used to pad the adjusted 

input X with zeros, a step which allows the formation of 3D adjacent patches that 

have their boundaries outside the actual spatial dimensions of X. 

4. generate_image_cubes(X, y, windowSize=5, removeZeroLabels = True): 

This function generates the 3D adjacent patches P for image categorization, based 

on the definitions given in the theoretical part. 

5. build_model(input_shape, output_units): This function constructs the 

DualConvHSINet model, incorporating both 2D and 3D convolutions along with 

fully connected layers. It employs the TensorFlow library to create the layers, which 

helps extract both spatial and spectral features from HSI data. 

The last part of the code integrates the above functions and follows the process 

of loading the data, applying PCA, generating image cubes, building the model, and 

then training it using the TensorFlow library. It further saves the model in format h5 

and plots the loss and accuracy curves using Matplotlib. 

The developed model complies with the theoretical framework, by 

successfully addressing the issue of high intra-class variability and inter-class 

similarity in hyperspectral pixels and effectively extracting both spatial and spectral 

information for HSI classification. 

The full Python implementation of the hyperspectral images classification 

model training is provided in Appendix A. 

 

4.2 Dataset description and training details 

 

We utilized three hyperspectral image datasets that are openly accessible: 

University of Pavia, Indian Pines, and Salinas Scene. The Indian Pines (IP) dataset 
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includes images with spatial dimensions of 145 x 145 and 224 spectral bands 

spanning from 400 to 2500 nm wavelengths, but we excluded 24 spectral bands that 

overlap with water absorption regions. This dataset is categorized into 16 different 

vegetation classes according to the available ground truth. The University of Pavia 

(UP) dataset comprises images with spatial dimensions of 610x340 pixels and 103 

spectral bands ranging from 430 to 860 nm in wavelength. The ground truth here is 

partitioned into 9 urban land-cover categories. Lastly, the Salinas Scene (SA) dataset 

consists of images with spatial dimensions of 512x217 and 224 spectral bands 

covering the wavelength range of 360 to 2500 nm. We removed 20 spectral bands 

that were absorbing water. This dataset has a total of 16 different classes. The 

network was trained using mini-batches, each consisting of 256 examples, and the 

training process was repeated for a total of 100 epochs. This was done without the 

use of batch normalization or data augmentation techniques. 

All experimental work is performed with the help of Colab Research, using a 

computing environment with an A100 GPU and 24 GB RAM. It was identified the 

optimal learning rate to be 0.001, as determined by the classification results. To 

ensure a balanced comparison, we have maintained consistent spatial dimensions in 

3D-patches of input volume across various datasets, with dimensions being 

25x25x30 for IP, and 25x25x15 for both UP and SA, respectively. 

Let's delve into the implications of executing the code found in Appendix A, 

specifically with reference to the Pavia University dataset. This is an image captured 

by the ROSIS sensor during a flight campaign over Pavia, located in northern Italy. 

The image from Pavia University comprises 103 spectral bands and measures 

610*340 pixels. However, certain samples in these images lack valuable information 

and need to be excluded prior to analysis. The geometric resolution of the image 

stands at 1.3 meters. Each image's ground truth distinguishes 9 unique classes. The 

figures illustrate the omitted samples as broad black strips. 
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Initially, the console will yield an output akin to that depicted in Figure 4.1, 

providing an in-depth description and analysis of the model parameters. 

This output is a summary of a convolutional neural network (CNN) 

architecture specifically designed for the classification of hyperspectral images. 

Let's delve into the description: 

- InputLayer receives the hyperspectral images, which have a dimensionality 

of 25x25 spatial pixels, 15 spectral bands (or channels), and 1 to indicate grayscale 

(if images were colored, it would typically be 3). The choice of 25x25 based on 

empirical results suggesting that patches of this size contain enough spatial context 

to make accurate predictions while still being small enough to be computationally 

manageable. In other words, these patches provide a balance between computational 

efficiency and model performance. The patches are extracted from the entire 

hyperspectral image and used to train the model. This is often done in order to 

manage the high dimensionality of hyperspectral images and to generate more 

training examples. In this case, the model is designed to work with images that have 

15 spectral bands. 

- Conv3D layers apply convolution operation in 3D, spatially and spectrally. 

They extract features from the input data and reduce their dimensions. There are 3 

Conv3D layers in the model with an increasing number of filters (8, 16, and 32) used 

to capture more complex patterns as the data progresses through the network. The 

kernel size used by these convolution operations is implicitly set to (3,3,3), since the 

output dimensions reduce by 2 at each step. 

