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ABSTRACT

Explanatory note of the qualification work "Hyperspectral image classifier"
58 p., 18 figs., 4 tables, 26 sources.

HYPERSPECTRAL IMAGES, REMOTE SENSING OF THE EARTH,
NEURAL NETWORKS, OBJECT CLASSIFICATION.

The object of research is hyperspectral image.

Subject of research - a detailed study of object classification in hyperspectral
images.

Purpose of the qualification work - software implementation of object
classification on hyperspectral images, comparison of the method's effectiveness
with existing ones.

Research methods - comparative analysis, processing of literature sources,
digital mathematical modeling.

The paper covers the topic of object classification on hyperspectral images
obtained by remote sensing, providing a detailed analysis of modern classification
systems and methods. The research begins with an overview of remote sensing,
detailing its purpose and main characteristics of satellite images, as well as a
comprehensive study of space-based remote sensing systems.

The main contribution of the paper is the software implementation of object
classification in hyperspectral images. This new approach demonstrates how
advanced machine learning algorithms can analyze and classify complex
hyperspectral data, presenting exciting potential for expanding existing remote
sensing capabilities.

The results of the study promise significant progress in remote sensing, object

classification, and hyperspectral image analysis.



PEDEPAT

[losicHioBanbHa  3ammcka  KBamidikamiiHoi  poboru  «Kmacudikatop
rinepcrnexkTpaibHuX 300paxkeHb» 58 c., 18 puc., 4 Tabn, 26 mxepen.

I'MITEPCITEKTPAJIBHI 30BPAKEHHAI, JIUCTAHIIMHE
30H/1YBAHHS 3EMJII, HEMPOHHI MEPEXI, KJTACU®IKAILILS OF'€KTIB.

OO6'exT NOCHIIKEHHS — TIEPCHEKTPAIbHE 300paKEHHS.

[Ipeamer pociikeHHS - JAeTajdbHE BUBYEHHs Kiacu@ikaiii o0'eKTiB Ha
rinepcrneKTpalbHUX 3HIMKaX.

Merta kBamidikauiiftHoi podotu - Ilporpamua peamizamis Kiacugikarii
00'€KTIB Ha TIMNEPCIEKTPAIbHUX 3HIMKaxX, MOPIBHSAHHSA €(EKTUBHOCTI METOAY 3
ICHYIOUHUMU.

Merton 1ociKeHHs - TOPIBHJIbHUM aHalli3, 00po0Ka JIiTepaTypHHUX JIKepe,
1 poBe MaTeMaTUYHE MOJICITIOBAHHS.

PoGora BucBiTIIOE Temy Kiacudikailii 00'€KTIB Ha TIMEPCHEeKTPATbHUX
300pake€HHS, OTPUMAHUX 3a JIOMIOMOTOI0 JUCTAHI[IHHOTO 30HIyBaHHS, HAJar0uu
JNeTalbHUM aHaji3 Cy4acHHX cHCTeM 1 MeTomiB kiacudikarii. JlocmimkeHHs
MOYHNHAETHCS 3 OVISAY TUCTAHIIITHOTO 30HAyBaHHS 3eMJIi, AeTaji3alii Horo MeTH Ta
OCHOBHUX XapaKTEPUCTHUK CYNMyTHUKOBUX 3HIMKIB, a TaKOX BCEOIUHOTO BUBYCHHS
KOCMIYHUX CHCTEM JUCTAHI[IHHOTO 30H1yBaHHS.

OcHoBHUI BHECOK poOOTH TONIATaE B MpOrpaMHii peamizamii kmacudikarrii
00'eKTiB Ha TiMepcrneKTpaIbHUX 300pakeHHsX. [leil HOBUM MiAXia IEeMOHCTPYE, SK
MepeIOBl AJITOPUTMHU MAIIMHHOTO HABYAHHS MOXKYTh aHAII3yBaTH 1 KJIacu(iKyBaTu
CKJIQJIHI TiMepCHeKTpalbHl JaHi, MPEACTABISIIOYN 3aXOIUTIOIOYMI MMOTEHINaN s
PO3IIMPEHHS ICHYIOUYMX MOKJIMBOCTEH JUCTAHIIHHOTO 30H/TyBaHHS.

Pesynbrattt  nmochimkeHHS — OOIMIOTH  3HAUYHMKA mporpec  y  cdepi
JTUCTAHIIIHHOTO 30HIYBaHHA, Kiacudikailii 00'€KTiB Ta aHaII3y TINEPCHIEKTPATHHIX

300paKEHb.
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GLOSSARY

CNN — Convolutional Neural Network
SVM — Support Vector Machine

ANN — Artificial Neural Network

MDC — Minimum Distance Classifier
MLC — Maximum Likelihood Classifier
DBN — Deep Belief Network

SSRN — Spectral-Spatial Residual Network
SA — Salinas Scene

UP — University of Pavia

IP — Indian Pines

OA — Overall Accuracy

AA — Average Accuracy

Kappa — Kappa Coefficient

HSI — Hyperspectral Image
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PROBLEM STATEMENT

The field of remote sensing has seen incredible advances over the past few
decades, with hyperspectral imaging forming a significant component of this
progress. This cutting-edge technology, which captures and processes information
from across the electromagnetic spectrum, enables more accurate identification of
objects and materials than traditional imaging methods. However, despite its
potential, the classification of hyperspectral images (HSIs) poses unique challenges
that demand rigorous exploration. The primary aim of this diploma is to address
these challenges, focusing on the development and evaluation of advanced
classification techniques for hyperspectral imaging data.

Hyperspectral images carry rich information as they consist of hundreds of
contiguous spectral bands. This high dimensionality, however, brings about the
'curse of dimensionality," where the increased complexity in handling, processing,
and interpreting these images becomes a challenge. This diploma aims to address
this problem by developing effective dimension reduction method and feature
extraction techniques that will simplify the classification process, while preserving
the maximum amount of spectral information.

Through an in-depth analysis, experimentation, and implementation, this
diploma aims to push the frontiers of current hyperspectral image classification
methodologies. It will strive to develop a scalable, efficient, and accurate
classification system capable of handling the challenges associated with
hyperspectral data, thus paving the way for a broader range of applications in areas

like agriculture, mineralogy, environmental science, and defense.
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1 REMOTE SENSING OF THE EARTH

Remote Sensing is a scientific method used to acquire information about the
Earth's surface without making any direct physical contact. It involves the use of
sensors on satellites or aircraft to collect data about the environment. The sensors
measure the radiation that is reflected or emitted from the Earth’s surface. Different
types of remote sensing techniques include aerial photography, satellite imagery,
radar, and sonar, each serving specific purposes in various fields [1].

There are two types of remote sensing: passive and active. Passive remote
sensing involves recording radiation that is naturally reflected or emitted by the
Earth's surface or the atmosphere, for example, sunlight reflected by forests or fields.
On the other hand, active remote sensing systems like radar or LIDAR, emit their
own energy to scan objects and areas where they then measure the reflection. Remote
sensing data is processed and interpreted using sophisticated algorithms, often to

produce a 2D or 3D image that allows for analysis and interpretation [2].

1.1 The purpose of remote sensing

Space-based remote sensing systems are designed to provide socio-economic
sectors and public authorities with observation data on natural and man-made
objects, phenomena, and events. The development of space technology and
information technologies has created scientific and technical capabilities for high-
resolution space sensing of the Earth [3]. To conduct such sensing, optoelectronic
devices (OEDs), synthetic aperture radar (SAR) and space photographic equipment
(SPE) are installed on spacecraft (SP). The experience of using space-based

observation systems shows great potential for using the results of remote sensing of
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the Earth in solving a wide range of problems in almost all sectors of the economy
and social sphere.

Remote sensing of the Earth provides unique opportunities for operational
data collection on a global scale with high spatial, spectral and temporal resolution,
which determines the great information capabilities of space systems, the possibility
of their military use and potential economic efficiency. The systematic approach
requires the division of the set of tasks of space remote sensing means by indicators
of scientific, industrial, economic and social orientation, namely:

- control of weather and climate factors;

- monitoring the state of sources of air, water and soil pollution;

- control of man-made and natural emergencies nature;

- information support of economic activity, rational land use, rational land use;

- information support of national security and defense;

- creation of a dynamic model of the Earth as an ecological system.

Nowadays, various thematic tasks are successfully performed using remote
sensing methods to provide information on scientific, economic, national security
and defense issues, among others:

1. Inventory of agricultural land, allocation and identification of crop types,
crop forecasting, and analysis of agricultural potential.

2. Monitoring global atmospheric changes - measuring surface temperature,
determining surface conditions, determining the state of the atmosphere, observing
cloud cover, and studying the greenhouse effect.

3. Search for minerals and energy resources (oil, natural gas, coal).

4. Topographic mapping, map creation and updating, monitoring urban

growth, and monitoring the condition of soils and pastures.
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5. Observation of coastal zones and oceans, control of water sources - studying
and determining ocean resources, measuring ice thickness, determining snow cover
and its water equivalent, identifying places and sources of water pollution.

6. Monitoring the condition of forests, determining the types of forest
plantations and dominant species, assessing timber reserves, and logging.

7. Monitoring of emergency situations - prevention, control and assessment
of the effects of floods, fires and earthquakes.

8. Defense surveillance - determining the condition of military, military-
industrial and engineering facilities, monitoring border areas, and controlling mass
movements of troops.

For military systems, the main task is space reconnaissance.

1.2 Main characteristics of satellite images

The effectiveness of space image analysis and interpretation is determined by
the content and volume of information about remote sensing objects, the list of which
is determined by the thematic task. As you know, space images are formed by
recording electromagnetic radiation reflected or generated by earth formations and
artificial (anthropogenic) objects. Different objects of remote sensing have different
spectral and energy characteristics of radiation and differ in geometric size, shape
and behavior in time and space [4]. All these features of remote sensing objects
should be considered when choosing a space system that will be used to generate
images.

First, the following characteristics are considered:

- The spectral range in which the objects and processes under observation and

study are active;
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- The degree of detail of observation and registration of the geometric shape
of objects and spatial relationships;

- Radiometric resolution, or the maximum number of bits that quantizes the
dynamic range of pixel brightness’s of images of earth surface objects;

- Area (geometric dimensions of the survey frame) of the scene - a certain area
of the Earth's surface to be observed;

- QGuaranteed provision of one-time control or monitoring (periodic

observation with a certain time interval) of a certain geographical area.

1.3 General characteristics of space remote sensing systems

A space system (SS) is a set of coordinated, functionally interconnected
spacecraft and ground-based technical means designed to solve targeted tasks.

The space remote sensing system includes a space complex and a ground-
based information complex (GBIC). Space observation complex is a set of
functionally interconnected orbital and ground-based means designed to
independently solve special tasks from space or to ensure the fulfillment of such
tasks as part of the space observation system. The space complex includes: a
spacecraft or a group of spacecraft, a rocket and space complex, a control and
reference complex, a ground control complex, a spacecraft landing and maintenance
complex.

Thus, space observation data acquisition and dissemination systems are based
on the following main components:

- carriers of imaging equipment, in this case, artificial earth satellites (AES);
- the actual remote sensing equipment;

- onboard means of data transmission to Earth;
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- a ground-based information system for receiving this information, processing
it and providing it to consumers.

The classification of remote sensing systems is their division into classes
(subclasses, groups) based on the commonality of homogeneous essential features
(properties), which fixes the natural relationships between classes of systems in a
particular field of knowledge. The characteristics of the above components of the
system of space observation data acquisition and dissemination or their parameters
are most often the basis for the classification of space remote sensing systems.

