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Abstract. The main goal of this study is to evaluate different models for further improvement of
the accuracy of land use and land cover (LULC) classification on Google Earth Engine using
random forest (RF) and support vector machine (SVM) learning algorithms. Ten indices, namely
normalized difference vegetation index, normalized difference soil index, index-based built-up
index, biophysical composition index, built-up area extraction index (BAEI), urban index, new
built-up index, band ratio for built-up area, bare soil index, and normalized built up area index,
were used as input parameters for the machine learning algorithms to improve classification
accuracy. The combinatorial analysis of the Sentinel-2 bands and the aforementioned indices
allowed us to create four combinations based on surface reflectance characteristics. The study
includes data from April 2020 to September 2021 and April 2022 to June 2022. The multitem-
poral Sentinel-2 data with spatial resolutions of 10 m were used to determine the LULC clas-
sification. The major land use classes such as water, forest, grassland, urban areas, and other
lands were obtained. Generally, the RF algorithm showed higher accuracy than the SVM. The
overall accuracy for RF and SVM was 86.56% and 84.48%, respectively, and the mean Kappa
was 0.82 and 0.79, respectively. Using the combination 2 with the RF algorithm and combination
4 with the SVM algorithm for LULC classification was more accurate. The additional use of
vegetation indices allowed to increase in the accuracy of LULC classification and separate
classes with similar reflection spectra. © 2023 Society of Photo-Optical Instrumentation Engineers
(SPIE) [DOI: 10.1117/1.JRS.17.014506]
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1 Introduction

Anthropogenic activities have a great influence on the Earth’s land surface. The lands are inten-
sively used for the needs of energy extraction, management of natural resources, food produc-
tion, and the development of urban areas.1 The transformation of natural ecosystems, because
of human activity, changes the biophysical properties of the Earth’s surface.2 Rapid urban growth
is a global problem, with direct or indirect expressed in environmental consequences such as
local air pollution, biodiversity loss, soil degradation, water crises, reduction of green areas in
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the cities and all of which are leading to gradual accumulation of climate change.3,4 Land use
land cover (LULC) is a fundamental concept of sustainable development. That is why LULC
mapping has been recognized as the main task for deriving information about ecological mon-
itoring at global, regional, and local scales.5 The generation of global LULC products that are
stable and consistent over time while also reflecting the land surface seasonality, allows rational
management of natural resources.6 LULC mapping is one of the most important and earliest
applications of remote sensing technology that is constantly developing and improving. Remote
sensing is the technology for effective and accurate land cover mapping at large scales. There are
numerous advantages such as repeatability of observations, cost-effectiveness, and tracking
changes over time.7 Updates and improvements in data types allow for significant progress
in land cover mapping across a range of spatial resolutions.8 Review of articles9–11 shows that
the contemporary high adoption and application of Sentinel-2 can be attributed to the high spatial
and temporal resolution. The free access policy drives the increasing use of Sentinel-2 data,
especially in the developing countries. Many studies have focused on comparing the perfor-
mance of LULC data derived from Sentinel-2 and Landsat imagery.12–17 In the current and past
research,18,19 we have been using Sentinel-2 imagery, as this data is fully relevant to the research
objectives. Generating various-resolution LULC maps require massive amounts of data as huge
storage capacities, high processing power, and the flexibility to apply diverse approaches are
all required. To solve all of these problems, we used the Google Earth Engine (GEE), which
was used for easier implementation. This combines huge amounts of remote sensing data from
multiple sources with a high-performance computer service that allows you to quickly and easily
calculate satellite images.20–23

Mapping of the LULC classification is based on remote sensing imagery using non-
parametric machine learning algorithms such as random forest (RF) and support vector machine
(SVM). These are mostly used to provide accurate land cover maps.24,25 The RF classifier is
suitable for classifying multispectral data, less sensitive to the quality of the training samples,
to overfitting, this is due to the large number of decision trees than other machine learning
classifiers.9,26–30 The performance of different machine learning algorithms on the satellite image
in a rural or urban setup shows the SVM with an overall accuracy (OA) of 0.969 comparatively
better results than the other two algorithms.15 In turn, the classification of a complex tropical
forest with a combination of dry and rainy seasons showed high accuracy with the SVM clas-
sifier (80.3%), whereas RF obtained a lower accuracy (63.9%).10 The classification results are
clearly influenced by the type of surface and the complexity of the conditions. The authors31–33

use the RF classifier to map landscapes in a rapidly urbanizing region and to assess the impact of
urbanization on the environment. According to Ref. 32, transformation of various LULC types
into urban/built-up areas based on RF (91% to 98%) is statistically significant. The urban/built-
up areas are continually increasing at the expense of agricultural and forest lands. This proves the
accuracy of the RF classifier for LULC classification of urban areas.

To increase the accuracy of spectral classification LULC, approaches based on various spec-
tral vegetation indices (VI) are used. The research results confirm the effectiveness of the VI as
Normalized difference vegetation index (NDVI), NDBI, and NDWI with the corresponding
Sentinel-2 red-edge bands using RF classifiers (94.85%) to increase the accuracy of classifica-
tion LULC.12,14 The creation of input composites comprising of spectral bands and EVI, NDBI,
NDMI, NDVI, and normalized difference soil index (NDSI) indices allows it to improve the
LULC classification of the city using the RF (88% to 89%) classifier.31,34–36 The addition of
these indices improves the classification in terms of sensitivity for determining the state of water
on different surfaces.11,37,38 For accurate mapping of a built-up area and bare soil, those that have
similar spectral characteristics should be applied to a different VI. The applying of such spectral
indices as BAEI, bare soil index (BSI), new built-up index (NBI), NDBI, urban index (UI), and
index-based built-up index (IBI) in combination with spectral bands shows significantly higher
classification accuracy LULC.39–42 The use of normalized built-up area index (NBAI), band ratio
for built-up area (BRBA), and BSI indices in combination with Sentinel-2 bands made it possible
to better distinguish the classes of a built-up area and bare soil.16,43 The NDSI index (newly
developed spectral index) is compared with the BRBA, NBAI, NBI, and NDBI spectral indices
to map the urban built-up area more accurately.44 However, the authors used Landsat images with
30 m resolution. It is worth noting that the use of the biophysical composition index (BCI), PISI,
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and CBI indices to characterize the urban environment allows for the separation of impervious
surfaces, bare soil, and vegetation.45–48 To accurately extract built-up area and bare land with RF
classification is conducted using multisensor features, including temperature, night-time light,
backscattering, and topography.49 Applying very high-resolution satellite imagery and incorpo-
rating geometry, texture, and spectral information with object-based image classification is
an alternative approach that requires more additional information to accurately identify urban
classes.13,24,50,51 An interesting approach for mapping the built-up area (building detection)
is a classification model that combines spectral, height, and textural characteristics. However,
it is desirable to use high-resolution images such as WorldView-2 and Spot-5 in order to achieve
the required accuracy, which is not always possible.52–55

The main aim of the present study was to analyze ways to improve the accuracy of the LULC
classification with machine learning algorithms RF and SVM based on multispectral Sentinel-2
satellite images. The decisive technical novelty of the study is that four spectral combinations
were proposed. The combinations use 10 VI that are justified from a physical point of view.
In doing so, the indices were chosen, in particular those that solve the subtask of separating
LULC types with similar spectral reflectance properties, i.e., built-up and other lands (bare land).
This study investigated these four combinations for RF and SVM, evaluating their performance
in terms of Kappa coefficient, user, and producer accuracy values. Thus, we found the best of
the proposed combinations, which most accurately classify the LULC of the urban area.