- Reshape layer converts the 3D output of the last Conv3D layer into 2D. It 

combines the last two dimensions, reducing it from (19,19,3,32) to (19,19,96). 

- Conv2D is a convolution layer that operates in 2 dimensions (height and 

width). It is used here for further spatial feature extraction from the reshaped data. 
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- Flatten layer is used to flatten the output of the Conv2D layer into a single 

dimension vector, which can be inputted into Dense layers. 

- Dense layers, also called fully connected layers, perform classification on 

the features extracted by the convolutional layers. The model uses two Dense layers 

with 256 and 128 neurons respectively, followed by dropout layers to prevent 

overfitting. 

- The final Dense layer with 9 neurons is the output layer, corresponding to 

the 9 classes that the model is expected to classify. This would indicate that there are 

9 different classes in the hyperspectral image dataset. 

- The dropout layers are used for regularization and reducing overfitting. 

During training, they randomly set a fraction of input units to 0 at each update, which 

helps prevent overfitting. 

This network has a total of 4,844,793 trainable parameters, meaning that these 

weights and biases are updated during training. There are no non-trainable 

parameters in this network, which would otherwise be kept constant during training. 
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Figure 4.1 Results of model parameters for PU dataset 

 

After carrying out the training, we can observe the accuracy and loss 

convergence over 100 epochs for both training and validation sets, as depicted in 

Fig. 4.2 for the suggested approach. Notably, convergence is reached roughly around 

the 50th epoch, indicating the method's swift convergence rate. 
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Figure 4.2 The convergence of accuracy and loss across epochs on the Indian Pines 

dataset. 
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4.3 Classification results 

 

Full implementation is places in Appendix B. The general approach there is 

to prepare the data, load the model, make predictions, evaluate performance, and 

visualize the results. 

As we already remember hyperspectral imaging is an image consisting of 

many spectral bands, each reflecting the intensity of light of a particular wavelength. 

These bands represent a wide range of the electromagnetic spectrum, often beyond 

the limits of visible light. Our ROSIS-03 hyperspectral sensor covers the spectrum 

from 430 to 860 nm, dividing it into 103 spectral bands. The width of each band is 

approximately 4.174 nm. The image on Figure 4.3 is based on data from three 

spectral bands: 54, 33, and 14. 

The 54th band is the red region of the spectrum corresponding to the 

wavelength range of approximately 625 - 740 nm. 

The 33rd band is the green region of the spectrum corresponding to a 

wavelength range of approximately 520 to 570 nm. 

The 14th band is the blue region of the spectrum, corresponding to a 

wavelength range of approximately 440 - 490 nm. 

Thus, the result is an image where each pixel is displayed with a color based 

on the light intensity of these three wavelengths (red, green and blue). This allows 

spectral data that would otherwise be invisible to the eye to be visualized and 

analyzed. 
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Figure 4.3 Visual display of hyperspectral images that would otherwise be 

invisible to the eye 

 

Now let's move on to classifying our image. In general, the algorithm works 

as follows:  

1. First, a two-dimensional array is created which will be used to store the 

prediction results for each pixel in the image. 

2. The algorithm then looks at each pixel in the image in turn. 

3. If a pixel does not belong to the classes of interest (usually designated as 

class 0), it is skipped. 
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4. For each pixel of interest, the algorithm extracts the corresponding portion 

of the image. This portion of the image is the area around the pixel, and its 

dimensions are determined in advance. 

5. This section of the image is then fed to the input of the deep learning model, 

which performs prediction, predicting which class the section belongs to. 

6. Since the model produces a probability distribution for all classes, we select 

the class with the highest probability as the predicted class. 

This process is repeated for each pixel in the image. 

The result is a two-dimensional classification map for the entire image as on 

Figure 4.4. This map shows which class each pixel in the image belongs to, 

according to our deep learning model.  

 

 

Figure 4.4 Predicted classification map for Pavia University dataset 
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Figure 4.5 Legend for predicted classification map for Pavia University 

dataset 

 

 

Figure 4.6 Visual display of the predicted classification map from the 

original image 
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4.4 Performance evaluation 

 

In this correspondence, we've applied three different evaluation metrics - 

Overall Accuracy (OA), Average Accuracy (AA), and the Kappa Coefficient 

(Kappa) - to assess the performance of Hyperspectral Image (HSI) classification. OA 

gives us the ratio of accurately classified samples to the total sample count, while 

AA is the mean accuracy calculated across various classes. Kappa, on the other hand, 

is a statistical measure offering mutual insights into the high-level correspondence 

between the real-world and classified maps. The outcomes from the 

DualConvHSINet model that we propose are juxtaposed with prevalent supervised 

techniques like SVM, 2D-CNN, 3D-CNN, M3D-CNN, and SSRN. The dataset is 

divided arbitrarily into training (30%) and testing (70%) segments. The 

computations of results were performed using the publicly accessible code 

corresponding to the methods being compared. 