Modern space systems can be divided into scientific, military, and commercial
according to the purpose and content of the tasks they solve.

In turn, the scientific ones include research and experimental manned and
automatic space stations, research spacecraft that conduct research on planets and
stars, outer and interstellar space, geophysical research of the Earth, and
experimental ones: scientific and military experimental spacecraft that conduct
scientific experiments and test elements of advanced spacecraft. This division is
purely arbitrary. In practice, most scientific satellites are multifunctional, i.e., they
contain research, scientific and experimental devices.

Commercial spacecraft are designed to solve economic problems, provide all
types of communications and telecommunications, and facilitate the safety of land,
air and sea traffic. Commercial spacecraft include domestic spacecraft (as a rule,
these are dual-purpose spacecraft, i.e. only spacecraft that, if necessary, can be used
in full or in part to solve problems in the interests of armed struggle) and domestic
spacecraft leased by other states or launched in the interests of other states.

The set of space complexes and systems for military purposes constitutes
space weapons. Military space systems are divided into combat and support systems
according to the tasks they perform. Combat spacecraft are designed to conduct
combat operations in space or from space, or are the space part of combat ground-
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space complexes (systems). These are strike spacecraft, space-based missile defense
and air defense systems, electronic warfare and missile launch detection spacecraft.
Combat support spacecraft are designed to support the daily and combat activities
of all branches of the armed forces. They are classified as reconnaissance,
navigation, communication, meteorological, topographic, and transportation.
According to the definition of the Scientific and Technical Subcommittee of
the UN Committee on Space, remote sensing is "the observation and measurement
of energy and polarization characteristics of the intrinsic and reflected radiation of
the Earth's land, ocean and atmosphere in different ranges of electromagnetic waves,
which help to describe the location, nature and temporal variability of natural
parameters and phenomena, the Earth's natural resources, the environment, as well
as anthropogenic objects and formations". As can be seen from the above definition,
remote sensing methods allow for different types of classification: by the spectral
range of the electromagnetic radiation used, by the type of signal recorded (own or
reflected, natural or directed from an artificial radiation source); by image
parameters (spatial resolution, spectral resolution, viewing frequency, frame size on
the ground, speed of application execution, rights to distribute and copy images); by
the characteristics of the imaging equipment carriers and its parameters, etc. Image
parameters and overview characteristics depend on the parameters of the spacecraft

trajectory and the characteristics of its onboard special equipment.

1.4 Overview of modern hyperspectral sensors

Hyperspectral sensors, such as the Reflective Optics System Imaging
Spectrometer (ROSIS) and the Airborne Visible/Infrared Imaging Spectrometer
(AVIRIS), are vital tools in remote sensing, used for a wide range of scientific,
environmental, and industrial applications. They capture high-resolution image data
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across the electromagnetic spectrum, allowing for detailed analysis and

interpretation of the Earth's surface and atmosphere.

Characteristic ROSIS-03 AVIRIS
Angular field of view (FOV) 16° 30°
Instantaneous field of view (IFOV)  0.56 mrad 0.95 mrad
Number of pixels per line 512 614

Scan principle Pushbroom Whiskbroom
Ground resolution 1m-6m 20m
Radiometric resolution 14 bits 10 bits

Spectral range 430 nm-800 nm 400 nm-2450 nm
Spectral sampling 4 nm 9.6 nm-10.0 nm
Inflight calibration 0.2 nm 0.5 nm

Figure 1.1 Main characteristics for both ROSIS-03 and AVIRIS sensors.

Here are several satellites they are installed on:

1. MODIS (Moderate Resolution Imaging Spectroradiometer) — mounted on the
Terra and Aqua satellites, launched by NASA (USA) in 1999 and 2002
respectively. MODIS provides high-frequency imagery in a wide spectrum
(36 spectral bands, ranging from 0.4 to 14.4 um) and is used for monitoring
global-level processes, including vegetation dynamics, carbon cycling, and
water cycles.

2. Landsat series — this is a series of American Earth-observing satellites. The
latest of these, Landsat 9, was launched in 2021. Landsat satellites employ
the Multispectral Scanner (MSS), Thematic Mapper (TM), Enhanced
Thematic Mapper (ETM), and Operational Land Imager (OLI). They provide
imagery of the Earth's surface in the visible, near-infrared, and thermal

infrared spectrums.
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3. Sentinel series — these are satellites from the European Space Agency,
launched as part of the Copernicus Earth observation program. Sentinel-2, for
example, has a Multispectral Instrument (MSI) for observations in the visible,
near-infrared, and shortwave infrared spectrums.

4. ASTER (Advanced Spaceborne Thermal Emission and Reflection
Radiometer) — this instrument is mounted on the Terra satellite. Launched by
NASA in 1999, ASTER provides imagery in 14 channels of the visible, near-
infrared, and thermal infrared spectrums.

5. WorldView-3 — a commercial satellite, launched by DigitalGlobe (now
Maxar Technologies) in 2014. WorldView-3 can provide high-resolution

imagery and multispectral images.
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2 DESCRIPTION OF THE RESEARCH OBJECT

In the past several decades, the utility of satellites in various domains such as
earth monitoring, remote sensing, communication, and navigation has been proven
effective. Remote sensing, as per the context of my work above, is the technique of
obtaining data from a particular object without making direct physical contact with
it. Each object, due to differences in their molecular composition, uniquely absorbs
and emits the incident electromagnetic radiation. This interaction of radiation with
the object results in a specific pattern called a spectral signature, which can be
utilized to identify any material, given its unique nature for each substance found on
Earth's surface.

The concept is as follows: by observing the spectral signature or spectral
response, we can accurately identify the materials or objects featured in the
hyperspectral image we've captured. Hence, hyperspectral sensors have been
designed to detect radiation across an expansive wavelength range present in the
electromagnetic spectrum. This range encompasses the visible, short, mid, and long-
wave infrared region, with each region having a breadth of about 10nm [5].

The emission of radiation from a scene, captured at a specific wavelength as
an image, is organized in layers (each representing different wavelengths) to

construct a hyper-spectral data-cube, as illustrated in Figure 2.1.
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Figure 2.1. Hyperspectral data cube with spectral signature.

The hyperspectral data-cube's spatial information is conveyed through the x-
y plane, while its spectral content is depicted in the z-plane. Every hyperspectral
image band has a dimension where each pixel signifies a digital number (DN), which
corresponds to the radiance value gathered by the sensor (IFOV). Notably, each band
corresponds to a specific wavelength. Typically, the HSI data cube (a 3D hypercube)
is represented as a y €™1*™"2*™ where n = n, X n, indicates the total pixel count,
and nb denotes the number of bands.

Each pixel in the spectral space, created by the number of bands, is
represented as a single-dimensional vector. Materials of a similar kind are
categorized using clustering algorithms, which are based on spectral properties that
are close to one another. Widely used clustering algorithms in hyperspectral image
analysis include k-means clustering, fuzzy c-means clustering, and clustering
methods based on spectral unmixing. Given the high correlation in the spectral
space, the data is portrayed in a lower dimensional space, smaller than the number
of spectral bands. The reduction in data dimensionality is achieved using techniques

such as principal component analysis (PCA) or independent component analysis
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(ICA). In this scenario, an image is displayed as a matrix in spatial space. Similarly
to spectral properties, spatial properties of like materials are closely related. The
practice of grouping materials based on spatial properties is called segmentation.
Meanwhile, the concurrent processing of a pixel based on adjacent pixels in the
spectral space, along with band processing based on neighboring bands in the spatial

space, is termed spectral-spatial representation [6].

2.1 Creating hyperspectral images

Hyperspectral imaging, an advanced technique that collects and processes
data from across the electromagnetic spectrum, outperforms traditional spectral
imaging methods by providing more detailed and comprehensive information [7].
Unlike the human eye, which can only perceive light in three bands (red, green, and
blue), hyperspectral imaging partitions the spectrum into numerous bands. It can
even capture data beyond the visible range, making it versatile for a wide array of
applications.

This technology plays a crucial role in diverse fields such as agriculture,
mineralogy, physics, surveillance systems, and forensics. The backbone of
hyperspectral imaging is the hyperspectral sensor which investigates an object by
using most of the electromagnetic spectrum. Unique 'fingerprints' are produced by
certain objects across this spectrum range, identified as spectral features of matter.
This information can be used to identify and characterize the materials present in the
subject of the study. For instance, mineralogists can locate new oil deposits by
analyzing the distinctive spectral lines of oil.

Hyperspectral detectors generate data as a collection of "images", where each
image represents a different spectral range within the electromagnetic spectrum.

These images are subsequently merged to form a three-dimensional hyperspectral
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data volume. This data structure is conducive for comprehensive analysis and
processing, granting a thorough insight into the object under investigation.

The efficiency of hyperspectral cameras is gauged primarily by the spectral
resolution, or the width of each band of the captured spectrum. If the object's
spectrum contains a large number of adequately narrow frequency bands, the
identification of objects is possible even if they only span a few pixels in the image.
However, spatial resolution plays a complementary role to spectral resolution. A
large pixel size can capture multiple objects within the same pixel, complicating
differentiation. Conversely, a small pixel size can result in low light energy reception
per sensor pixel, leading to a decrease in the signal-to-noise ratio and compromised
parameter measurement accuracy.

Three main methods are employed in hyperspectral image processing
technology:

1. Spatial image scanning sequentially captures total spectral data.

2. Spectral image scanning sequentially captures complete spatial
information.

3. The "snapshot" method captures all spectral and spatial information
simultaneously.

Two key benefits of this type of spectrometer, which influence its speed,
include:

1. Absence of spectral scanning allows for real-time examination of all
spectral components (a concept known as Fellgett's advantage in metrology).

2. FT-IR spectrometers feature larger apertures than those in dispersive
spectrometers due to their high bandwidth (also known as the Jacquinot or
bandwidth advantage).

Two predominant types of interferometers - the Michelson interferometer and

the Fabry-Perot interferometer - are commonly utilized in this technology. These
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devices offer superior speed performance compared to other spectral or spatial

instruments, contributing to the enhanced efficiency of hyperspectral imaging.

2.2 Advantages of hyperspectral images over multispectral ones

Hyperspectral imaging offers a key benefit by capturing the entire spectrum
at each point, eliminating the need for the operator to possess prior knowledge of the
sample. Through postprocessing, it becomes possible to extract all the valuable
information from the dataset. Moreover, hyperspectral imaging leverages the spatial
connections between various spectra in a given area, enabling the use of
sophisticated spectral-spatial models that enhance the precision of image
segmentation and classification.

Hyperspectral imaging surpasses multispectral imaging [8, 9, 10] in terms of
its numerous advantages, which are as follows:

1. Hyperspectral remote sensing data exhibits high spatial resolution,
providing detailed and precise information about the observed area. This level of
detail allows for more accurate analysis and interpretation of the data.

2. Hyperspectral data is typically collected within a specific and well-defined
spectral range. This focused range enables targeted analysis of specific materials,
phenomena, or characteristics within the captured scene.

3. The bands of hyperspectral data are contiguous and overlapping, ensuring
that no valuable information is missed. This continuous coverage allows for the
detection of subtle variations and nuanced features in the scene, enhancing the
overall understanding of the data.

4. The contiguous spectrum obtained from hyperspectral imaging facilitates
the identification of atmospheric windows. This information is crucial for effectively
removing atmospheric interference from the radiance signal, resulting in cleaner and
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more accurate data. In contrast, multispectral sensors lack the continuous spectrum
necessary for identifying atmospheric windows.