2 Materials and Methods

2.1 Materials

2.1.1 Characteristics of the study area

Kyiv is the capital of an independent Ukraine that has been developing rapidly recently. At the
same time, urban planning activities are often chaotic, not taking into account the additional
systemic overloads in the performance of metropolitan functions. Additional development neg-
atively affects not only the environment but also the health of the population and its natural
rhythm of life.56 Kyiv is located on the border of two natural and climatic zones of Ukraine
– Polissia (northern part) and Forest steppe (southern territories).57 The location affects its char-
acteristics – vegetation, distribution, species, and on the composition of the soil. A minor part of
Kyiv’s greenery is the remnants of natural forests, which previously occupied the territory of the
modern city. However, a larger part consists of artificial plantations created during the construc-
tion of the urban area.19 The study area Kyiv municipality is shown in Fig. 1. It is constructed
using geographic information technology, as described in Refs. 58 and 59.

As of February 2022, Kyiv was one of the ten most populated cities in Europe. According to
the Kyiv General Department of State Statistics Committee of Ukraine, the population as of
February 1, 2022, was 2,950,702 people part of the existing population and 2,909,395 people
are the permanent population. This period constantly grew due to migration.60 The factor of
such growth was the progressive urbanization of the surrounding territories.19 The economically
active population was 16666.8 thousand people, including 14957.3 thousand employed and
1709.5 thousand unemployed. The economically inactive population was 295 thousand. The
highest employment of the population by types of economic activity was professional, scientific,
and technical activities – 127 thousand and education – 119.9 thousand people.60 The average
monthly temperature in the city in January is −0.9°C and in July, 25.6°C. The annual rainfall in
2021 was 456.3 mm.61

The analysis of the structure of the city’s land fund shows that the main place belongs to
built-up lands, which occupy an area of 37.00 thousand hectares, which is 44.2% of the total area
of the city, and lands belonging to forest plantations with an area of 35.10 or 41.7%.57 By Order
No. 1425 of the Kyiv City Council dated June 22, 2021, the project of the City Target Program
for the Use and Protection of Lands of the City of Kyiv for 2022 to 2025 was approved. One of
the goals of this program is to update cartographic materials and digital orthophoto plans.62

The rapid expansion of Kyiv city is due to the increase of the built-up area at the expense
of green areas of the city and the development of suburban green landscapes. The reduction of
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green zones and public spaces, chaotic and illegal development, and traffic that increases air
pollution, all indicate the imperfection of the existing urban space planning system and require
effective management decisions at the state level. According to the Kyiv General Plan 2040,
planning decisions are outdated and based on Soviet approaches. Accurate and timely mapping
of the city’s LULC will strengthen planning and design decisions of urban planning policy, in
particular, improve zoning and reduce the rate of environmental pollution. In this study, five
main LULC classes were selected such as water, forest, grassland, built-up, and other lands.
This classification allowed the best interpretation of the results of the study in accordance with
the above problems.

Therefore, the study of land resources of the Kyiv based on satellite data is an important
component for effective management of the city territory within the framework of increased
urbanization.

2.1.2 Google Earth engine

In this study, to determine land use and land cover, we decided to use publicly available data
from Sentinel-2 multispectral instrument (MSI). Sentinel-2 MSI data are available for free down-
loading from Copernicus Open Access Hub.63 The disadvantage of this service is the ability to
download only a single scene for a specific date. Since this study needed to use images for a long
period, it was decided not to download individual scenes but to create mosaics of scenes using
GEE cloud computing.64 It not only allows downloading satellite data for a selected time interval
but also contains powerful tools for processing remote sensing data and conducting geoinfor-
mation analysis.65 Many limitations associated with loading, storing, and processing satellite
data at different times, which usually arise when analyzing a large amount of spatial data, can
be easily removed using GEE. The GEE platform consists of two main components, the GEE
Explorer (for viewing datasets) and the GEE Playground, which work together. The Google EEP
app, a JavaScript API, is used to download and analyze large satellite images and to perform
complex geostatistical and geospatial operations.54 The GEE is accessed over the Internet and
requires a Google account to work with the code.

The data catalog contains an extensive repository of publicly available geospatial datasets,
including observations from various satellite and aerial imaging systems in optical and non-optical

Fig. 1 Study area. Source: an original study in ArcGIS Pro.
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wavelength ranges, environmental variables, weather and climate data, land cover, and topo-
graphic and socio-economic data. All this data is preprocessed into a ready-to-use one.20 GEE
can be used to process more than 40 years of global-scale satellite imagery.

2.1.3 Data

Sentinel-2 MSI is high-resolution optical data. Sentinel-2 covers 13 bands ranging from 443 to
2190 nm and offers a spatial resolution of 10, 20, and 60 m. Characteristics of Sentinel-2 MSI
Level-2A data that were used are shown in Table 1.

The Sentinel-2 instrument acquires measurements at 12 bits. These measurements are con-
verted to reflectances and stored as 16-bit integers in the S2 product. The revisit frequency of
every single Sentinel-2 satellite is 10 days and the combined constellation revisit is 5 days.66

Sentinel-2 MSI data in GEE is available for two levels of processing. Its Level-1C ortho-
rectified Top-Of-Atmosphere reflectance (available since March 23, 2015) and Level-2A
orthorectified atmospherically corrected surface reflectance (available since March 28, 2017).
The authors used Level-2A data, which are already atmospherically corrected. This means
that their pixels have surface reflectance values. This data is in the collection GEE ee.
ImageCollection(‘COPERNICUS/S2_SR’).