As shown in Table 4.1, the OA, AA, and Kappa coefficient results for various 

methods4 are presented. DualConvHSINet, as indicated by Table 4.1, surpasses all 

other comparative methods across each dataset, all while maintaining the lowest 

standard deviation. The design of DualConvHSINet is predicated on the layered 

depiction of a spectral-spatial 3D CNN, succeeded by a spatial 2D CNN. These two 

are mutually beneficial. An observation from these findings shows that the 3D-CNN 

underperforms compared to the 2D-CNN on the Salinas Scene dataset. To our 

understanding, this may be due to the existence of two classes in the Salinas dataset 

(specifically Grapes-untrained and Vinyarduntrained) which predominantly have 

similar textures across the majority of spectral bands. As such, with the heightened 

redundancy across the spectral bands, the 2D-CNN outdoes the 3D-CNN on the 

Salinas Scene dataset. In addition, the performance of both SSRN and 

DualConvHSINet consistently outmatches that of M3D-CNN. The implication is 
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clear that solo 3D or 2D convolution cannot provide the same level of discriminative 

feature representation as a hybrid of 3D and 2D convolutions. 

Figure 4.7 depicts a classification map of a sample hyperspectral image, 

created using SVM, 2D-CNN, 3D-CNN, M3D-CNN, SSRN, and DualConvHSINet 

methods. The classification map quality for SSRN and DualConvHSINet noticeably 

exceeds that of the other techniques. Among SSRN and DualConvHSINet, the maps 

created by DualConvHSINet in smaller sections are superior to those by SSRN. The 

computational efficiency of the DualConvHSINet model is evident in the training 

and testing durations outlined in Table 4.2, demonstrating its increased efficiency 

over the 3D-CNN model. Table 4.3 reflects the impact of spatial dimension on the 

performance of the DualConvHSINet model, revealing that a 25 × 25 spatial 

dimension is most fitting for the proposed method. We further conducted 

experiments with even less training data, specifically only 10% of total samples, and 

encapsulated the results in Table 4.4. It is notable from this experiment that each 

model's performance dips slightly, yet the proposed method continues to surpass the 

other techniques in nearly all instances. 

 

4.5 Conclusion 

 

This correspondence presents a hybrid 3D and 2D model intended for 

hyperspectral image categorization. The suggested DualConvHSINet model 

essentially merges the mutually beneficial data of spatio-spectral and spectral 

elements via 3D and 2D convolutions, respectively. Benchmark tests across three 

datasets, contrasted with recent advanced methods, substantiate the proposed 

method's superior effectiveness. Not only is the proposed model more 

computationally efficient than the 3D-CNN model, but it also demonstrates 

outstanding performance when working with limited training data. 
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CONCLUSIONS 

 

Hyperspectral images from remote sensing offer distinct advantages over 

traditional multispectral images. This includes providing more accurate and detailed 

analyses of satellite data, which is significant for various applications like 

geological, agricultural, environmental, and military purposes. 

There is a wide array of techniques currently being used for object 

classification in hyperspectral images, all of which have proven to be precise in 

delivering high-resolution data. 

The work introduces a novel software approach for object classification on 

hyperspectral images, utilizing advanced machine learning algorithms. This 

represents a significant contribution in the field as it demonstrates the potential for 

enhancing current remote sensing capabilities. 

The implications of this study are broad and promising, potentially leading to 

significant advancements in remote sensing, object classification, and hyperspectral 

image analysis. These advancements could lead to improved accuracy and efficiency 

in the mentioned applications, supporting progress in several critical areas. 
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APPENDIX A 

Software implementation of DualConvHSINet model training for object 

classification 

import os 

import numpy as np 

import scipy.io as sio 

import matplotlib.pyplot as plt 

import tensorflow as tf 

from tensorflow.keras.models import Model, load_model 

from tensorflow.keras.layers import Input, Conv3D, Conv2D, 

Dense, Flatten, Reshape, Dropout 

from tensorflow.keras.optimizers import Adam 

from tensorflow.keras.utils import to_categorical 

from sklearn.decomposition import PCA 

from sklearn.model_selection import train_test_split 

from sklearn.preprocessing import LabelEncoder 

from collections import Counter 

from sklearn.model_selection import StratifiedShuffleSplit 

 

## GLOBAL VARIABLES 

DATASET = 'PU' 

TEST_RATIO = 0.7 

WINDOW_SIZE = 25 

DATA_PATH = '/content/dataset/' 

MODEL_PATH = 

"/content/drive/MyDrive/trained_models/{}_hybrid_sn.h5".for

mat(DATASET) 

 

def load_data(name): 

    """ 

    Load data and labels for a given dataset name. 