5. The signal-to-noise ratio of hyperspectral data can be improved by
comparing pixel spectra. This comparative analysis helps reduce noise and enhance
the quality of the data. Conversely, multispectral data, with its non-contiguous
bands, does not lend itself well to this type of pixel-based noise reduction.

6. Hyperspectral imaging provides a solution to the challenge of mixed
spectra. By directly deriving the relative abundance of materials, it becomes possible
to identify and analyze the composition of complex scenes accurately. This
capability is particularly valuable in applications such as environmental monitoring,
geology, and agriculture.

7. Hyperspectral images offer the flexibility to derive information from
various spaces. This includes the spectral space, where the unique spectral signatures
of objects or classes can be identified; the image space, which allows for spatial
analysis and pattern recognition; and the character space, where additional
contextual information about the scene can be extracted. This multi-dimensional

approach enhances the overall comprehension and utilization of hyperspectral data.
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Figure 3.1 In multispectral imaging, image stacks consist of multiple images
captured in different spectra, while hyperspectral imaging involves image stacks

with a much larger number of images taken in numerous spectra.

2.3 Conclusions

Hyperspectral imaging has revolutionized remote sensing by providing a high
level of detail and precision in the acquisition of data. Its ability to detect radiation
across a vast wavelength range, construct a detailed hyperspectral data-cube, and
identify unique spectral signatures have proven to be invaluable in various
applications from environmental monitoring to military usage and medical
diagnostics. Importantly, the advances in hyperspectral imaging have enabled a

superiority over multispectral imaging, offering numerous advantages including
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high spatial resolution, the detection of subtle variations, and the ability to analyze
complex scenes accurately.

The recent ease of acquiring high-resolution hyperspectral remote sensing
images has increased the application of this technology in various fields. The
primary focus of ongoing research in this domain is the classification of
hyperspectral i1mages. However, several challenges exist, such as high
dimensionality, limited availability of labeled samples, spatial variability of spectral
information, and image quality. A plethora of classification methods and dimension
reduction techniques are continually being explored and developed, including the
use of machine learning techniques such as support vector machines, random forests,
neural networks, and more recently, deep learning networks.

Despite these challenges, the potential of hyperspectral imaging is vast and
continues to expand with technological advancements. The continuous
improvements in image acquisition, processing, and classification techniques will
further enhance the quality of data derived from hyperspectral imaging and broaden

its application range.
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3 MODERN SYSTEMS AND METHODS OF OBJECT
CLASSIFICATION

In recent years, the acquisition of hyperspectral remote sensing images with
high spatial and spectral resolution has become relatively easier, finding wide
applications in environmental, military, mining, and medical fields. These images,
captured using imaging spectrometers, possess high spectral resolution, numerous
bands, and abundant information. Hyperspectral image processing includes image
correction, noise reduction, transformation, dimensionality reduction, and
classification. Classification [13] remains the most active research area within the
hyperspectral domain, as the rich spectral information reflects the physical structure
and chemical composition of objects.

However, hyperspectral image classification faces challenges such as high
dimensionality, lack of labeled samples, spatial variability of spectral information,
and image quality. Researchers have developed various classification methods,
including support vector machines, random forests, and neural networks, as well as
dimension reduction techniques like principal component analysis and linear
discriminant analysis. More recently, the incorporation of spatial context
information has gained attention, with deep learning networks like convolutional
neural networks and deep belief networks being used in remote sensing image
processing. Hyperspectral image classification methods are broadly categorized into

supervised, unsupervised, and semisupervised classifications.

3.1 Supervised classification

Supervised classification is a frequently employed method for hyperspectral

image classification. The fundamental procedure involves establishing discriminant
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criteria based on known sample categories and prior knowledge, followed by
calculating the discriminant function. Widely used supervised -classification
techniques encompass support vector machine, artificial neural network
classification, decision tree classification, and maximum likelithood classification

methods.
3.1.1 Support vector machines

The Support Vector Machine (SVM) [12], a supervised classification
approach, was formulated by Boser and his team. It leverages statistical theory and
the principle of structural risk minimization and is instrumental in the realms of
image and signal processing and recognition. SVM finds the optimal classification
surface by applying structural risk minimization to linear classifiers. In practice, not
all situations are linearly separable, so slack variables are introduced. For nonlinear
cases, kernel functions [13] are used, transforming the input space into a high-
dimensional space, and finding the optimal linear classification surface in the new
space. Commonly used kernel functions include linear, polynomial, and Gaussian
kernel functions. Figure 3.1 illustrates a conceptual representation of a support

vector machine using a kernel function.
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Fig. 3.1 Kernel function support vector machine diagram.
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3.1.2 Minimum distance classification

The Minimum Distance Classifier (MDC) [14] is a supervised classification
technique that operates based on the proximity of pixels within a feature space. It
assumes that feature points of the same class cluster in space, using the mean vector
as the category center and the covariance matrix to describe dispersion. Various
distance calculations, such as Mahalanobis and Barth-Parametric distances, are used
to measure similarity. MDC is an early method for image classification research, and
its simplicity and intuitiveness make it widely used even today. For classifications
with limited training samples, it can yield better results than more complex

classifiers. Figure 3.2 is a flowchart of the minimum distance classification method.
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Figure 3.2 Schematic diagram of minimum distance classification.

31



3.1.3 Maximum likelihood classification

Maximum Likelihood Classifier (MLC) [15] is a nonlinear classification
method based on the Bayesian criterion. It calculates statistical feature values of
training samples to establish a discriminant function, which is used to determine the
probability of each pixel in a hyperspectral image belonging to various classes. The
test sample is classified into the category with the highest probability. MLC
generally obtains better results, especially when training samples are normally
distributed. It assumes a normal distribution of hyperspectral data and uses a

likelihood decision function to determine conditional probability.

3.1.4 Neural network classification

Artificial Neural Networks (ANN) are prevalent artificial intelligence
classification systems that mimic the information processing of human neurons.
They find utility in intelligent control, information processing, and combinatorial
optimization. Nevertheless, they come with certain limitations such as the need for
vast amounts of training data, reduced processing speeds, and challenges in deriving
decision boundaries in the feature space. Backpropagation [17] neural networks are
the most widely used ANN model, consisting of input, hidden, and output layers.
The implementation process includes two stages: network self-learning to optimize
connection weights and using learning results to classify image data.

Compared to other methods, SVM requires fewer training samples but
struggles with large-scale samples and multi-classification problems. Minimum
distance classification is fast but less accurate, while maximum likelihood, minimum
distance, and neural network methods can be used in practice with human

supervision to ensure accuracy.
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3.2 Deep learning

In recent years, hyperspectral image classification techniques have
incorporated spatial information from hyperspectral images, leading to the
development of methods based on combined spatial-spectral features. Deep learning
[18], derived from artificial neural networks, offers more robust feature extraction
capabilities compared to its predecessor. Deep learning models possess multiple
layers, further enhancing feature information extraction. This section primarily
explores deep learning techniques, such as convolutional neural networks (CNN),

deep belief networks (DBN), and stacked autoencoders (SAE).

3.2.1 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) [18] are analogous to traditional
Artificial Neural Networks (ANNSs) as they consist of self-optimizing neurons. Each
neuron takes an input, performs an operation, and contributes to the final class score,
just like in ANNs. The final layer contains class-associated loss functions, and all
common ANN strategies still apply.

However, CNNs stand out in their primary use for pattern recognition in
images, enabling us to incorporate image-specific features into the network
architecture. This makes CNNs more suitable for image-related tasks and reduces
the parameters needed for the model.

A key limitation of ANNSs is their struggle with the computational complexity
of image data. For instance, they can handle datasets like the MNIST database of
handwritten digits, with its manageable 28 x 28 image dimensionality. However, for

a larger colored image input of 64 % 64, the number of weights for a single neuron
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in the first layer jumps to 12,288, necessitating a significantly larger network. This

showcases the challenges of using such models for larger, more complex image data.

3.2.1.1 CNN architecture

CNN s are designed primarily for image inputs, structuring the architecture to
handle this data type effectively. Neurons in CNNs are organized in three
dimensions: height, width, and depth of the input. The depth refers to the third
dimension of an activation volume, not the total number of layers. Neurons in a layer
connect only to a small region of the preceding layer. So, for a 64 x 64 x 3 input
volume (height, width, depth), the final output layer will have a 1 x 1 x n

dimensionality, where n represents possible classes.

3.2.1.2 Overall architecture

CNN s consist of three primary types of layers: convolutional layers, pooling
layers, and fully connected layers. The stacking of these layers creates a CNN
architecture. Figure 3.3 showcases a simplified representation of a CNN architecture

designed for MNIST classification.
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Figure 3.3 represents a basic CNN structure composed of merely five layers.
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The primary functions of the aforementioned CNN example can be divided
into four main aspects:

1. The input layer holds the image’s pixel values.

2. Within the convolutional layer, neurons that are linked to local areas of the
input perform the dot product of their weights and the region tied to the input
volume. The rectified linear unit (ReLu) applies an activation function such as the
sigmoid function to the output originating from the preceding layer.

3. The pooling layer downsamples along the spatial dimensionality of the
input, reducing the number of parameters within the activation.

4. The fully connected layers perform standard ANN tasks, producing class
scores from the activations for classification. ReLu may improve performance
between these layers.

Through these transformations, CNNs can process the original input using
convolutional and downsampling techniques to produce class scores for
classification and regression. However, understanding the overall architecture isn’t
enough. Creating and optimizing these models takes time and can be complex. Next,
we’ll explore the individual layers, their hyperparameters, and connectivities in

detail.

3.2.1.2 Convolutional layer

Convolutional layers, essential in CNNs, revolve around learnable kernels.
These kernels, small in spatial size but spanning the input's depth, produce a 2D
activation map when convolved across the input's spatial dimension. This process
calculates the scalar product for each kernel value, letting the network learn kernels

that activate upon detecting specific features, known as activations. Each kernel
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generates an activation map, stacked along the depth dimension to form the layer's
full output volume.

To address the challenge of large model sizes in ANNs due to fully connected
neurons, each neuron in a convolutional layer only connects to a small input volume
region, or the neuron's receptive field size. For instance, in an RGB image of 64 X
64 x 3, setting the receptive field size as 6 x 6 results in 108 weights per neuron in
the convolutional layer, a dramatic reduction compared to standard ANNSs.
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Figure 3.4 Visual representation of a convolutional layer. The kernel's central
element is positioned over the input vector, which is then computed and replaced

by a weighted sum of itself and the neighboring pixels.

Convolutional layers reduce model complexity through output optimization,
managed via three hyperparameters: depth, stride, and zero-padding. Depth, or the
output volume's dimension, can be manually set by the number of neurons within
the layer. Stride determines the depth setting around the input's spatial
dimensionality to position the receptive field. Zero-padding, or input border
padding, helps control the output volumes' dimensionality.

Adjusting these hyperparameters alters the convolutional layer's output spatial
dimensionality. Parameter sharing, a technique assuming a feature useful in one

spatial region will be useful in others, further reduces parameters by constraining
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each activation map within the output volume to share the same weights and bias.
Consequently, during backpropagation, each output neuron represents the total

gradient across the depth, updating only a single weight set.

3.2.1.3 Pooling layer

Pooling layers aim to progressively downscale the representation's
dimensionality, thereby decreasing the model's parameters and computational
complexity. They operate on each input's activation map, using the "MAX" function
to resize it. Most CNNs employ max-pooling layers with 2 x 2 kernels and a stride
of 2, reducing the activation map to 25% of its original size while keeping the depth
unchanged.