The Sentinel-2 Level-2A data were computed by running sen2cor.64 An atmospheric correc-
tion was applied to Top-Of-Atmosphere Level-1C orthoimage products. Level-2A’s main output
is an orthoimage bottom-of-atmosphere corrected reflectance product, i.e., the surface reflec-
tance values.66 The Sen2Cor processor algorithm is a combination of state-of-the-art techniques
for performing atmospheric corrections, which have been tailored to the Sentinel-2 environment
together.67 Thus, the Level-2 data contain 12 unsigned integer 16-bits spectral bands representing
surface reflectance values scaled by 10,000 (unlike in Level-1C data, there is no band 10).

2.2 Methods

2.2.1 Preprocessing of Sentinel-2 MSI data in GEE

GEE was used to download Sentinel-2 MSI data. Data in GEE are organized into collections.
We used ee.ImageCollection (“COPERNICUS/S2_SR”). According to recommendations from,68

for areas where the vegetation changes during the seasons, it is necessary to use images obtained

Table 1 Characteristics of Sentinel-2 MSI data. Source: Ref. 64.

Bands names Pixel size Wavelength Description

B1 60 m 443.9 nm (S2A)/442.3 nm (S2B) Aerosols

B2 10 m 496.6 nm (S2A)/492.1 nm (S2B) Blue

B3 10 m 560 nm (S2A)/559 nm (S2B) Green

B4 10 m 664.5 nm (S2A)/665 nm (S2B) Red

B5 20 m 703.9 nm (S2A)/703.8 nm (S2B) Red edge 1

B6 20 m 740.2 nm (S2A)/739.1 nm (S2B) Red edge 2

B7 20 m 782.5 nm (S2A)/779.7 nm (S2B) Red edge 3

B8 10 m 835.1 nm (S2A)/833 nm (S2B) Near infrared (NIR)

B8A 20 m 864.8 nm (S2A)/864 nm (S2B) Red edge 4

B9 60 m 945 nm (S2A)/943.2 nm (S2B) Water vapor

B11 20 m 1613.7 nm (S2A)/1610.4 nm (S2B) Short wavelength infrared 1 (SWIR 1)

B12 20 m 2202.4 nm (S2A)/2185.7 nm (S2B) Short wavelength infrared 2 (SWIR 2)
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within the growing season. Therefore, in our article, we used Sentinel-2 MSI data for the study
period from the beginning of April to the end of September 2020 to 2022 (until June 30, 2022).
The next step in GEE was to perform cloud masking since the pixels under the cloud cover
do not carry useful information about the land cover, and their use in data processing will lead
to deliberately erroneous results.

Level-2A data and several other specific bands are not photographic images. Among these,
three quality assessment (QA) bands are present, one of which (QA60) is a bit band with cloud
mask information, which we used to perform cloud masking. To obtain more accurate results
when performing cloud masking using the QA60 band, the image collection was first filtered by
the cloudy pixel percentage value, to use only a relatively cloud-free granule. We investigated the
dependence of the number of images in the collection within the growing seasons of 3 years on
a series of percentage values of cloudy pixels. The results are given in Table 2.

Based on the data in Table 2, it was decided to use image pellets in our study, where the
percentage of cloudiness does not exceed 10%. Thus, we have a collection of 162 images,
to which the cloud masking algorithm was applied based on the QA60 band. Also, the original
pixel values were multiplied by 10−4 to scale surface reflectance 0. . . 1.

In the next step, a mosaic image was created in GEE from the data collection using the
median function for pixel values. The resulting mosaic of the mean spectral reflectance values
was cropped in GEE to the area of the polygonal feature that matches the Kyiv city, downloaded
from the humanitarian data exchange, and imported into GEE.69 The result is shown in Fig. 2.

Table 2 Dependence of the number of scenes on the percentage
of cloud cover. Source: an original study in GEE.

Cloudy pixel
percentage

Number of scenes Sentinel-2 MSI Level-2A

01 Apr to
30 Sept. 2020

01 Apr to
30 Sept. 2021

01 Apr to
30 June 2022

≤1% 38 22 1

≤5% 68 36 16

≤10% 89 50 23

≤20% 117 82 31

≤30% 136 100 40

Fig. 2 Sentinel-2 MSI satellite data mosaic of the mean spectral reflectance values plotted in GEE
for the months from April to September 2020 to 2022 for the territory of Kyiv city (True Color
Composite R-G-B = 4-3-2). Source: an original study in GEE.
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2.2.2 Machine learning algorithms

Different classification methods are widely used for processing remote sensing data. Among them
are commonly used algorithms for unsupervised classification (cluster analysis), probabilistic
supervised classification algorithms, object-based methods, and machine learning algorithms.
According to Ref. 29, the RF algorithm is generally immune to data noise and overfitting and
is extremely useful for the classification of remotely sensed data. Also, the RF algorithm can
successfully process high-dimensional data and typically provide higher accuracy than other
approaches, such as maximum likelihood methods, single decision trees, and single-layer neural
networks.26,30,70 At the same time, the RF classifier is more reliable than a single decision tree.25

RF algorithm is a machine learning technique where RF classifiers build multiple decorrelated
random decision trees that are loaded and aggregated to classify a dataset using a predictive model
from all decision trees.27

SVM is a type of supervised learning algorithm, which is used to solve regression and clas-
sification problems.14 SVM classifiers create an ideal hyperplane during the training phase that
separates the few classes with the fewest misclassified pixels. SVM is used to select endpoints/
vectors that will help create a hyperplane. These endpoints are called support vectors.71 Based on
the above advantages of machine learning algorithms, in this work, we used the RF and SVM
algorithms implemented in GEE to extract LULC.

2.2.3 Application of vegetation indices

Carrying out classification using machine learning algorithms, as well as using any other super-
vised classification methods, involves the creation of training spectral signatures. It was decided
to use VI as the source of additional information about LULC when creating training spectral
signatures. The practice of using VI to identify LULC types is widely known. At the same time,
with the help of VI, both purposefully individual cover types and all those available in the study
area can be determined. It is being implemented using the VI by highlighting certain surface
properties that are not visible in the original image bands.72 In Ref. 36, based on NDVI for
satellite data 1 × 1 11 cover types were identified for the continents using the maximum like-
lihood supervised classification method. The authors73 studied the influence of the presence/
absence of various spectral bands on the accuracy of water extraction, the combination of which
is the VI. The second role of VIs, which was envisaged in our work, is their use as additional
channels when performing classification using machine learning algorithms to improve the
classification accuracy of Sentinel-2 data.