 

    Parameters: 

    name (str): Name of the dataset to load. 

                 Acceptable inputs: 'IP', 'SA', 'SA_S', 

'PU'. 

 

    Returns: 

    data (ndarray): Multidimensional array containing the 

loaded data. 

    labels (ndarray): Multidimensional array containing the 

corresponding labels. 
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    """ 

    if name == 'IP': 

        data = sio.loadmat(os.path.join(DATA_PATH, 

'Indian_pines_corrected.mat'))['indian_pines_corrected'] 

        labels = sio.loadmat(os.path.join(DATA_PATH, 

'Indian_pines_gt.mat'))['indian_pines_gt'] 

    elif name == 'SA': 

        data = sio.loadmat(os.path.join(DATA_PATH, 

'Salinas_corrected.mat'))['salinas_corrected'] 

        labels = sio.loadmat(os.path.join(DATA_PATH, 

'Salinas_gt.mat'))['salinas_gt'] 

    elif name == 'SA_S': 

        data = sio.loadmat(os.path.join(DATA_PATH, 

'SalinasA_corrected.mat'))['salinasA_corrected'] 

        labels = sio.loadmat(os.path.join(DATA_PATH, 

'SalinasA_gt.mat'))['salinasA_gt'] 

    elif name == 'PU': 

        data = sio.loadmat(os.path.join(DATA_PATH, 

'PaviaU.mat'))['paviaU'] 

        labels = sio.loadmat(os.path.join(DATA_PATH, 

'PaviaU_gt.mat'))['paviaU_gt'] 

    return data, labels 

 

def apply_pca(X, numComponents=75): 

    """ 

    Apply PCA (Principal Component Analysis) to the input 

data. 

 

    Parameters: 

    X (ndarray): Input data to which PCA will be applied. 

    numComponents (int): Number of principal components to 

return. 

 

    Returns: 

    newX (ndarray): Transformed data after applying PCA. 

    pca (PCA): The PCA model fitted on the data. 

    """ 

    newX = np.reshape(X, (-1, X.shape[2])) 

    pca = PCA(n_components=numComponents, whiten=True) 

    newX = pca.fit_transform(newX) 

    newX = np.reshape(newX, (X.shape[0],X.shape[1], 

numComponents)) 

    return newX, pca 
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def pad_with_zeros(X, margin=2): 

    """ 

    Pad the input array with zeros around the border. 

 

    Parameters: 

    X (ndarray): Input array. 

    margin (int): Width of the zero-padding. 

 

    Returns: 

    newX (ndarray): The zero-padded array. 

    """ 

    newX = np.zeros((X.shape[0] + 2 * margin, X.shape[1] + 

2* margin, X.shape[2])) 

    x_offset = margin 

    y_offset = margin 

    newX[x_offset:X.shape[0] + x_offset, 

y_offset:X.shape[1] + y_offset, :] = X 

    return newX 

 

def plot_model_history(history): 

    """ 

    Plot the training history of a model. 

 

    Parameters: 

    history (History): History object obtained from the fit 

method of a model. 

 

    Returns: 

    None 

    """ 

    # Plotting the Loss Curve 

    plt.figure(figsize=(5,5)) 

    plt.grid()  

    plt.plot(history.history['loss']) 

    plt.plot(history.history['val_loss']) 

    plt.ylabel('Loss') 

    plt.xlabel('Epochs') 

    plt.legend(['Training','Validation'], loc='upper 

right') 

    plt.savefig("loss_curve.png") 

    plt.show() 

 

    # Plotting the Accuracy Curve 

    plt.figure(figsize=(5,5)) 
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    plt.ylim(0,1.1) 

    plt.grid()  

    plt.plot(history.history['accuracy']) 

    plt.plot(history.history['val_accuracy']) 

    plt.ylabel('Accuracy') 

    plt.xlabel('Epochs') 

    plt.legend(['Training','Validation']) 

    plt.savefig("acc_curve.png") 

    plt.show() 

 

def build_model(input_shape, output_units): 

    """ 

    Build a Convolutional Neural Network (CNN) model. 