Given its destructive nature, max pooling typically employs two methods:
using both 2 x 2 stride and filters to cover the input's entire spatial dimension, or
using overlapping pooling with a stride of 2 and kernel size of 3. A kernel size above
3 generally hampers model performance due to the destructive aspect of pooling.

Apart from max-pooling, CNNs can utilize general-pooling layers that
perform multiple operations such as L1/L2-normalisation and average pooling.

Nonetheless, this description primarily focuses on the concept of max-pooling.
3.2.1.4 Fully connected layer
In the fully-connected layer, neurons are directly linked to neurons in the
layers immediately preceding and succeeding them, without any interconnections

within those layers.

3.2.1.5 Spectral feature-based classification
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Now let's move on to looking at CNN on the classification of hyperspectral
images.

Hyperspectral images possess abundant spectral data and incredibly high
spectral resolution. Each pixel generates one-dimensional spectral vectors consisting
of spectral details. Classifying solely based on these one-dimensional spectral
vectors is known as spectral information-based classification. Typically, this
approach involves extracting spectral information or specific features from a pixel's
spectral data through feature extraction for classification purposes. To classify
hyperspectral images' spectral features, one-dimensional convolutional neural
networks (1D-CNN) [19] are employed to extract spectral features and perform

classification. The process is illustrated in Figure 2.3.
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Figure 3.5 Schematic diagram of 1D-CNN.

The procedure involves feeding labeled hyperspectral data into the 1D-CNN,
training the 1D-CNN using class labels, and iteratively updating the network weights
using algorithms like SGD. Ultimately, the trained 1D-CNN is employed to classify

each pixel, yielding classification outcomes. A one-dimensional convolution kernel
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is utilized in the one-dimensional convolution operation to perform convolution on

a one-dimensional feature vector. The operation is expressed as follows:

Hi-1
_ (x+h)
vij=f Z Z K 1ym b (3.1)
m h=0

Among them, kl}fj,mrepresents the value of the [-th convolution kernel in the

J-th layer at h, and the convolution kernel is connected to the m-th feature vector in

the (I-1) layer network. H; represents the length of the one-dimensional convolution

kernel. by ; represents the offset of the j-th feature map of the [-th layer. v((lx_+1};)m
represents the specific value of the m-th feature map at the (x + h, y + w) position

in the [-1st layer.
3.2.1.6 Spatial-feature-based classification method

This approach focuses on contextual or spatial information. In this
classification process, rather than utilizing the spectral data obtained from individual
pixels, the neighboring pixel's spatial details are employed. Owing to the high
dimensionality of hyperspectral data, the common practice for extracting spatial
information is to initially compress the dataset, followed by employing two-
dimensional convolutional neural networks (2D-CNN) [20] to derive more profound
spatial insights, which are then used for classification. The detailed procedure is

illustrated in Figure 3.6.
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Figure 3.6 Schematic diagram of 2D-CNN.

The dimensions of the convolution layer and pooling layer are the primary
distinction between the two-dimensional convolution operation and the one-
dimensional convolution operation. In the case of two-dimensional convolution, a
two-dimensional convolution kernel is employed to perform the convolution

operation on two-dimensional data.

) h
map;; = f Z Z Z ks mapG YO b (3.2)

m h=0 w=0

Among them, Kk ¥ represents the value of the [-th convolution kernel in the

l,jm
[-th layer at (h,w), and this convolution kernel is connected to the m-th feature
vector in the (I-1) layer network. H; and W, respectively, represents the height and
width of the convolution kernel, and b; ; represents the offset of the j-th feature map

(x+h),(y+w)

(-1)m represents the specific value of the m-th feature

of the [-th layer. map
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map at the (x + h,y + w) position in the [-1st layer, and mapf}y represents the

output data of the j-th feature map at the [-th layer at (x, y).
3.2.1.7 Spectral-spatial feature-based classification method

Traditional hyperspectral image classification primarily relies on spectral
data. Nevertheless, external environmental factors can cause identical ground
features to exhibit different spectral curves, while distinct ground features may have
the same spectral curve, leading to occurrences of heterospectrum within the same
object and same-spectrum phenomena in foreign objects. For instance, when
adjacent pixels are categorized as parking lots, those with spectral characteristics
resembling metal are likely to represent cars. Similarly, if the surrounding pixels are
grass, the central pixel is probably grass as well. Hyperspectral data comprises a
three-dimensional structure, encompassing one-dimensional spectral and two-
dimensional spatial details. A three-dimensional convolutional neural network (3D-
CNN)[21] can extract both spectral and spatial information simultaneously. This

specific procedure is depicted in Figure 2.4.
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Figure 3.7 Schematic diagram of 3D-CNN.
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3.2.2 Deep belief network

The implementation of a deep belief network (DBN) [22] relies on the
utilization of restricted Boltzmann machines (RBMs). DBN is a network model that
Is built by sequentially stacking multiple RBM layers. A typical DBN consists of
several RBMs and a backpropagation (BP) layer. The schematic diagram depicting

its structure can be observed in Figure 3.4.
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Figure 3.8 Classic DBN structure diagram.

Parameters are learned using an unsupervised approach that operates on a
layer-by-layer basis during training. Initially, the data and the first hidden layer are

treated as an RBM, with the parameters of this RBM being trained. Afterward, once
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the parameters of the RBM are set, the first hidden layer is treated as a visible vector,
while the second hidden layer is treated as a hidden vector. This process is repeated
in a loop, with the following specific steps:

Train each layer of the RBM network independently and unsupervisedly,
ensuring that feature vectors retain as much information as possible when mapped
to different feature spaces.

Incorporate a backpropagation (BP) network at the final layer of the DBN,
taking the RBM's output feature vector as input, and utilize it to supervise the
training of the entity relationship classifier. Due to the limitations of each RBM layer
in optimizing weights and feature vector mapping within its own layer, the
backpropagation network propagates error information downwards across each
RBM layer, refining both the DBN and RBM network training models. This process
can be viewed as the initialization of a deep BP network's weight parameters,
allowing the DBN to overcome the BP network's shortcomings of falling into local
optimization and having lengthy training times due to random weight parameter
initialization.

When using DBN to classify hyperspectral image spectral features, the
primary approach is to employ DBN to extract deeper features from spectral
information gathered from pixel locations to be classified, and then complete the
classification using deep features. The classification method for hyperspectral image

spatial features based on DBN is quite similar to the SAE-based method.

3.3 Unsupervised classification

The method of unsupervised classification relates to categorizing based on the
spectral likeness of hyperspectral data, essentially a clustering approach that doesn't
require any previous information. Given that it doesn't use any pre-existing
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knowledge, unsupervised classification can merely presume initial parameters,
create groups through preliminary classification procedures, and then repeatedly

adjust until the related parameters fall within acceptable boundaries.

3.3.1 K-Means Classification

The fundamental concept underlying the K-means [23] clustering technique
Is to minimize the total sum of squared distances between each pixel within a cluster
and the centroid of that particular cluster. The initial clustering process starts by
randomly selecting a center point, and then other pixels are classified into one of the
clusters based on set criteria, thereby completing the initial clustering. The next step
involves recalculating the center point for each cluster, adjusting it, and
reclassifying, repeating these steps until the clustering center points no longer shift.
The optimal clustering center is then determined, yielding the best cluster results and
ending the iteration process. Figure 8 illustrates the algorithm flow of K-means
clustering. One limitation of K-means clustering is that the number of chosen
categories remains fixed throughout the calculation, and the initially selected cluster
center point position can influence the clustering outcome, leading to potentially
significant variations in experimental results each time. To address this issue,
auxiliary methods can be used to identify a more accurate initial clustering center,

thus enhancing classification precision.
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Figure 3.9 Schematic of -means algorithm.

3.3.2 Iterative Self-Organizing Method

The ISODATA [24] algorithm, like the K-means algorithm, is a frequently
used clustering method. It's essentially an enhancement of the K-means
classification technique. The ISODATA algorithm provides some clear advantages
over K-means clustering. First, instead of continuously adjusting the cluster center
during the calculation, all categories are computed and the samples are then
collectively adjusted. Second, unlike K-means clustering, the ISODATA algorithm
can automatically modify the number of categories during clustering based on the

actual scenario, leading to more reasonable clustering results.
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The primary benefits of these two classification methods include the lack of
need for extensive understanding of the classification area; only sufficient
knowledge is needed to interpret the classified cluster groups. This reduces the risk
of human error and minimizes the initial parameters required for input. The clusters
with small but distinctive spectral characteristics are more homogeneous than in
supervised classification, and categories with unique and small coverage can be
identified. The main drawbacks include the need for significant analysis and post-
processing to achieve reliable classification outcomes. The classified clusters and
land categories may or may not align due to the common phenomena of "same
spectrum” and "foreign material,” complicating the matching of cluster groups and
categories. Moreover, as the spectral characteristics of each category vary with time
and terrain, the spectral cluster groups across different images lack continuity and

are challenging to compare.

3.4 Semisupervised Classification

The primary drawback of supervised methods is their reliance on the volume
of training data sets with label points to determine the classification model and
accuracy. Acquiring a significant amount of class labels for hyperspectral images is
both time-consuming and expensive. Unsupervised methods aren't as affected by
labeled samples, but their lack of prior knowledge makes the relationship between
clustering categories and actual categories uncertain [19]. Semi-supervised
classification addresses these limitations by utilizing a combination of labeled and
unlabeled data for training the classifier. This approach is grounded in the
assumption that in feature space, labeled and unlabeled samples of the same type are

closer. Since numerous unlabeled samples provide a comprehensive depiction of the
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data's overall characteristics, a classifier trained using both types of samples possess
better generalization.

Semi-supervised classification is frequently employed in hyperspectral image
classification. Notable semi-supervised classification methods encompass model
generation algorithms, semi-supervised support vector machines, graph-based semi-
supervised algorithms, and self-training, co-training, and tri-training.

Considering these issues, this paper presents a review of a semi-supervised
classification method. Semi-supervised learning has garnered significant interest in
the realm of hyperspectral image classification due to its requirement for only a
minimal number of labeled samples. This learning approach merges labeled and

unlabeled data to enhance classification accuracy.
3.4.1 Laplace Support Vector Machine

The Laplacian Support Vector Machine (LapSVM) [25] is an advancement of
the conventional Support Vector Machine (SVM). By incorporating manifold
regularization terms, LapSVM is able to leverage the geometric information derived
from both labeled and unlabeled samples to construct a classifier that effectively
predicts the labels of forthcoming test samples. Additionally, it is characterized by
its robust adaptability and capacity for global optimization.

l+u

Given labeled samples and unlabeled samples {x;};Z;\ 1, x; € R™, and y; €

{—1, +1}, the decision function is f. The

l
1
L= 72 VG yo )+ v I F 12+ v Il f 12 (3.3)
i=1
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In this context, IV stands for the mis-segmentation cost function of labeled samples,
while Y; regulates the intricacy of function f within Hilbert space, and Y), manages
the complexity of the geometric features of the data distribution within the maximum
distance of f. The architecture of LapSVM is elaborated further below. Initially,

LapSVM employs the same loss function as the conventional SVM:
V(xi,yi f) = max{0,1 — y; f (x;)}. (3.4)

Among them, f represents the classification decision function f(x) =
(w, @(x)) + b of the selected classifier, where ¢(-) denotes a non-linear mapping
function that transforms data from a low-dimensional space to a high-dimensional

Hilbert space, where

I+N

w= Y @) = oa @ = [pG),, Cun)T (3.5)
i=1

a = [aq, -, a;44,], is a decision function after finishing:

l+u

f(x) = Z a;K(x;,x) +b. (3.6)

i=l

The kernel function K represents different learner functions, which can be
achieved by choosing various kernel functions, so there are
I £ 1Z=Ilw lI?= (®a)T (Pa) = a"Ka. (3.7)

The LapSVM algorithm emulates the geometric arrangement of data by
creating a graph based on both labeled and unlabeled samples. By applying the
smoothing assumption to normalize the graph, the penalty classification function

undergoes adjustments, particularly in its rapidly changing segment.
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l+u

1
1= e 0 W (Fe0 =1 () =110 G8)

i,j=1

Substituting the above formula into

!
1
min {—Z & +yLaTKa+y—M2aTKLKa
i=1

&;€RY,aerM [ ] (l+u)
l+u

S.t. Vi z aiK(xi,xj) + b > 1— fi (39)
i,j=1

§i=20,i=1,-,1

where &; represents the relaxation factor of the labeled sample.