The similarity of the reflectance spectra of surfaces that refer to artificially created objects
and surfaces of other hard-surfaced objects, such as bare earth and sand, is a known problem that
occurs when extracting LULC using classification methods.45 It is connected with the wide vari-
ety of materials from which built-up areas are created, such as concrete, asphalt, metal, plastic,
and glass.46,55 Dry soil and light impenetrable surfaces are similar in spectral characteristics, and
the shadows from tall buildings and tree crowns are similar to the spectra of dark impenetrable
surfaces.47

Thus, to solve the above two questions, we used VIs that had positive recommendations from
other authors in terms of distinguishing different types of LULCs and, especially, the possibility
of separating the reflectance spectra of built-up and bare soils. Considering the results obtained
in Refs. 45, 49, and 74, we decided to use such VIs as NDVI, NDSI, IBI, BCI, BAEI, UI, NBI,
BRBA, BSI, and NBAI. Normalized difference vegetation index (NDVI) is calculated by the
equation

EQ-TARGET;temp:intralink-;e001;116;164NDVI ¼ ρNIR − ρRed
ρNIR þ ρRed

¼ Band 8 − Band 4

Band 8þ Band 4
; (1)

where ρNIR is the near-infrared wavelength reflectance value; ρRed is the red wavelength reflec-
tance value (according to Table 1).

Here and further band in the equations indicate the band numbers in Sentinel-2 MSI data.
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NDSI is calculated by the equation 37

EQ-TARGET;temp:intralink-;e002;116;723NDSI ¼ ρSWIR2 − ρBlue
ρSWIR 2 þ ρBlue

¼ Band 12 − Band 2

Band 12þ Band 2
; (2)

where ρBlue is the blue wavelength reflectance value; ρSWIR 2 is the SWIR 2 wavelength reflec-
tance value.

IBI is calculated by the equation

EQ-TARGET;temp:intralink-;e003;116;644

IBI ¼
2·ρSWIR1

ρSWIR1þρNIR
−
�

ρNIR
ρNIRþρRed

− ρGreen
ρGreenþρSWIR1

�

2·ρSWIR1

ρSWIR1þNIR
þ
�

ρNIR
ρNIRþρRed

− ρGreen
ρGreenþρSWIR1

�

¼
2·Band 11

Band 11þBand 8
−
�

Band 8
Band 8þBand 4

− Band 3
Band 3þBand 11

�

2·Band 11
Band 11þBand 8

þ
�

Band 8
Band 8þBand 4

− Band 3
Band 3þBand 11

� ; (3)

where ρGreen is the green wavelength reflectance value; ρSWIR1 is SWIR 1 wavelength reflec-
tance value.

BCI is calculated by the equation48

EQ-TARGET;temp:intralink-;e004;116;505BCI ¼
TC1þTC3

2
− TC 2

TC1þTC 3
2

þ TC2
; (4)

where TC1, TC2, and TC3 are the Tasseled Cap components for Sentinel-2 MSI images.
The Tasseled Cap transformation coefficients for Sentinel-2 MSI data that we used in our

work are given in Table 3.
BAEI is calculated by the equation44

EQ-TARGET;temp:intralink-;e005;116;410BAEI ¼ ρRed þ 0.3

ρGreen þ ρSWIR11

¼ Band 4þ 0.3

Band 3þ Band 11
: (5)

UI is calculated by the equation38

EQ-TARGET;temp:intralink-;e006;116;353UI ¼ ρSWIR2 − ρNIR
ρSWIR2 þ ρNIR

¼ Band 12 − Band 8

Band 12þ Band 8
: (6)

Table 3 Tasseled Cap transformation coefficients for Sentinel-2 MSI data. Source: Ref. 75.

Components

Sentinel-2 MSI Bands

B1 B2 B3 B4 B5 B6

Brightness 0.0356 0.0822 0.136 0.2611 0.2964 0.3338

Greenness −0.0635 −0.1128 −0.168 −0.348 −0.3303 0.0852

Wetness 0.0649 0.1363 0.2802 0.3072 0.5288 0.1379

Brightness B7 B8 B8A B9 B11 B12

Greenness 0.3877 0.3895 0.475 0.0949 0.3882 0.1366

Wetness 0.3302 0.3165 0.3625 0.0467 −0.4578 −0.4064

Belenok et al.: Machine learning based combinatorial analysis for land use and land cover assessment. . .

Journal of Applied Remote Sensing 014506-8 Jan–Mar 2023 • Vol. 17(1)



NBI is calculated by the equation43

EQ-TARGET;temp:intralink-;e007;116;723NBI ¼ ρGreen × ρNIR
ρRed

¼ Band 3 × Band 8

Band 4
: (7)

BRBA is calculated by the equation16

EQ-TARGET;temp:intralink-;e008;116;667BRBA ¼ ρRed
ρNIR

¼ Band 3

Band 8
: (8)

BSI is calculated by the equation76

EQ-TARGET;temp:intralink-;e009;116;611

BSI ¼ ðρRed þ ρGreenÞ − ðρRed þ ρBlueÞ
ðρNIR þ ρGreenÞ þ ðρRed þ ρBlueÞ

100þ 100

¼ ðBand 4þ Band 3Þ − ðBand 4þ Band 2Þ
ðBand 8þ Band 3Þ þ ðBand 4þ Band 2Þ 100þ 100: (9)

NBAI is calculated by the equation17

EQ-TARGET;temp:intralink-;e010;116;524NBAI ¼
ρSWIR2 −

ρSWIR1

ρGreen

ρSWIR2 þ ρSWIR 1

ρGreen

¼ Band 12 − Band 11
Band 3

Band 12þ Band 11
Band 3

: (10)

2.3 Performing Sentinel-2 MSI Data Classification Based on Machine
Learning Algorithms on GEE

We went directly to performing classification using machine learning algorithms on GEE after
creating a cloudless Sentinel-2 MSI data Level-2A mosaic image in the mean spectral reflectance
values for April to September 2020 to 2021 and April to June 2022 for the territory of Kyiv.
Studying the effectiveness of various machine learning algorithms for LULC extraction is one of
the objectives of our classification. Another, more significant task is to improve approaches to
the definition of LULC.

Based on the results of the classification for solving the first problem, we performed an accu-
racy assessment and compared the results obtained. And to solve the second problem, we used
four combinations of channels as source images for the classification of machine learning
algorithms on GEE, as shown in Table 4.

As additional bands, the VIs shown in Table 4 have been attached to the GEE to create
combinations two to four to the original 12 bands Sentinel-2 MSI given in Table 1.

It was necessary to prepare training samples or signatures (usually called region of interest,
ROI, or area of interest, AOI) at the beginning of the classification process. Samples were created
for our study area following landscape elements:

Class 1 – Water (may include rivers, lakes, reservoirs, and other hydrographic objects);

Class 2 – Forest;

Table 4 Band combinations to perform classification. Source: original study.