 

    Parameters: 

    input_shape (tuple): Shape of the input data. 

    output_units (int): Number of output units (number of 

classes). 

 

    Returns: 

    model (Model): Compiled CNN model. 

    """ 

    ## input layer 

    input_layer = Input(input_shape) 

 

    ## convolutional layers 

    conv_layer1 = Conv3D(filters=8, kernel_size=(3, 3, 7), 

activation='relu')(input_layer) 

    conv_layer2 = Conv3D(filters=16, kernel_size=(3, 3, 5), 

activation='relu')(conv_layer1) 

    conv_layer3 = Conv3D(filters=32, kernel_size=(3, 3, 3), 

activation='relu')(conv_layer2) 

 

    conv3d_shape = tf.keras.backend.int_shape(conv_layer3) 

    conv_layer3 = Reshape((conv3d_shape[1], 

conv3d_shape[2], 

conv3d_shape[3]*conv3d_shape[4]))(conv_layer3) 

    conv_layer4 = Conv2D(filters=64, kernel_size=(3,3), 

activation='relu')(conv_layer3) 

 

    flatten_layer = Flatten()(conv_layer4) 

 

    ## fully connected layers 
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    dense_layer1 = Dense(units=256, 

activation='relu')(flatten_layer) 

    dense_layer1 = Dropout(0.4)(dense_layer1) 

    dense_layer2 = Dense(units=128, 

activation='relu')(dense_layer1) 

    dense_layer2 = Dropout(0.4)(dense_layer2) 

    output_layer = Dense(units=output_units, 

activation='softmax')(dense_layer2) 

 

    # Define the model and print the summary 

    model = Model(inputs=input_layer, outputs=output_layer) 

    model.summary() 

 

    return model 

 

def generate_image_cubes(X, y, windowSize=5, 

removeZeroLabels = True): 

    """ 

    Generate 3D image cubes from the input data. 

 

    Parameters: 

    X (ndarray): Input data. 

    y (ndarray): Corresponding labels of the data. 

    windowSize (int): Size of the spatial window. 

    removeZeroLabels (bool): If True, patches corresponding 

to zero labels are not returned. 

 

    Yields: 

    (patch, patch_label): Tuples of image patches and 

corresponding labels. 

    """ 

    margin = int((windowSize - 1) / 2) 

    zeroPaddedX = pad_with_zeros(X, margin=margin) 

    # generate patches 

    for r in range(margin, zeroPaddedX.shape[0] - margin): 

        for c in range(margin, zeroPaddedX.shape[1] - 

margin): 

            patch = zeroPaddedX[r - margin:r + margin + 1, 

c - margin:c + margin + 1]    

            patch_label = y[r-margin, c-margin] 

            if removeZeroLabels and patch_label > 0: 

                yield (patch, patch_label - 1) 

            elif not removeZeroLabels: 

                yield (patch, patch_label) 
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if __name__ == '__main__': 

    if not os.path.exists(MODEL_PATH): 

        X, y = load_data(DATASET) 

        K = 30 

        X, _ = apply_pca(X, numComponents=K) 

        patchesGenerator = generate_image_cubes(X, y, 

windowSize=WINDOW_SIZE) 

        X_patches = [] 

        y_patches = [] 

        for (patch, label) in patchesGenerator: 

            X_patches.append(patch) 

            y_patches.append(label) 

        X = np.array(X_patches) 

        y = np.array(y_patches) 

        X_train, X_test, y_train, y_test = 

train_test_split(X, y, test_size=TEST_RATIO, stratify=y) 

        X_train = X_train.reshape(-1, WINDOW_SIZE, 

WINDOW_SIZE, K, 1) 

        print("Unique labels before to_categorical:", 

np.unique(y_train)) 

        le = LabelEncoder() 

        y_train_encoded = le.fit_transform(y_train) 

        y_train = to_categorical(y_train_encoded) 

        print("Unique labels after encoding:", 

np.unique(y_train_encoded))  

        # Determine the number of unique classes 

        output_units = len(np.unique(y_train_encoded)) 

        model = build_model((WINDOW_SIZE, WINDOW_SIZE, K, 

1), output_units) 

        #compiling the model 

        adam = tf.keras.optimizers.legacy.Adam(lr=0.001, 

decay=1e-06) 

        model.compile(loss='categorical_crossentropy', 

optimizer=adam, metrics=['accuracy']) 

        history = model.fit(x=X_train, y=y_train, 

batch_size=256, epochs=100, validation_split=0.2) 

        model.save(MODEL_PATH) 

        plot_model_history(history) 

    else: 

        print(f'Model {MODEL_PATH} already exists.') 