The LapSVM algorithm effectively incorporates the influence of unlabeled
samples in the classification process by considering the geometric attributes of the
data. However, it often necessitates significant computational resources due to its

high computational cost.

3.4.2 Self-Training

Self-training [26] is a frequently employed semi-supervised classification
algorithm. In executing this algorithm, a classifier is initially trained with labeled
samples, followed by the labeling of a plethora of unlabeled samples using this
classifier. High-confidence data is chosen from these labeled samples and added,

along with their labels, to the initial training set for retraining the classifier. This
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process 1s repeated until a termination condition is met. The general progression of
self-training is as follows:

(1) Train the classifier using the initial set of labeled samples

(2) Apply the classifier to label the data within the set of unlabeled samples,
select the samples with the greatest confidence, and record them

(3) Retrain the classifier with the newly acquired sample set

(4) Repeat steps 2) and 3) until the termination condition is satisfied

Self-training algorithms are extensively utilized. Although this classification
approach is simple and convenient, it becomes challenging to train a classifier with
strong generalization capabilities and high accuracy due to the initially limited
number of training samples. Additionally, when unlabeled samples are labeled, a
significant number of mislabeled samples may be generated. These samples act as
noise samples when added to the original training set, and as the iteration proceeds,
errors accumulate, invariably leading to a degradation in the classifier's classification

performance.
3.5 Evaluation measures

Within the domain of hyperspectral image categorization, three key accuracy
measures, namely, OA, AA, and Kappa coefficient, are typically employed for
impartial assessment. Herein, we provide a detailed explanation of these three
accuracy assessment indicators.

OA represents the ratio of correctly categorized instances to the total count of

test instances. The computation is detailed below:

C
0A = Z M;;/N (3.10)
i=1
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C denotes the total count of categories. The confusion matrix, M, is derived
by juxtaposing the classification map against the actual results. M;; signifies the
count of instances that are part of class i and are also classified as such. N stands for
the aggregate count of instances in the test set.

AA symbolizes the average proportion of correctly identified pixels per class,

as defined below:
c c
i=1 i=1

The Kappa coefficient signifies the proportion of agreement adjusted by the
count of concurrences that could randomly occur, coupled with the accuracy specific

to each class.

Cc C C C
Kappa = N(Z Mu> z z Ml}z M]l

i=1 \j=1 j=1
3.11)

The Kappa coefficient holds the benefit of considering the impact of
uncertainty on the classification outcomes when determining accuracy. The above-
mentioned accuracy measures are all computed through the juxtaposition of
classification maps and actual results. Hence, it can be easily deduced that the actual

results will affect the precision of the measurements obtained.
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3.6 Conclusion

The categorization and identification of hyperspectral images constitute a
crucial aspect of hyperspectral image processing. This paper has examined several
techniques for hyperspectral image classification, encompassing supervised,
unsupervised, and semi-supervised classification. While the supervised and
unsupervised methods presented in this discussion each offer varying degrees of
benefits, there are inherent constraints when implementing these methods. For
instance, supervised classification necessitates specific preconditions, and human
influences can notably affect the outcomes of the classification. Hence, depending
on the particular application requirements and considering the vast information
obtained through hyperspectral images, a combination of multiple methods is
required to achieve the desired classification results. As hyperspectral image
technology continues to evolve, its classification has found widespread application.
However, existing theories and techniques still encounter certain limitations when
dealing with more complex hyperspectral image classifications. Therefore, in the
future, it will be crucial to focus on researching and developing more specialized

methods for hyperspectral image classification.
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4 SOFTWARE IMPLEMENTATION OF OBJECT CLASSIFICATION
ON HYPERSPECTRAL IMAGES

Convolutional Neural Networks have recently gained a lot of popularity
thanks to their dramatic performance improvement over manually created features.
In many applications where processing of visual information is necessary, such as
image classification, object identification, semantic segmentation, colon cancer
classification, depth estimation, face anti-spoofing, etc., the CNN has demonstrated
highly promising performance. Deep learning for hyperspectral image analysis has
made significant advancements in recent years as well. For the HSI classification, a
dual-path network (DPN) is proposed by fusing the residual network and dense
convolutional network. To represent the remote sensing images in unsupervised
training, Yu et al. developed a greedy layer-wise technique. A pixel-block pair (PBP)
based data augmentation strategy was presented by Li et al. to extend deep learning
for HSI classification. Deep feature fusion network was proposed by Song et al.
while Cheng et al. employed pre-built CNN models for HSI classification. In
essence, they retrieved the deep spatial features in a hierarchical fashion and utilized
SVM for training and classification.

The literature makes it clear that utilizing only 2D-CNN or 3D-CNN had
several drawbacks, such as lacking channel relationship information or requiring
very complex models, respectively. Additionally, it hindered these techniques from
improving their accuracy when used with hyperspectral pictures. The primary cause
is that hyperspectral images are volumetric data with a second spectral dimension.
The spectral dimensions cannot be effectively extracted into appropriate
discriminating feature maps by the 2D-CNN alone. A deep 3D-CNN is similarly
more computationally intensive and appears to perform worse on its own for classes
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with similar textures over numerous spectral bands. This is what inspired me to
suggest a Dual Convolution HIS Net (DualConvHSINet) model that corrects these
earlier models' flaws. For the proposed model, the 3D-CNN and 2D-CNN layers are
put together in a way that fully utilizes both the spectral and spatial feature maps to

reach the highest level of accuracy.

4.1 Proposed DualConvHSINet model

Let 1 € RM*NXD be the symbol for the spectral-spatial hyperspectral data
cube, where I stands for the initial input, M for the width, N for the height, and D
for the quantity of spectral bands/depth. Each HSI pixel in I comprises D spectral
measurements,  which  together create the one-hot label vector
Y = (1, Y2, . Vc) € RY*IXC where C stands for the various types of land cover.

The mixed land-cover classes in the hyperspectral pixels, however, introduce
considerable intra-class variability and inter-class similarity into I. Any model must
overcome a huge challenge to solve this issue. The original HSI data (I) along
spectral bands are initially subjected to the conventional principal component
analysis (PCA) to reduce the spectral redundancy. The PCA keeps the same spatial
dimensions (i.e., width M and height N)) while reducing the number of spectral bands
from D to B.

The spectral bands have been selectively minimized to maintain the crucial
spatial information required for object recognition. The data cube, which has
undergone PCA reduction, can be represented as X € RM*N*B  In this
representation, X is the adjusted input following the PCA process, M signifies the
width, N stands for the height, and B represents the count of spectral bands post-
PCA.
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The Hyper Spectral Imaging (HSI) data cube is segmented into minute,
intersecting 3D sections, the authentic labels of these are decided by the middle
pixel's label to apply image categorization methods. We have constructed 3D
adjacent patches P € R5*5*B from X, situated at the spatial point (a,f),
encapsulating the S X S window or spatial range and all B spectral bands. The
aggregate quantity of created 3D patches (n) from X is given by (M — S + 1) X
(N — S+ 1). Hence, the 3D patch situated at position (a, ), denoted by P, g,

covers the width froma — (§ —1)/2toa + (S — 1) /2, height from f — (S — 1) /2
to f+ (S —1)/2 and includes all B spectral bands of the Principal Component
Analysis (PCA) condensed data cube X.

In 2D Convolutional Neural Networks (2D-CNN), the incoming data are
processed with 2D kernel functions. This convolution operation involves calculating
the aggregate of the dot product between the input data and the kernel. The kernel
slides across the input data to encompass its complete spatial dimensions. The output
from this convolution, also known as convolved features, are fed into an activation
function to incorporate nonlinearity into the model. In 2D convolution, the activation

value at spatial coordinate (x,y) in the j® feature map of the i*" layer, denoted as

le ]y , 1s computed based on the subsequent equation,
di—1
Xy _ o,p x+a,y+p
SR z 3wt o @
=1 -y o=-§6

where ¢ is the activation function, b; ; signifies the bias parameter for the j th

feature map of the i layer, d;_; is the number of feature map in (I — 1)*" layer and

the depth of kernel w; ; for the j  feature map of the i™ layer, 2y + 1 is the width
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of kernel, 28 + 1 is the height of kernel, and w; ; is the value of weight parameter

for the j™ feature map of the i layer.

The process of 3D convolution involves convolving a 3D kernel with 3D data.
In the suggested model tailored for Hyper Spectral Imaging (HSI) data, the
convolution layer's feature maps are created by applying a 3D kernel across several
adjacent bands in the input layer, thereby encompassing the spectral data. During 3D
convolution, the activation value located at the spatial coordinates(x, v, z) in the j¢"
xy,z

feature map of the i*" layer, denoted as v;

ij ~»1s generated as follows,

dl1

_ apl x+ay+pz+A
l] =¢ bl]+z 2 2 Z ler Vicie (4.2)

=1 A=—m p=-y 0=-6

where 27 + 1 is the depth of kernel along spectral dimension and other
parameters are the same as in (Eq. 4.1).

CNN parameters, including the bias b and the kernel weight w, are commonly
trained using supervised methods with the aid of gradient descent optimization
techniques. Traditional 2D CNNs perform convolutions exclusively across the
spatial dimensions, incorporating all the feature maps of the preceding layer to
derive the 2D discriminative feature maps. However, when it comes to HSI
classification, it's crucial to capture not only spatial information but also spectral
data, which is distributed across multiple bands. This is something that 2D-CNNs
fall short in managing. On the other hand, a 3D-CNN kernel can simultaneously
extract both spectral and spatial features from HSI data, but this comes with the
drawback of elevated computational complexity. To leverage the automatic feature
learning strengths of both 2D and 3D CNN, we introduce a mixed feature learning
framework dubbed DualConvHSINet for HSI classification. The flow diagram of
the proposed DualConvHSINet network is shown in Figure 4.1. It includes three 3D
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convolutions (Eq. 4.2), a single 2D convolution (Eq. 4.1), and three fully connected

layers.

-
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Figure 4.1 The DualConvHSINet model is suggested, which combines 3D

and 2D convolution methods for the classification of hyperspectral images (HSI).

The software implementation for hyperspectral image classification is
primarily done in Python and leverages a number of machine learning and data
processing libraries. Key among them is TensorFlow, a powerful machine learning
library used for creating the Convolutional Neural Network model. Additionally, the
Scikit-learn library is used for Principal Component Analysis (PCA), an operation
essential for reducing the spectral redundancy in the initial hyperspectral data cube.
Other utility libraries like Matplotlib and NumPy are also employed for data
visualization and manipulation, respectively.