Combination
number Bands used

Combination 1 Only 12 bands of Sentinel-2 MSI given in Table 1

Combination 2 12 bands of Sentinel-2 and VI: UI, NDSI, IBI, BCI, BAEI

Combination 3 12 bands of Sentinel-2 and VI: NDVI, NBI, BRBA, NBAI, BSI

Combination 4 12 bands of Sentinel-2 and all VI: UI, NDSI, IBI, BCI, BAEI, NDVI, NBI, BRBA,
NBAI, BSI
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Class 3 – Grassland;

Class 4 – Built-up (may include buildings, road, and other human-created objects);

Class 5 – Other lands (bare soil, sand).

The process of creating ROIs in GEE is to digitize image pixels that correspond to the
class for which the ROI is being created. Digitization in GEE can be done with dots, lines,
and polygons. The GEE algorithm converts each image pixel that is included in the ROI into
a separate ROI element if lines or polygons are used. In this case, the ROI pixels should be as
uniform as possible so as not to make further mistakes in the classification process. Each class
must have at least 50 training samples for classification, according to the recommendations.14,77

Therefore, we created a total of 739 training samples, including polygonal samples (Table 5).
The number of training samples for each LULC class roughly corresponded to the representation
of this class among all classes for the study area. We also distributed ROIs evenly across the
territory of Kyiv.

The number of decision trees to create is a required input parameter for RF work on GEE.
We used 100 as recommended.14 The important input parameters of the SVM algorithm are64

• kernelType – one of LINEAR, POLY, radial basis function (RBF), or SIGMOID;
• gamma – the gamma value in the kernel function. Defaults to the reciprocal of the number

of features. Valid for POLY, RBF, and SIGMOID kernels;
• cost – the cost (C) parameter. Defaults to 1. Only valid for C-SVC, epsilon-SVR, and

nu-SVR.

As recommended,71 we used the RBF kernelType, gamma = 0.5, cost = 10.
We proceeded to perform the classification using machine learning algorithms RF and SVM

after all the necessary input data and parameters were prepared.

2.4 Accuracy Assessment of Classification Results

After the classification is completed, it is necessary to evaluate its accuracy. To do this, we
created additional samples: 508 points, evenly distributed over the image. Also, the forest and
grassland classes were merged into a common vegetation class before testing. Thus, was created
classes such as

Class 1 – Water;

Class 2 –Vegetation;

Class 3 – Built-up;

Class 4 – Other lands.

Table 5 Number of training samples. Source: original study.

Class name

Training samples

Total

Number

Points Polygons

Water 161 49 112

Forest 135 88 47

Grassland 197 143 54

Built-up 164 121 43

Other lands 82 82 —

Total 739 483 256
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To create the above-mentioned additional samples, we performed field interpretation of those
parts of the image that caused doubts. We also used historical Google Earth Pro images and
topographic maps.

To perform the accuracy assessment of the obtained LULC maps in the GEE, we compiled a
confusion matrix, according to which the most commonly used descriptive statistics for assess-
ing the classification were calculated: OA, producer’s accuracy (PA) user’s accuracy (UA) and
the Kappa coefficient (Kappa hat). Formulas for calculating them can be found, for example,
in Ref. 78. The results are presented in Tables 6–13.

The classification results using the RF algorithm are shown in Fig. 3.
The classification results using the SVM algorithm are shown in Fig. 4.
Recent images in various band combinations for comparison with the original Sentinel-2

images were shown in Fig. 5. The final LULC maps were designed in ArcGIS. It is important
to analyze each class on LULC maps.

Analyzing Fig. 3, combinations 3 and 4 misclassify built-up and other lands as water
(combinations 1 and 2 did not have such errors). Combinations 1 and 2 had more errors in the
classification of water as vegetation than combinations 3 and 4. All combinations had no errors

Table 6 Confusion matrix for RF LULC classification for combination 1. Source: an original study
in GEE.

RF combination 1

Reference data

Water Vegetation Built-up Other lands Total UA (%)

Map data Water 84 4 0 0 88 95.45

Vegetation 0 112 5 13 130 86.15

Built-up 2 6 145 33 186 77.96

Other lands 0 6 3 104 113 92.04

Total 86 128 153 150 517

PA (%) 97.67 87.5 94.77 69.33

OA (%) 86.07%

Kappa 0.81

Table 7 Confusion matrix for RF LULC classification for combination 2. Source: an original study
in GEE.

RF combination 2

Reference data

Water Vegetation Built-up Other lands Total UA (%)

Map data Water 84 4 0 0 88 95.45

Vegetation 0 116 4 10 130 89.23

Built-up 2 2 154 28 186 82.8

Other lands 0 6 6 101 113 89.38

Total 86 128 164 139 517

PA (%) 97.67 90.63 93.9 72.66

OA (%) 88.01%

Kappa 0.84
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Table 9 Confusion matrix for RF LULC classification for combination 4. Source: an original study
in GEE.

RF combination 4

Reference data

Water Vegetation Built-up Other lands Total UA (%)

Map data Water 81 1 5 1 88 92.05

Vegetation 0 116 3 11 130 89.23

Built-up 3 2 146 35 186 78.49

Other lands 0 4 4 105 113 92.92

Total 84 123 158 152 517

PA (%) 96.43 94.31 92.41 69.08

OA (%) 86.65%

Kappa 0.82

Table 10 Confusion matrix for SVM LULC classification for combination 1. Source: an original
study in GEE.

SVM combination 1

Reference data

Water Vegetation Built-up Other lands Total UA (%)

Map data Water 81 5 2 0 88 92.05

Vegetation 0 116 1 13 130 89.23

Built-up 2 11 129 44 186 69.35

Other lands 0 5 2 106 113 93.81

Total 83 137 134 163 517

PA (%) 97.59 84.67 96.27 65.03

OA (%) 83.56%

Kappa 0.78

Table 8 Confusion matrix for RF LULC classification for combination 3. Source: an original study
in GEE.

RF combination 3

Reference data

Water Vegetation Built-up Other lands Total UA (%)

Map data Water 80 0 6 2 88 90.91

Vegetation 0 114 1 15 130 87.69

Built-up 2 3 144 37 186 77.42

Other lands 0 3 6 104 113 92.04

Total 82 120 157 158 517

PA (%) 97.56 95.00 91.72 65.82

OA (%) 85.49%

Kappa 0.80
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Table 12 Confusion matrix for SVM LULC classification for combination 3. Source: an original
study in GEE.

SVM combination 3

Reference data

Water Vegetation Built-up Other lands Total UA (%)

Map data Water 84 1 1 2 88 95.45

Vegetation 2 113 0 15 130 86.92

Built-up 3 3 131 49 186 70.43

Other lands 0 4 2 107 113 94.69

Total 89 121 134 173 517

PA (%) 94.38 93.39 97.76 61.85

OA (%) 84.14%

Kappa 0.79

Table 13 Confusion matrix for SVM LULC classification for combination 4. Source: an original
study in GEE.