 

 



80 

 

APPENDIX B 

Software implementation of using DualConvHSINet model for object 

classification 

import os 

import numpy as np 

import scipy.io as sio 

import matplotlib.pyplot as plt 

import tensorflow as tf 

from tensorflow.keras.models import Model, load_model 

from tensorflow.keras.layers import Input, Conv3D, Conv2D, 

Dense, Flatten, Reshape, Dropout 

from tensorflow.keras.optimizers import Adam 

from tensorflow.keras.utils import to_categorical 

from sklearn.decomposition import PCA 

from sklearn.model_selection import train_test_split 

from sklearn.metrics import confusion_matrix, 

accuracy_score, classification_report, cohen_kappa_score 

from keras.utils import np_utils 

import spectral 

from matplotlib import colors 

 

DATASET = 'PU' 

DATA_PATH = '/content/dataset/' 

MODEL_PATH = 

"/content/drive/MyDrive/trained_models/{}_hybrid_sn.h5".for

mat(DATASET) 

WINDOW_SIZE = 25 

TEST_RATIO = 0.7 

 

def load_data(name): 

    if name == 'IP': 

        data = sio.loadmat(os.path.join(DATA_PATH, 

'Indian_pines_corrected.mat'))['indian_pines_corrected'] 

        labels = sio.loadmat(os.path.join(DATA_PATH, 

'Indian_pines_gt.mat'))['indian_pines_gt'] 

    elif name == 'SA': 

        data = sio.loadmat(os.path.join(DATA_PATH, 

'Salinas_corrected.mat'))['salinas_corrected'] 

        labels = sio.loadmat(os.path.join(DATA_PATH, 

'Salinas_gt.mat'))['salinas_gt'] 

    elif name == 'PU': 
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        data = sio.loadmat(os.path.join(DATA_PATH, 

'PaviaU.mat'))['paviaU'] 

        labels = sio.loadmat(os.path.join(DATA_PATH, 

'PaviaU_gt.mat'))['paviaU_gt'] 

    return data, labels 

 

def splitTrainTestSet(X, y, testRatio, randomState=345): 

    X_train, X_test, y_train, y_test = train_test_split(X, 

y, test_size=testRatio, random_state=randomState, 

stratify=y) 

    return X_train, X_test, y_train, y_test 

   

def applyPCA(X, numComponents=75): 

    newX = np.reshape(X, (-1, X.shape[2])) 

    pca = PCA(n_components=numComponents, whiten=True) 

    newX = pca.fit_transform(newX) 

    newX = np.reshape(newX, (X.shape[0],X.shape[1], 

numComponents)) 

    return newX, pca 

   

def padWithZeros(X, margin=2): 

    newX = np.zeros((X.shape[0] + 2 * margin, X.shape[1] + 

2* margin, X.shape[2])) 

    x_offset = margin 

    y_offset = margin 

    newX[x_offset:X.shape[0] + x_offset, 

y_offset:X.shape[1] + y_offset, :] = X 

    return newX 

 

def createImageCubes(X, y, windowSize=5, removeZeroLabels = 

True): 

    margin = int((windowSize - 1) / 2) 

    zeroPaddedX = padWithZeros(X, margin=margin) 

    # split patches 

    patchesData = np.zeros((X.shape[0] * X.shape[1], 

windowSize, windowSize, X.shape[2])) 

    patchesLabels = np.zeros((X.shape[0] * X.shape[1])) 

    patchIndex = 0 

    for r in range(margin, zeroPaddedX.shape[0] - margin): 

        for c in range(margin, zeroPaddedX.shape[1] - 

margin): 

            patch = zeroPaddedX[r - margin:r + margin + 1, 

c - margin:c + margin + 1]    

            patchesData[patchIndex, :, :, :] = patch 



82 

 

            patchesLabels[patchIndex] = y[r-margin, c-

margin] 

            patchIndex = patchIndex + 1 

    if removeZeroLabels: 

        patchesData = patchesData[patchesLabels>0,:,:,:] 

        patchesLabels = patchesLabels[patchesLabels>0] 

        patchesLabels -= 1 

    return patchesData, patchesLabels 

def Patch(data,height_index,width_index): 

    height_slice = slice(height_index, 

height_index+PATCH_SIZE) 

    width_slice = slice(width_index, 

width_index+PATCH_SIZE) 

    patch = data[height_slice, width_slice, :] 

    return patch 

 