To summarize, the key functions in the program include:

1. load data(name): This function is implemented to load the initial
hyperspectral data (I) and labels using the Scipy library. This process corresponds to
the initial theoretical definitions of I and Y.

2. apply pca(X, numComponents=75): This function implements PCA via

Scikit-learn to reduce the spectral redundancy of the initial hyperspectral data (I), in
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accordance with the theoretical concept. It transforms the initial data cube I to X
with reduced spectral bands.

3. pad with zeros(X, margin=2): This function is used to pad the adjusted
input X with zeros, a step which allows the formation of 3D adjacent patches that
have their boundaries outside the actual spatial dimensions of X.

4. generate_image cubes(X, y, windowSize=5, removeZeroLabels = True):
This function generates the 3D adjacent patches P for image categorization, based
on the definitions given in the theoretical part.

5. build model(input_shape, output units): This function constructs the
DualConvHSINet model, incorporating both 2D and 3D convolutions along with
fully connected layers. It employs the TensorFlow library to create the layers, which
helps extract both spatial and spectral features from HSI data.

The last part of the code integrates the above functions and follows the process
of loading the data, applying PCA, generating image cubes, building the model, and
then training it using the TensorFlow library. It further saves the model in format h5
and plots the loss and accuracy curves using Matplotlib.

The developed model complies with the theoretical framework, by
successfully addressing the issue of high intra-class variability and inter-class
similarity in hyperspectral pixels and effectively extracting both spatial and spectral
information for HSI classification.

The full Python implementation of the hyperspectral images classification

model training is provided in Appendix A.

4.2 Dataset description and training details

We utilized three hyperspectral image datasets that are openly accessible:

University of Pavia, Indian Pines, and Salinas Scene. The Indian Pines (IP) dataset

58



includes images with spatial dimensions of 145 x 145 and 224 spectral bands
spanning from 400 to 2500 nm wavelengths, but we excluded 24 spectral bands that
overlap with water absorption regions. This dataset is categorized into 16 different
vegetation classes according to the available ground truth. The University of Pavia
(UP) dataset comprises images with spatial dimensions of 610x340 pixels and 103
spectral bands ranging from 430 to 860 nm in wavelength. The ground truth here is
partitioned into 9 urban land-cover categories. Lastly, the Salinas Scene (SA) dataset
consists of images with spatial dimensions of 512x217 and 224 spectral bands
covering the wavelength range of 360 to 2500 nm. We removed 20 spectral bands
that were absorbing water. This dataset has a total of 16 different classes. The
network was trained using mini-batches, each consisting of 256 examples, and the
training process was repeated for a total of 100 epochs. This was done without the
use of batch normalization or data augmentation techniques.

All experimental work is performed with the help of Colab Research, using a
computing environment with an A100 GPU and 24 GB RAM. It was identified the
optimal learning rate to be 0.001, as determined by the classification results. To
ensure a balanced comparison, we have maintained consistent spatial dimensions in
3D-patches of input volume across various datasets, with dimensions being
25x25x30 for IP, and 25x25x15 for both UP and SA, respectively.

Let's delve into the implications of executing the code found in Appendix A,
specifically with reference to the Pavia University dataset. This is an image captured
by the ROSIS sensor during a flight campaign over Pavia, located in northern Italy.
The image from Pavia University comprises 103 spectral bands and measures
610*340 pixels. However, certain samples in these images lack valuable information
and need to be excluded prior to analysis. The geometric resolution of the image
stands at 1.3 meters. Each image's ground truth distinguishes 9 unique classes. The
figures illustrate the omitted samples as broad black strips.
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Initially, the console will yield an output akin to that depicted in Figure 4.1,
providing an in-depth description and analysis of the model parameters.

This output is a summary of a convolutional neural network (CNN)
architecture specifically designed for the classification of hyperspectral images.

Let's delve into the description:

- InputLayer receives the hyperspectral images, which have a dimensionality
of 25x25 spatial pixels, 15 spectral bands (or channels), and 1 to indicate grayscale
(if images were colored, it would typically be 3). The choice of 25x25 based on
empirical results suggesting that patches of this size contain enough spatial context
to make accurate predictions while still being small enough to be computationally
manageable. In other words, these patches provide a balance between computational
efficiency and model performance. The patches are extracted from the entire
hyperspectral image and used to train the model. This is often done in order to
manage the high dimensionality of hyperspectral images and to generate more
training examples. In this case, the model is designed to work with images that have
15 spectral bands.

- Conv3D layers apply convolution operation in 3D, spatially and spectrally.
They extract features from the input data and reduce their dimensions. There are 3
Conv3D layers in the model with an increasing number of filters (8, 16, and 32) used
to capture more complex patterns as the data progresses through the network. The
kernel size used by these convolution operations is implicitly set to (3,3,3), since the
output dimensions reduce by 2 at each step.

- Reshape layer converts the 3D output of the last Conv3D layer into 2D. It
combines the last two dimensions, reducing it from (19,19,3,32) to (19,19,96).

- Conv2D is a convolution layer that operates in 2 dimensions (height and

width). It is used here for further spatial feature extraction from the reshaped data.
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- Flatten layer is used to flatten the output of the Conv2D layer into a single
dimension vector, which can be inputted into Dense layers.

- Dense layers, also called fully connected layers, perform classification on
the features extracted by the convolutional layers. The model uses two Dense layers
with 256 and 128 neurons respectively, followed by dropout layers to prevent
overfitting.

- The final Dense layer with 9 neurons is the output layer, corresponding to
the 9 classes that the model is expected to classify. This would indicate that there are
9 different classes in the hyperspectral image dataset.

- The dropout layers are used for regularization and reducing overfitting.
During training, they randomly set a fraction of input units to 0 at each update, which
helps prevent overfitting.

This network has a total of 4,844,793 trainable parameters, meaning that these
weights and biases are updated during training. There are no non-trainable

parameters in this network, which would otherwise be kept constant during training.
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Model: "model"

Layer (type) Cutput Shape Param #
input 1 :;;Fu:Laya:} ??;::e, ;;, 23, 13, 1)1 N -
conv3d (Conv3D) (Mone, 23, 23, 9, 8) 512
conv3d 1 (Conwv3D) (Mone, 21, 21, 3, 1l&) 577¢
conv3d 2 (Conw3D) (Mone, 12, 1%, 3, 32) 1385¢
reshape (Reshape) (None, 19, 18, 9g)

conv2d onv2 (Mone, 17, 17, &4) 53360
flatten latten) (lfone, 1E48

dense (Dense) (None, 256 735232
dropout (Dropout) (Mone, 256

denss 1 (Dsnze) (Mone, 128) 3285¢
dropout_1 (Dropout) (Mon=, 128)

dense 2 (Dense) (Mone, 9) 116l

Figure 4.1 Results of model parameters for PU dataset

After carrying out the training, we can observe the accuracy and loss
convergence over 100 epochs for both training and validation sets, as depicted in
Fig. 4.2 for the suggested approach. Notably, convergence is reached roughly around

the 50th epoch, indicating the method's swift convergence rate.
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Figure 4.2 The convergence of accuracy and loss across epochs on the Indian Pines

dataset.
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4.3 Classification results

Full implementation is places in Appendix B. The general approach there is
to prepare the data, load the model, make predictions, evaluate performance, and
visualize the results.

As we already remember hyperspectral imaging is an image consisting of
many spectral bands, each reflecting the intensity of light of a particular wavelength.
These bands represent a wide range of the electromagnetic spectrum, often beyond
the limits of visible light. Our ROSIS-03 hyperspectral sensor covers the spectrum
from 430 to 860 nm, dividing it into 103 spectral bands. The width of each band is
approximately 4.174 nm. The image on Figure 4.3 is based on data from three
spectral bands: 54, 33, and 14.

The 54th band is the red region of the spectrum corresponding to the
wavelength range of approximately 625 - 740 nm.

The 33rd band is the green region of the spectrum corresponding to a
wavelength range of approximately 520 to 570 nm.

The 14th band is the blue region of the spectrum, corresponding to a
wavelength range of approximately 440 - 490 nm.

Thus, the result is an image where each pixel is displayed with a color based
on the light intensity of these three wavelengths (red, green and blue). This allows
spectral data that would otherwise be invisible to the eye to be visualized and

analyzed.
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Figure 4.3 Visual display of hyperspectral images that would otherwise be

invisible to the eye

Now let's move on to classifying our image. In general, the algorithm works
as follows:

1. First, a two-dimensional array is created which will be used to store the
prediction results for each pixel in the image.

2. The algorithm then looks at each pixel in the image in turn.

3. If a pixel does not belong to the classes of interest (usually designated as

class 0), it is skipped.
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4. For each pixel of interest, the algorithm extracts the corresponding portion
of the image. This portion of the image is the area around the pixel, and its
dimensions are determined in advance.

5. This section of the image is then fed to the input of the deep learning model,
which performs prediction, predicting which class the section belongs to.

6. Since the model produces a probability distribution for all classes, we select
the class with the highest probability as the predicted class.

This process is repeated for each pixel in the image.

The result is a two-dimensional classification map for the entire image as on
Figure 4.4. This map shows which class each pixel in the image belongs to,

according to our deep learning model.

Figure 4.4 Predicted classification map for Pavia University dataset
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Figure 4.5 Legend for predicted classification map for Pavia University

dataset

Figure 4.6 Visual display of the predicted classification map from the

original image
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4.4 Performance evaluation

In this correspondence, we've applied three different evaluation metrics -
Overall Accuracy (OA), Average Accuracy (AA), and the Kappa Coefficient
(Kappa) - to assess the performance of Hyperspectral Image (HSI) classification. OA
gives us the ratio of accurately classified samples to the total sample count, while
AA is the mean accuracy calculated across various classes. Kappa, on the other hand,
is a statistical measure offering mutual insights into the high-level correspondence
between the real-world and classified maps. The outcomes from the
DualConvHSINet model that we propose are juxtaposed with prevalent supervised
techniques like SVM, 2D-CNN, 3D-CNN, M3D-CNN, and SSRN. The dataset is
divided arbitrarily into training (30%) and testing (70%) segments. The
computations of results were performed using the publicly accessible code
corresponding to the methods being compared.

As shown in Table 4.1, the OA, AA, and Kappa coefficient results for various
methods4 are presented. DualConvHSINet, as indicated by Table 4.1, surpasses all
other comparative methods across each dataset, all while maintaining the lowest
standard deviation. The design of DualConvHSINet is predicated on the layered
depiction of a spectral-spatial 3D CNN, succeeded by a spatial 2D CNN. These two
are mutually beneficial. An observation from these findings shows that the 3D-CNN
underperforms compared to the 2D-CNN on the Salinas Scene dataset. To our
understanding, this may be due to the existence of two classes in the Salinas dataset
(specifically Grapes-untrained and Vinyarduntrained) which predominantly have
similar textures across the majority of spectral bands. As such, with the heightened
redundancy across the spectral bands, the 2D-CNN outdoes the 3D-CNN on the
Salinas Scene dataset. In addition, the performance of both SSRN and
DualConvHSINet consistently outmatches that of M3D-CNN. The implication is
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clear that solo 3D or 2D convolution cannot provide the same level of discriminative
feature representation as a hybrid of 3D and 2D convolutions.