SVM combination 4

Reference data

Water Vegetation Built-up Other lands Total UA (%)

Map data Water 84 1 3 0 88 95.45

Vegetation 9 109 1 11 130 83.85

Built-up 7 7 148 24 186 79.57

Other lands 2 7 3 101 113 89.38

Total 102 124 155 136 517

PA (%) 82.35 87.9 95.48 74.26

OA (%) 85.49%

Kappa 0.80

Table 11 Confusion matrix for SVM LULC classification for combination 2. Source: an original
study in GEE.

SVM combination 2

Reference data

Water Vegetation Built-up Other lands Total UA (%)

Map data Water 81 4 3 0 88 92.05

Vegetation 4 114 1 11 130 87.69

Built-up 3 9 140 34 186 75.27

Other lands 0 9 1 103 113 91.15

Total 88 136 145 148 517

PA (%) 92.05 83.82 96.55 69.59

OA (%) 84.72%

Kappa 0.79
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in the classification of vegetation as water. All combinations had small errors in the classification
of built-up and other lands as vegetation (the lowest number of built-up samples misclassified as
the vegetation was in combination 3). All combinations had errors in the classification of water,
vegetation, and other lands as built-up. At the same time, the largest number of samples, which
are actually vegetation, which was erroneously classified as built-up, belongs to combination 1
(for other classes, the number is approximately equal). All combinations had no errors in the
classification of other lands as water but had errors in the classification of vegetation and built-up
as other lands. The smallest number of samples of other lands erroneously classified as built-up
belong to combination 2, and the largest number belong to combination 3.

Analyzing Fig. 4, combinations 1, 2, and 4 had no errors in the classification of water as
other lands. Combination 3 includes a minimum number of vegetation and built-up samples that
were erroneously classified as water. Only combination 1 had no errors in the classification of
water as vegetation. All combinations had few erroneous samples in the built-up as vegetation
classification and all combinations had many other lands samples erroneously classified as
vegetation. Combination 4 showed the most errors in the classification of water as built-
up. Only combination 4 had errors in the classification of water as other lands. At the same
time, it had a significantly smaller number of samples built-up erroneously classified as other
lands. In addition, combination 3 showed the greatest number of such errors. The number of
samples of other lands erroneously classified as built-up was approximately equal for all
combinations.

The mean OA for RF and SVM was 86.56% and 84.48%, respectively. The average Kappa
value was 0.82 and 0.79, which indicates that the RF algorithm showed a higher result than SVM
(Table 14).

Fig. 3 LULC maps of Sentinel-2 MSI images using RF and four combinations of 12 bands and VI
for Kyiv city. Source: an original study in GEE.
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In Table 14, combination 2 has the best performance, and combination 4 differs quite a bit
from it. User’s and producer’s accuracy for each type of the LULC, obtained through RF and
SVM algorithms for each combination shown in Figs. 6 and 7.

In Fig. 6, both algorithms (RF and SVM) class water has the best UA, and built-up has the
lowest UA. At the same time, if we consider all combinations, then within each class UA for each
combination turned out to be different. It is possible to use one or the other combination, depend-
ing on what types of LULC need to highlight. For example, if the research is aimed at isolating a
certain type of LULC. In Fig. 7, RF algorithm class water and vegetation have the best PA, and
the SVM algorithm is the water and built-up. The lowest results for both algorithms (RF and
SVM) were obtained for other lands.

2.5 Discussion

The band combinations proposed in this paper solve the additional task of separating LULC
types with similar spectral reflectance properties, i.e., built-up and other lands (bare soils/sand).
According to the data in Tables 6–14, combinations 2 and 4 (Table 4) most accurately classify
built-up and other lands and have the highest OA for RF is 88.01%, 86.65%, and for SVM
−84.72%, 85.49%, respectively. In turn, combinations 1 and 3 (Table 4) show worse results
of classification of built-up and other lands (Tables 6–14) and have lower OA for RF is
86.07%, 85.49% and for SVM 83.56%, 84.14%, respectively. In our opinion, these results

Fig. 4 LULC maps of Sentinel-2 MSI images using SVM and four combinations of 12 bands and
VI for Kyiv city. Source: an original study in GEE.
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indicate the low efficiency of some VI included in classification 3 and, respectively, included in
combination 4, which may reduce its accuracy (Table 4).

Although, according to Ref. 39, the combination of bands Sentinel 2 data with BRBA,16

NBAI, and BSI76 indices allows accurate classification of built-up area and bare soil. This does
not exactly correspond to our research since these indices are included in combinations 3 and 4,
which showed lower accuracy. Note, that the results of the authors17 showed that the use of the
NBAI index reduces the classification accuracy for artificial surfaces. The authors recommend
using the perpendicular impervious surface index (PISI) for more accurate separating of artificial
surfaces (built-up) from soil (bare land) and vegetation. Similar studies40,74 where BAEI, BSI,
NBAI, NBI, NDBI, and UI indices were used showed good results to improve the classification
by SVM for built-up and bare soil. This is consistent with current research, namely inclusion in
the combination 2 VI UI and BAEI (Tables 7 and 11). The results of the authors37 showed that
the NDSI allows to classify the built-up area with greater accuracy, which is consistent with our
research, where this index was included in combination 2 (Tables 4, 7, 9, and 11).

It is worth noting that in42,44 the authors successfully apply the BAEI index to classify
urban intensity, whereas the NBI index better identifies discrete types of urban land use.

Fig. 5 Composite Sentinel-2 MSI images. Source: an original study in GEE.