X, y = load_data(DATASET) 

X.shape, y.shape 

K = 30 

X,pca = applyPCA(X,numComponents=K) 

K = X.shape[2] 

X, y = createImageCubes(X, y, windowSize=WINDOW_SIZE) 

Xtrain, Xtest, ytrain, ytest = splitTrainTestSet(X, y, 

TEST_RATIO) 

Xtrain.shape, Xtest.shape, ytrain.shape, ytest.shape 

Xtrain = Xtrain.reshape(-1, WINDOW_SIZE, WINDOW_SIZE, K, 1) 

ytrain = np_utils.to_categorical(ytrain) 

S = WINDOW_SIZE 

L = K 

output_units = 16 

model = load_model(MODEL_PATH) 

adam = tf.keras.optimizers.legacy.Adam(lr=0.001, decay=1e-

06) 

model.compile(loss='categorical_crossentropy', 

optimizer=adam, metrics=['accuracy']) 

Xtest = Xtest.reshape(-1, WINDOW_SIZE, WINDOW_SIZE, K, 1) 

ytest = np_utils.to_categorical(ytest) 

Y_pred_test = model.predict(Xtest) 

y_pred_test = np.argmax(Y_pred_test, axis=1) 

 

# load the original image 

X, y = load_data(DATASET) 

height = y.shape[0] 

width = y.shape[1] 
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PATCH_SIZE = WINDOW_SIZE 

numComponents = K 

X,pca = applyPCA(X, numComponents=numComponents) 

X = padWithZeros(X, PATCH_SIZE//2) 

 

from operator import truediv 

 

def AA_andEachClassAccuracy(confusion_matrix): 

    counter = confusion_matrix.shape[0] 

    list_diag = np.diag(confusion_matrix) 

    list_raw_sum = np.sum(confusion_matrix, axis=1) 

    each_acc = np.nan_to_num(truediv(list_diag, 

list_raw_sum)) 

    average_acc = np.mean(each_acc) 

    return each_acc, average_acc 

def reports (X_test,y_test,name): 

    #start = time.time() 

    Y_pred = model.predict(X_test) 

    y_pred = np.argmax(Y_pred, axis=1) 

    #end = time.time() 

    #print(end - start) 

    if name == 'IP': 

        target_names = ['Alfalfa', 'Corn-notill', 'Corn-

mintill', 'Corn' 

                        ,'Grass-pasture', 'Grass-trees', 

'Grass-pasture-mowed',  

                        'Hay-windrowed', 'Oats', 'Soybean-

notill', 'Soybean-mintill', 

                        'Soybean-clean', 'Wheat', 'Woods', 

'Buildings-Grass-Trees-Drives', 

                        'Stone-Steel-Towers'] 

    elif name == 'SA': 

        target_names = 

['Brocoli_green_weeds_1','Brocoli_green_weeds_2','Fallow','

Fallow_rough_plow','Fallow_smooth', 

                        'Stubble','Celery','Grapes_untraine

d','Soil_vinyard_develop','Corn_senesced_green_weeds', 

                        'Lettuce_romaine_4wk','Lettuce_roma

ine_5wk','Lettuce_romaine_6wk','Lettuce_romaine_7wk', 

                        'Vinyard_untrained','Vinyard_vertic

al_trellis'] 

    elif name == 'PU': 
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        target_names = 

['Asphalt','Meadows','Gravel','Trees', 'Painted metal 

sheets','Bare Soil','Bitumen', 

                        'Self-Blocking Bricks','Shadows'] 

     

    classification = 

classification_report(np.argmax(y_test, axis=1), y_pred, 

target_names=target_names) 

    oa = accuracy_score(np.argmax(y_test, axis=1), y_pred) 

    confusion = confusion_matrix(np.argmax(y_test, axis=1), 

y_pred) 

    each_acc, aa = AA_andEachClassAccuracy(confusion) 

    kappa = cohen_kappa_score(np.argmax(y_test, axis=1), 

y_pred) 

    score = model.evaluate(X_test, y_test, batch_size=32) 

    Test_Loss =  score[0]*100 

    Test_accuracy = score[1]*100 

     

    return classification, confusion, Test_Loss, 

Test_accuracy, oa*100, each_acc*100, aa*100, kappa*100 

 

classification, confusion, Test_loss, Test_accuracy, oa, 

each_acc, aa, kappa = reports(Xtest,ytest,DATASET) 

classification = str(classification) 

confusion = str(confusion) 

file_name = "classification_report.txt" 