Figure 4.7 depicts a classification map of a sample hyperspectral image,
created using SVM, 2D-CNN, 3D-CNN, M3D-CNN, SSRN, and DualConvHSINet
methods. The classification map quality for SSRN and DualConvHSINet noticeably
exceeds that of the other techniques. Among SSRN and DualConvHSINet, the maps
created by DualConvHSINet in smaller sections are superior to those by SSRN. The
computational efficiency of the DualConvHSINet model is evident in the training
and testing durations outlined in Table 4.2, demonstrating its increased efficiency
over the 3D-CNN model. Table 4.3 reflects the impact of spatial dimension on the
performance of the DualConvHSINet model, revealing that a 25 x 25 spatial
dimension is most fitting for the proposed method. We further conducted
experiments with even less training data, specifically only 10% of total samples, and
encapsulated the results in Table 4.4. It is notable from this experiment that each
model's performance dips slightly, yet the proposed method continues to surpass the

other techniques in nearly all instances.

4.5 Conclusion

This correspondence presents a hybrid 3D and 2D model intended for
hyperspectral image categorization. The suggested DualConvHSINet model
essentially merges the mutually beneficial data of spatio-spectral and spectral
elements via 3D and 2D convolutions, respectively. Benchmark tests across three
datasets, contrasted with recent advanced methods, substantiate the proposed
method's superior effectiveness. Not only is the proposed model more
computationally efficient than the 3D-CNN model, but it also demonstrates
outstanding performance when working with limited training data.
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CONCLUSIONS

Hyperspectral images from remote sensing offer distinct advantages over
traditional multispectral images. This includes providing more accurate and detailed
analyses of satellite data, which is significant for various applications like
geological, agricultural, environmental, and military purposes.

There 1s a wide array of techniques currently being used for object
classification in hyperspectral images, all of which have proven to be precise in
delivering high-resolution data.

The work introduces a novel software approach for object classification on
hyperspectral images, utilizing advanced machine learning algorithms. This
represents a significant contribution in the field as it demonstrates the potential for
enhancing current remote sensing capabilities.

The implications of this study are broad and promising, potentially leading to
significant advancements in remote sensing, object classification, and hyperspectral
image analysis. These advancements could lead to improved accuracy and efficiency

in the mentioned applications, supporting progress in several critical areas.
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APPENDIX A
Software implementation of DualConvHSINet model training for object
classification

import os

import numpy as np

import scipy.io as sio

import matplotlib.pyplot as plt

import tensorflow as tf

from tensorflow.keras.models import Model, load model
from tensorflow.keras.layers import Input, Conv3D, Conv2D,
Dense, Flatten, Reshape, Dropout

from tensorflow.keras.optimizers import Adam

from tensorflow.keras.utils import to categorical

from sklearn.decomposition import PCA

from sklearn.model selection import train test split

from sklearn.preprocessing import LabelEncoder

from collections import Counter

from sklearn.model selection import StratifiedShuffleSplit

## GLOBAL VARIABLES

DATASET = 'PU'

TEST RATIO = 0.7

WINDOW SIZE = 25

DATA PATH = '/content/dataset/'

MODEL PATH =
"/content/drive/MyDrive/trained models/{} hybrid sn.h5".for
mat (DATASET)

def load data(name) :

wriew

Load data and labels for a given dataset name.

Parameters:
name (str): Name of the dataset to load.
Acceptable inputs: 'IP', 'SA', 'SA S',
'PU'.
Returns:

data (ndarray): Multidimensional array containing the
loaded data.

labels (ndarray): Multidimensional array containing the
corresponding labels.
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mwiw

if name == 'IP':
data = sio.loadmat (os.path.join (DATA PATH,
'Indian pines corrected.mat')) ['indian pines corrected']
labels = sio.loadmat (os.path.join (DATA PATH,
'Indian pines gt.mat')) ['indian pines gt']
elif name == 'SA':
data = sio.loadmat (os.path.join (DATA PATH,
'Salinas corrected.mat')) ['salinas corrected']
labels = sio.loadmat (os.path.join (DATA PATH,
'Salinas gt.mat')) ['salinas gt']
elif name == 'SA S':
data = sio.loadmat (os.path.join (DATA PATH,
'SalinasA corrected.mat')) ['salinasA corrected']
labels = sio.loadmat (os.path.join (DATA PATH,
'SalinasA gt.mat')) ['salinasA gt']
elif name == 'PU':
data = sio.loadmat (os.path.join (DATA PATH,
'PaviaU.mat')) ['paviaU']
labels = sio.loadmat (os.path.join (DATA PATH,
'PaviaU gt.mat')) ['paviaU gt']
return data, labels

def apply pca (X, numComponents=75):

wiivw

Apply PCA (Principal Component Analysis) to the input
data.

Parameters:

X (ndarray): Input data to which PCA will be applied.

numComponents (int): Number of principal components to
return.

Returns:

newX (ndarray): Transformed data after applying PCA.

pca (PCA): The PCA model fitted on the data.

newX = np.reshape (X, (-1, X.shape[Z]))

pca = PCA(n_components=numComponents, whiten=True)

newX = pca.fit transform(newX)

newX = np.reshape (newX, (X.shape[0],X.shapel[l],
numComponents) )

return newX, pca
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def pad

mwiriw

Pad

Para
X (n
marg

Retu
newX
newX
2* margi
x of
y of
newX
y offset
retu

def plot

wivw

Plot

Para
hist
method o

Retu
None
# Pl
plt.
plt.
plt
plt
plt.
plt.
plt.
right')
plt.
plt.

# Pl
plt.

with zeros (X, margin=2):

the input array with zeros around the border.

meters:
darray) : Input array.
in (int): Width of the zero-padding.
rns:
(ndarray) : The zero-padded array.
= np.zeros ((X.shape[0] + 2 * margin, X.shape[l] +
n, X.shapel[2]))
fset = margin
fset = margin
[x offset:X.shape[0] + x offset,
:X.shape[l] + y offset, :] =X
rn newX
~model history(history):
the training history of a model.
meters:
ory (History): History object obtained from the fit

f a model.

rns:

otting the Loss Curve
figure (figsize=(5,5))
grid()

.plot (history.history['loss'])
.plot (history.history['val loss'])

ylabel ('Loss')
xlabel ('Epochs"')
legend (['Training', 'Validation'], loc='upper

savefig("loss curve.png")
show ()

otting the Accuracy Curve
figure (figsize=(5,5))

76



plt.ylim(
plt.grid(
plt.plot (history.history['accuracy'])
plt.plot (history.history['val accuracy'])
plt.ylabel ('Accuracy')

plt.xlabel ('Epochs')
plt.legend(['Training', 'Validation'])
plt.savefig("acc curve.png")

plt.show ()

0,1.1)
)

def build model (input shape, output units):

wiuw

Build a Convolutional Neural Network (CNN) model.

Parameters:

input shape (tuple): Shape of the input data.

output units (int): Number of output units (number of
classes) .

Returns:

model (Model): Compiled CNN model.

wiivw

## input layer
input layer = Input (input shape)

## convolutional layers

conv_layerl = Conv3D(filters=8, kernel size=(3, 3, 7),
activation='relu') (input layer)

conv_layer2 = Conv3D(filters=16, kernel size=(3, 3, 5),
activation='relu') (conv layerl)

conv_layer3 = Conv3D(filters=32, kernel size=(3, 3, 3),
activation='relu') (conv_ layer2)

conv3d shape = tf.keras.backend.int shape (conv layer3)

conv_layer3 = Reshape ((conv3d shape[l],
conv3d shape[2],
conv3d shape[3]*conv3d shape([4])) (conv layer3)

conv_layer4 = Conv2D(filters=64, kernel size=(3,3),
activation='relu') (conv_layer3)

flatten layer = Flatten() (conv_ layer4)

## fully connected layers
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dense layerl = Dense (units=256,
activation='relu') (flatten layer)
dense layerl = Dropout (0.4) (dense layerl)
dense layer2 = Dense (units=128,
activation='relu') (dense layerl)
dense layer2 = Dropout (0.4) (dense layer?2)
output layer = Dense (units=output units,
activation='softmax') (dense layer2)

# Define the model and print the summary
model = Model (inputs=input layer, outputs=output layer)
model.summary ()

return model

def generate image cubes (X, y, windowSize=5,
removezZerolLabels = True) :

Generate 3D image cubes from the input data.

Parameters:

X (ndarray): Input data.

y (ndarray): Corresponding labels of the data.

windowSize (int): Size of the spatial window.

removeZerolabels (bool): If True, patches corresponding
to zero labels are not returned.

Yields:
(patch, patch label): Tuples of image patches and
corresponding labels.

margin = int ((windowSize - 1) / 2)

zeroPaddedX = pad with zeros (X, margin=margin)

# generate patches

for r in range (margin, zeroPaddedX.shapel[0O] - margin) :
for ¢ in range (margin, zeroPaddedX.shapel[l] -

margin) :

patch = zeroPaddedX[r - margin:r + margin + 1,
Cc - margin:c + margin + 1]

patch label = y[r-margin, c-margin]

1f removeZerolabels and patch label > 0:
yield (patch, patch label - 1)

elif not removeZerolabels:
yield (patch, patch label)
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if name = ' main
if not os.path.exists (MODEL PATH) :

X, y = load data (DATASET)

K = 30

X, = apply pca (X, numComponents=K)

patchesGenerator = generate image cubes (X, vy,
windowSize=WINDOW SIZE)

X patches = []

y _patches = []

for (patch, label) in patchesGenerator:
X patches.append (patch)
y _patches.append (label)

X = np.array (X patches)

y = np.array(y patches)

X train, X test, y train, y test =
train test split(X, y, test size=TEST RATIO, stratify=y)

X train = X train.reshape (-1, WINDOW SIZE,
WINDOW SIZE, K, 1)

print ("Unique labels before to categorical:",
np.unique(y train))

le = LabelEncoder ()

y train encoded = le.fit transform(y train)

y train = to categorical(y train encoded)

print ("Unique labels after encoding:",
np.unique (y train encoded))

# Determine the number of unique classes

output units = len(np.unique(y train encoded))

model = build model ( (WINDOW SIZE, WINDOW SIZE, K,
1), output units)

#compiling the model

adam = tf.keras.optimizers.legacy.Adam(lr=0.001,
decay=1e-06)

model.compile (loss='categorical crossentropy',
optimizer=adam, metrics=['accuracy'])

history = model.fit (x=X train, y=y train,
batch size=256, epochs=100, validation split=0.2)

model .save (MODEL PATH)

plot model history(history)

else:
print (f'Model {MODEL PATH} already exists.')
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import
import
import
import
import
from te
from te
Dense,
from te
from te
from sk
from sk
from sk
accurac
from ke
import
from ma

DATASET

APPENDIX B
Software implementation of using DualConvHSINet model for object

classification

os
numpy as np

scipy.io as sio

matplotlib.pyplot as plt

tensorflow as tf

nsorflow.keras.models import Model, load model
nsorflow.keras.layers import Input, Conv3D, Conv2D,
Flatten, Reshape, Dropout
nsorflow.keras.optimizers import Adam
nsorflow.keras.utils import to categorical
learn.decomposition import PCA

learn.model selection import train test split
learn.metrics import confusion matrix,

y score, classification report, cohen kappa score
ras.utils import np utils

spectral

tplotlib import colors

= 'PU’

DATA PATH = '/content/dataset/'

MODEL P

ATH =

"/content/drive/MyDrive/trained models/{} hybrid sn.h5".for

mat (DAT

ASET)