Table 14 Average values of OA and Kappa for all combinations.
Source: original study

Average statistic
values

Combinations

Comb. 1 Comb. 2 Comb. 3 Comb. 4

OA (%) 84.82% 86.36% 84.82% 86.07%

Kappa 0.80 0.82 0.80 0.81
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The use of NBI and NDVI indices is successfully used in the analysis of temperature indicators
LULC classifications, in particular, urban lands.43 Application of the IBI, created on the basis
of SAVI, MNDWI, and NDBI indices,41 in our opinion, significantly improves the accuracy of
the combination 2 and 4 (Table 4), it immediately identifies three major urban components of
vegetation, water, built-up land while effectively suppressing background noise. The authors of
Ref. 38 use UI and IBI indices in combination with other indices to separate built-up lands
from dry vegetation. According to Ref. 48, it is proved that the vegetation index BCI is
effective both for separating impervious surfaces (built-up) and bare soil and for quantifying
vegetation abundance when compared with NDVI, which coincides with the results of our
work. However, more attention should be paid to the NDVI, as its existence is controversial.
According to Ref. 12, LULC classification, including NDVI index and others, based on RF
shows more accurate results. While in this study, combination 2 shows better results without
NDVI index. The analysis of the combination in Tables 7 and 9 showed that the presence of
NDVI reduces the accuracy with RF. However, with SVM there is a slight increase in the
accuracy (Tables 11 and 13). Some authors recommend using NDVI mainly for the classifi-
cation of forest, as an example of forests.11 For an effective distinction between built-up area
and bare land, the authors49 suggest RF. This classification is conducted using multi-sensor
features, including temperature, night-time light, backscattering, topography, optical spectra,
and NDVI, EVI, NDWI indices time-series metrics34 and synthetically incorporating geometry,
and texture data.13,25,50,53

One of the main objectives of our study was to investigate the performance of different
machine learning algorithms RF and SVM for the classification of LULC on the GEE platform.
Thus, the RF-based LULC classification is more accurate than SVM according to OA and Kappa
(Table 14). Although the OA of RF exceeds the OA of SVM by only 2.08%, which indicates
the effectiveness of both machine learning algorithms.

Fig. 6 User’s accuracy for each LULC.
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Similar results were obtained14 where for Sentinel-2 and Landsat-8 images, RF outperformed
CART and SVM, however, the authors used only spectral bands. Comparing the performance of
two ML algorithms RF and SVM applied on Landsat-8, Sentinel-2, and Planet images,15 the
authors note that Sentinel 2 with SVM (OA – 0.96%) was better for classification in rural and
urban areas. Similar results were obtained by authors10 among the classifiers, SVM produced the
greatest accuracies of OA – 80.3%, although RF, which had similar accuracies of OA – 80.0%,
was simpler to train and apply. While in the present study, accuracy makes a significant differ-
ence. Tracked results when among the compared classifiers as ANN, and SVM, RF achieved the
lowest OAwith 62%, but these researches were obtained for the forest land.24 For effective crop-
land classification, the use of the RF algorithm demonstrates the best accuracy.29 From Fig. 3,
which shows LULC maps of Sentinel-2 images using RF and four combinations of 12 bands and
VI, it follows from this that the reflectance of built-up and other lands coincides with a reflec-
tance of water and in part with vegetation. Similar results showed14 that water was slightly
misclassified as built-up and barren land. RFs, combine numerous soft linear boundaries at the
surface of the decision. SVM performs well if the input training data is sparse, making it a better
choice when less data is available.24 Each algorithm has its own set of benefits and drawbacks.
RF is more resilient and less impacted by parameters, whereas SVM is sensitive to hyperpara-
meters.28 The obtained results indicate the effectiveness of the application for machine learning
methods. It is worth noting that the exact classification methodology and the use of the selected
combination for classification will depend on the types of LULC that will be detected and the
topographic features of the studied area.

Fig. 7 Producer’s accuracy for each LULC.
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3 Conclusions

The article studies an approach to improve the accuracy of LULC mapping by RF and SVM
machine learning methods based on Sentinel-2 MSI Level-2A data on the GEE platform. This
classification used mosaic image, averaged for data for vegetation periods from April, 2020 to
September, 2021 and April, 2022 to June, 2022 for the territory of Kyiv (Ukraine). Four combi-
nations were considered to perform classification using RF and SVM learning algorithms.
Ten vegetation indices (NDVI, NDSI, IBI, BCI, BAEI, UI, NBI, BRBA, BSI, and NBAI) were
included in the combinations, which made it possible to solve the urgent problem of separating
LULC classes with similar spectral reflective properties (built-up and other lands). Thus, eight
LULC maps were constructed for water, forest, grassland, built-up and other lands. The con-
fusion matrices were compiled and descriptive statistics were calculated to evaluate the classi-
fication accuracy. Comparison of the results showed that the type of classifier used and the set of
initial bands for them influenced the classification accuracy of LULC. RF algorithm showed
higher accuracy than SVM. The mean OA for RF and SVM was 86.56% and 84.48%, respec-
tively, and the mean Kappa was 0.82 and 0.79, respectively. For the RF algorithm, the best
LULC classification accuracy was achieved using a combination of 12 bands of Sentinel-2
and UI, NDSI, IBI, BCI, and BAEI (the highest accuracy of all band combinations for both
machine learning algorithms), and for the SVM algorithm, using combination of 12 bands
of Sentinel-2 and all VI. Combination of 12 bands of Sentinel-2 and NDVI, NBI, BRBA,
NBAI, and BSI showed the lowest accuracy for the RF algorithm and combination only 12 bands
of Sentinel-2 showed the lowest accuracy for the SVM algorithm. As for the four considered
combinations, for the RF algorithm, the best LULC classification accuracy was achieved using
combination 2, and for the SVM algorithm, using combination 4. The combination 3 showed
the lowest accuracy for the RF algorithm and the combination 1 showed the lowest accuracy for
the SVM algorithm.

Important to note the increase in UA and PA to determine built-up and other lands. Thus,
the additional use of VI makes it possible to increase the accuracy of creating LULC maps and
the accuracy of distinguishing classes with similar reflection spectra.

Acknowledgments

The author, Liliia Hebryn-Baidy, express gratitude to the Technische Informations bibliothek
(TIB), Leibniz Information Centre for Science and Technology, and University Library, for
support to this research through the Scholarship to promote academic qualification. Author
Contribution: Vadym Belenok: conceptualization, methodology, software, data curation,
writing – original draft preparation, visualization, project administration. Liliia Hebryn-
Baidy: conceptualization, methodology, writing – original draft preparation, writing – review
and editing, project administration. Nataliia Bielousova: formal analysis, validation, supervision.
Valeriy Gladilin: formal analysis, validation, supervision. Sergíy Kryachok: formal analysis,
validation, supervision. Andrii Tereshchenko: formal analysis, validation, supervision. Sofiia
Alpert: formal analysis, validation, supervision, resources. Sergii Bodnar: formal analysis,
validation.

References

1. P. Meyfroidt et al., “Ten facts about land systems for sustainability,” PNAS 119(7), 1–12
(2022).

2. E. Barbiroglio, “Land use puts huge pressure on Earth’s resources. Here’s what needs to
change,” https://ec.europa.eu/research-and-innovation/en/horizon-magazine/land-use-puts-
huge-pressure-earths-resources-heres-what-needs-change (access 14 May 2022).

3. J. Liu et al., “Systems integration for global sustainability,” Science 347(6225), 1258832
(2015).

4. S. Seifollahi-Aghmiuni et al., “Urbanisation-driven land degradation and socioeconomic
challenges in peri-urban areas: insights from Southern Europe,” J. Environ. Soc. 51,
1446–1458 (2022).