 

with open(file_name, 'w') as x_file: 

    x_file.write('{} Test loss (%)'.format(Test_loss)) 

    x_file.write('\n') 

    x_file.write('{} Test accuracy 

(%)'.format(Test_accuracy)) 

    x_file.write('\n') 

    x_file.write('\n') 

    x_file.write('{} Kappa accuracy (%)'.format(kappa)) 

    x_file.write('\n') 

    x_file.write('{} Overall accuracy (%)'.format(oa)) 

    x_file.write('\n') 

    x_file.write('{} Average accuracy (%)'.format(aa)) 

    x_file.write('\n') 

    x_file.write('\n') 

    x_file.write('{}'.format(classification)) 

    x_file.write('\n') 

    x_file.write('{}'.format(confusion)) 
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outputs = np.zeros((height,width)) 

for i in range(height): 

    for j in range(width): 

        target = int(y[i,j]) 

        if target == 0 : 

            continue 

        else : 

            image_patch=Patch(X,i,j) 

            X_test_image = 

image_patch.reshape(1,image_patch.shape[0],image_patch.shap

e[1], image_patch.shape[2], 

1).astype('float32')                                    

            prediction = (model.predict(X_test_image)) 

            prediction = np.argmax(prediction, axis=1) 

            outputs[i][j] = prediction+1 

 

X2, y2 = load_data(DATASET) 

 

spectral.imshow(X2, (54, 33, 14), stretch=(0.02, 

0.98),figsize =(7,7)) 

 

spectral.imshow(classes = outputs.astype(int),figsize 

=(7,7)) 

 

predict_image = spectral.imshow(X2, (54, 33, 14), 

stretch=(0.02, 0.98), classes = outputs.astype(int),figsize 

=(7,7)) 

predict_image.set_display_mode('overlay') 

predict_image.class_alpha = 0.6 
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APPENDIX C 

 

Methods 
Indian Pines Dataset 

University of Pavia 

Dataset 
Salinas Scene Dataset 

OA Kappa AA OA Kappa AA OA Kappa AA 

2D-CNN 
86.90
± 1.3 

85.01
± 1.6 

82.70
± 1.0 

96.02
± 0.4 

96.04
± 0.3 

95.10
± 0.1 

96.15
± 0.6 

95.71
± 0.7 

98.27
± 0.2 

3D-CNN 
89.23
± 0.2 

87.70
± 0.3 

87.87
± 0.1 

97.30
± 0.3 

96.22
± 0.1 

97.02
± 0.1 

94.54
± 0.5 

93.81
± 0.3 

96.79
± 0.6 

M3D-CNN 
93.67
± 0.1 

92.70
± 0.3 

93.60
± 0.6 

97.41
± 0.2 

96.05
± 0.6 

98.22
± 0.1 

94.92
± 0.3 

94.40
± 0.1 

97.28
± 0.2 

SSRN 
99.23
± 0.1 

99.12
± 0.1 

92.52
± 0.1 

99.77
± 0.1 

99.69
± 0.2 

99.71
± 0.1 

99.88
± 0.0 

99.87
± 0.0 

99.84
± 0.0 

DualConvHSINet 
99.47
± 0.1 

99.40
± 0.1 

99.38
± 0.1 

99.86
± 0.1 

99.82
± 0.0 

99.71
± 0.1 

100
± 0.0 

100
± 0.0 

100
± 0.0 

 

Table 4.1 The classification accuracies (in percentages) on Indian Pines, 

University of Pavia, and Salinas Scene datasets using proposed and state-of-the-art 

methods. 
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Figure 4.7 The Classification Map for Pavia University (a) False color image 

(b) Ground Truth (c)-(h) Predicted Classification Maps for SVM, 2D-CNN, 3D-

CNN, M3D-CNN, SSRN, and DualConvHSINet 
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Table 4.2 The duration spent on training (expressed in minutes, m) and 

testing (expressed in seconds, s) using the 2D-CNN, 3D-CNN, and 

DualConvHSINet models across the IP, UP, and SA datasets. 

 

 

Table 4.3 The impact of spatial window size over the performance of 

DualConvHSINet 

 

 

Table 4.4 The classification precision rates (expressed as percentages) 

attained through the use of both proposed and leading-edge techniques with a 

reduced volume of training data, specifically just 10%. 