WINDOW SIZE = 25
TEST RATIO = 0.7

def load data(name) :
if name == 'IP':
data = sio.loadmat (os.path.join (DATA PATH,
'Indian pines corrected.mat')) ['indian pines corrected']
labels = sio.loadmat (os.path.join (DATA PATH,
'Indian pines gt.mat')) ['indian pines gt']
elif name == 'SA':
data = sio.loadmat (os.path.join (DATA PATH,
'Salinas_ corrected.mat')) ['salinas corrected']
labels = sio.loadmat (os.path.join (DATA PATH,
'Salinas gt.mat')) ['salinas gt']
elif name == 'PU':
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data = sio.loadmat (os.path.join (DATA PATH,

'PaviaU.mat')) ['paviaU']
labels = sio.loadmat (os.path.join (DATA PATH,
'PaviaU gt.mat')) ['paviaU gt']

return data, labels

def splitTrainTestSet (X, y, testRatio, randomState=345):

X train, X test, y train, y test = train test split (X,
y, test size=testRatio, random state=randomState,
stratify=y)

return X train, X test, y train, y test

def applyPCA (X, numComponents=75):
newX = np.reshape (X, (-1, X.shapel[Z]))
pca = PCA(n_ components=numComponents, whiten=True)
newX = pca.fit transform(newX)
newX = np.reshape (newX, (X.shapel[0],X.shapel[l],
numComponents) )
return newX, pca

def padWithZeros (X, margin=2) :

newX = np.zeros((X.shape[0O] + 2 * margin, X.shapel[l] +
2* margin, X.shape[2]))

x offset = margin

y offset = margin

newX[x offset:X.shape[0] + x offset,
y offset:X.shape[l] + y offset, :] = X

return newX

def createImageCubes (X, y, windowSize=5, removeZerolLabels
True) :

margin = int ((windowSize - 1) / 2)

zeroPaddedX = padWithZeros (X, margin=margin)

# split patches

patchesData = np.zeros ((X.shape[0] * X.shapel[l],
windowSize, windowSize, X.shape[2]))

patchesLabels = np.zeros ((X.shape[0] * X.shapel[l]))

patchIndex = 0

for r in range (margin, zeroPaddedX.shape[0O] - margin) :

for ¢ in range (margin, zeroPaddedX.shape[l] -

margin) :

patch = zeroPaddedX[r - margin:r + margin + 1,
Cc - margin:c + margin + 1]

patchesData[patchIndex, :, :, :] = patch
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patcheslLabels[patchIndex] = y[r-margin, c-
margin]
patchIndex = patchIndex + 1
if removeZerolLabels:

patchesData = patchesData[patcheslLabels>0, :, :, :]
patcheslLabels = patcheslLabels|[patchesLabels>0]
patchesLabels -= 1

return patchesData, patcheslabels

def Patch(data,height index,width index):
height slice = slice (height index,

height index+PATCH SIZE)
width slice = slice(width index,

width index+PATCH SIZE)
patch = datal[height slice, width slice, :]
return patch

y = load data (DATASET)
shape, y.shape
30

= applyPCA (X, numComponent s=K)

shape[2]

X, y = createImageCubes (X, y, windowSize=WINDOW SIZE)
Xtrain, Xtest, ytrain, ytest = splitTrainTestSet (X, vy,
TEST RATIO)

Xtrain.shape, Xtest.shape, ytrain.shape, ytest.shape
Xtrain = Xtrain.reshape (-1, WINDOW SIZE, WINDOW SIZE, K, 1)
ytrain = np utils.to categorical (ytrain)

S = WINDOW SIZE

L =K

output units = 16

model = load model (MODEL PATH)

adam = tf.keras.optimizers.legacy.Adam(lr=0.001, decay=le-
06)

model.compile (loss="'categorical crossentropy',
optimizer=adam, metrics=['accuracy'])

Xtest = Xtest.reshape (-1, WINDOW SIZE, WINDOW SIZE, K, 1)
ytest = np utils.to categorical (ytest)

Y pred test = model.predict (Xtest)

y pred test = np.argmax(Y pred test, axis=1)

X,
X.
K
X,
K

IIFO

# load the original image
X, y = load data (DATASET)
height = y.shape[0]

width = y.shape[l]
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PATCH SIZE = WINDOW SIZE

numComponents = K

X,pca = applyPCA (X, numComponents=numComponents)
X = padWithZeros (X, PATCH_SIZE//Z)

from operator import truediv

def AA andEachClassAccuracy(confusion matrix):

counter = confusion matrix.shape[0]

list diag = np.diag(confusion matrix)

list raw sum = np.sum(confusion matrix, axis=1)

each acc = np.nan to num(truediv (list diag,
list raw sum))

average acc = np.mean(each acc)

return each acc, average acc
def reports (X test,y test,name):

#start = time.time ()
Y pred = model.predict (X test)
y _pred = np.argmax (Y pred, axis=l)
#end = time.time ()
#print (end - start)
if name == 'IP':
target names = ['Alfalfa', 'Corn-notill', 'Corn-

mintill', 'Corn'
;, 'Grass-pasture', 'Grass-trees',
'Grass-pasture-mowed',

'Hay-windrowed', 'Oats', 'Soybean-
notill', 'Soybean-mintill',
'Soybean-clean', 'Wheat', 'Woods',

'Buildings-Grass—-Trees-Drives',
'Stone-Steel-Towers']

elif name == 'SA':
target names =
['Brocoli green weeds 1', 'Brocoli green weeds 2','Fallow','

Fallow rough plow', 'Fallow smooth',
'Stubble', 'Celery', 'Grapes untraine

d','soil vinyard develop', 'Corn senesced green weeds',
'Lettuce romaine 4wk', 'Lettuce roma

ine 5wk','Lettuce romaine 6wk', 'Lettuce romaine 7wk',
'Vinyard untrained', 'Vinyard vertic

al trellis']

elif name == 'PU':
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target names =
['Asphalt', "Meadows', 'Gravel', 'Trees', 'Painted metal
sheets', 'Bare Soil', "Bitumen',
'Self-Blocking Bricks', 'Shadows']

classification =
classification report (np.argmax(y test, axis=1l), y pred,
target names=target names)

oa = accuracy score(np.argmax(y test, axis=1), y pred)

confusion = confusion matrix(np.argmax(y test, axis=1l),
y_pred)

each acc, aa = AA andEachClassAccuracy (confusion)

kappa = cohen kappa score(np.argmax(y test, axis=1),
y_pred)

score = model.evaluate (X test, y test, batch size=32)

Test Loss = score[0]*100

Test accuracy = score[l1]*100

return classification, confusion, Test Loss,
Test accuracy, 0a*100, each acc*100, aa*100, kappa*100

classification, confusion, Test loss, Test accuracy, oa,
each acc, aa, kappa = reports (Xtest,ytest,DATASET)

classification = str(classification)
confusion = str(confusion)
file name = "classification report.txt"

|l

with open(file name, 'w') as x file:
x file.write('{} Test loss (%)'.format (Test loss))
x file.write('\n")
x file.write('{} Test accuracy

(%) '.format (Test accuracy))

x file.write('\n")

x file.write('\n")

x file.write('{} Kappa accuracy (%) '.format (kappa))
x file.write('\n")

x file.write('{} Overall accuracy (%) '.format (oa))
x file.write('\n")

x file.write('{} Average accuracy (%) '.format (aa))
x file.write('\n")

x file.write('\n")

x file.write('{}'.format (classification))

x file.write('\n")

x file.write('{}'.format (confusion))

84



outputs = np.zeros ((height,width))
for i in range (height) :
for j in range (width) :
target = int(y[i,7])
if target ==
continue
else
image patch=Patch (X, 1i,])
X test image =
image patch.reshape(1l,image patch.shape[0], image patch.shap
e[l], image patch.shape[2],
1) .astype('float32")

prediction = (model.predict (X test image))
prediction = np.argmax(prediction, axis=1)
outputs[i] [J] = prediction+l

X2, y2 = load data (DATASET)

spectral.imshow (X2, (54, 33, 14), stretch=(0.02,
0.98),figsize =(7,7))

spectral.imshow(classes = outputs.astype(int),figsize
=(7,7))

predict image = spectral.imshow (X2, (54, 33, 14),
stretch=(0.02, 0.98), classes = outputs.astype(int),figsize
=(7,7))

predict image.set display mode ('overlay')

predict image.class alpha = 0.6
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APPENDIX C

Indian Pines Dataset University of Pavia Salinas Scene Dataset
Dataset
Methods

OA Kappa AA OA Kappa AA OA Kappa AA
ID-CNN 86.90 85.01 82.70 96.02 96.04 95.10 96.15 95.71 98.27
+1.3 +1.6 +1.0 +0.4 +0.3 +0.1 + 0.6 +0.7 +0.2
3D-CNN 89.23 87.70 87.87 97.30 96.22 97.02 94.54 93.81 96.79
+0.2 +0.3 + 0.1 +0.3 +0.1 +0.1 + 0.5 +0.3 + 0.6
M3D-CNN 93.67 92.70 93.60 97.41 96.05 98.22 94.92 94.40 97.28
+ 0.1 +0.3 + 0.6 +0.2 + 0.6 +0.1 +0.3 +0.1 +0.2
SSRN 99.23 99.12 92.52 99.77 99.69 99.71 99.88 99.87 99.84
+ 0.1 + 0.1 + 0.1 +0.1 +0.2 +0.1 + 0.0 + 0.0 + 0.0

99.47 99.40 99.38 99.86 99.82 99.71 100 100 100

DualConvHSINet| 101 | to1 | x01 | £01 | £00 | £01 | £00 | £00 | £00

Table 4.1 The classification accuracies (in percentages) on Indian Pines,

University of Pavia, and Salinas Scene datasets using proposed and state-of-the-art

methods.
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M Unknown B Painted metal sheets

Bl Asphalt Bare Soil
Meadows B Bitumen

I Gravel B Self-Blocking Bricks
Trees Bl Shadows

Figure 4.7 The Classification Map for Pavia University (a) False color image
(b) Ground Truth (c)-(h) Predicted Classification Maps for SVM, 2D-CNN, 3D-
CNN, M3D-CNN, SSRN, and DualConvHSINet
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Data 2D CNN 3D CNN HybridSN
Train(m) | Test(s) Train(m) | Test(s) | Train(m) | Test(s)
IP 1.9 1.1 15.2 4.3 14.1 4.8
UP 1.8 1.3 58.0 10.6 20.3 6.6
SA 2.2 2.0 74 15.2 25.5 9.0

Table 4.2 The duration spent on training (expressed in minutes, m) and
testing (expressed in seconds, s) using the 2D-CNN, 3D-CNN, and
DualConvHSINet models across the IP, UP, and SA datasets.

Window IP(%) UP(%) SA(%)| Window IP(%) UP(%) SA(%)

19x19 9974 9998 9999 | 23x23 9931 9996 99.71
21x21 9973 9990 99.69 | 25x25 99.75 9998 100

Table 4.3 The impact of spatial window size over the performance of

DualConvHSINet

Indian Pines | Univ. of Pavia Salinas Scene
OA  Kappa AA | OA Kappa AA | OA Kappa AA

2D-CNN 80.27 78.26 68.3] 96.63 95.53 94.84 96.34 95.93 94.36
3D-CNN 82.62 79.25 76.51 96.34 9490 97.03 85.00 83.20 89.63
M3D-CNN | 81.39 81.20 75.22 95.95 93.40 97.52 94.20 93.61 96.66
SSRN 08.45 98.23 86.19 99.62 99.50 99.49 99.64 99.60 99.76
HybridSN 98.39 98.16 98.01} 99.72 99.64 99.20 99.98 99.98 99.98

Methods

Table 4.4 The classification precision rates (expressed as percentages)
attained through the use of both proposed and leading-edge techniques with a

reduced volume of training data, specifically just 10%.

88