Belenok et al.: Machine learning based combinatorial analysis for land use and land cover assessment. . .

Journal of Applied Remote Sensing 014506-19 Jan–Mar 2023 • Vol. 17(1)

https://doi.org/10.1073/pnas.2109217118
https://ec.europa.eu/research-and-innovation/en/horizon-magazine/land-use-puts-huge-pressure-earths-resources-heres-what-needs-change
https://ec.europa.eu/research-and-innovation/en/horizon-magazine/land-use-puts-huge-pressure-earths-resources-heres-what-needs-change
https://ec.europa.eu/research-and-innovation/en/horizon-magazine/land-use-puts-huge-pressure-earths-resources-heres-what-needs-change
https://ec.europa.eu/research-and-innovation/en/horizon-magazine/land-use-puts-huge-pressure-earths-resources-heres-what-needs-change
https://doi.org/10.1126/science.1258832
https://doi.org/10.1007/s13280-022-01701-7


5. P. C. Pandey et al., “Land use/land cover in view of earth observation: data sources, input
dimensions, and classifiers - a review of the state of the art,” Geocarto Int. 36(9), 957–988
(2019).

6. S. Bontemps et al., “Multi-year global land cover mapping at 300 m and characterization
for climate modelling: achievements of the Land Cover component of the ESA Climate
Change Initiative,” Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. XL-7/W3,
323–328 (2015).

7. J. Cihlar, “Land cover mapping of large areas from satellites: status and research priorities,”
Int. J. Remote Sens. 21(6-7), 1093–1114 (2000).

8. A. Belward and J. Skøien, “Who launched what, when and why; trends in global land-cover
observation capacity from civilian earth observation satellites,” ISPRS J. Photogramm.
Remote Sens. 103, 115–128 (2015).

9. D. Phiri et al., “Sentinel-2 data for land cover/use mapping: a review,” Remote Sens. 12(14),
2291 (2020).

10. H. T. T. Nguyen et al., “Land use/land cover mapping using multitemporal Sentinel-2
imagery and four classification methods—a case study from Dak Nong, Vietnam,” Remote
Sens. 12(9), 1367 (2020).

11. G. L. Spadoni et al., “Analysis of Normalized Difference Vegetation Index (NDVI) multi-
temporal series for the production of forest cartography,” Remote Sens. Appl.: Soc. Environ.
20, 100419 (2020).

12. V. Nasiri et al., “Land use and land cover mapping using Sentinel-2, Landsat-8 satellite
images, and Google Earth engine: a comparison of two composition methods,” Remote
Sens. 14(9), 1977 (2022).

13. A. Tassi and M. Vizzari, “Object-oriented LULC classification in Google Earth learning
algorithms,” Remote Sens. 12(22), 3776 (2020).

14. K. N. Loukika, V. R. Keesara, and V. Sridhar, “Analysis of land use and land cover using
machine learning algorithms on Google Earth engine for Munneru River Basin, India,”
Sustainability 13(24), 13758 (2021).

15. A. Rahman et al., “Performance of different machine learning algorithms on satellite image
classification in a rural and urban setup,” Remote Sens. Appl.: Soc. Environ. 20, 100410
(2020).

16. K. Antil and M. Pal, “Comparison of landsat 8 and sentinel 2 data for accurate mapping of
built-up area and bare soil,” in 38th Asian Conf. Remote Sens, – Space Appl,: Touching
Human Lives, ACRS 2017 (2017).

17. C. Li et al., “A comparative analysis of index-based methods for impervious surface
mapping using multiseasonal Sentinel-2 satellite data,” IEEE J. Sel. Top. Appl. Earth Obs.
Remote Sens. 14, 3682–3694 (2021).

18. V. Belenok et al., “Geoinformation mapping of anthropogenically transformed landscapes
of Bila Tserkva (Ukraine),” Acta Sci. Pol. Formatio Circumiectus 21(1), 69–84 (2022).

19. V. Belenok et al., “Investigating anthropogenically transformed landscapes with remote
sensing,” Remote Sens. Appl.: Soc. Environ. 24, 100635 (2021).

20. N. Gorelick et al., “Google Earth engine: planetary-scale geospatial analysis for everyone,”
Remote Sensing Environmental 202, 18–27 (2017).

21. N. Sidhu, E. Pebesma, and G. Câmara, “Using Google Earth engine to detect land cover
change: Singapore as a use case,” Eur. J. Remote Sens. 51(1), 486–500 (2018).

22. H. Tamiminia et al., “Google Earth engine for geo-big data applications: a meta-analysis
and systematic review,” ISPRS J. Photogramm. Remote Sens. 164, 152–170 (2020).

23. M. Amani et al., “Google Earth engine cloud computing platform for remote sensing big
data applications: a comprehensive review,” IEEE J. Sel. Top. Appl. Earth Obs. Remote
Sens. 13, 5326–5350 (2020).

24. E. Raczko and B. Zagajewski, “Comparison of support vector machine, random forest and
neural network classifiers for tree species classification on airborne hyperspectral APEX
images,” Eur. J. Remote Sens. 50(1), 144–154 (2017).

25. J. C.-W. Chan and D. Paelinckx, “Evaluation of Random Forest and Adaboost tree-based
ensemble classification and spectral band selection for ecotope mapping using airborne
hyperspectral imagery,” Remote Sens. Environ. 112(6), 2999–3011 (2008).

Belenok et al.: Machine learning based combinatorial analysis for land use and land cover assessment. . .

Journal of Applied Remote Sensing 014506-20 Jan–Mar 2023 • Vol. 17(1)

https://doi.org/10.1080/10106049.2019.1629647
https://doi.org/10.5194/isprsarchives-XL-7-W3-323-2015
https://doi.org/10.1080/014311600210092
https://doi.org/10.1016/j.isprsjprs.2014.03.009
https://doi.org/10.1016/j.isprsjprs.2014.03.009
https://doi.org/10.3390/rs12142291
https://doi.org/10.3390/rs12091367
https://doi.org/10.3390/rs12091367
https://doi.org/10.1016/j.rsase.2020.100419
https://doi.org/10.3390/rs14091977
https://doi.org/10.3390/rs14091977
https://doi.org/10.3390/rs12223776
https://doi.org/10.3390/su132413758
https://doi.org/10.1016/j.rsase.2020.100410
https://doi.org/10.1109/JSTARS.2021.3067325
https://doi.org/10.1109/JSTARS.2021.3067325
https://doi.org/10.15576/ASP.FC/2022.21.1.69
https://doi.org/10.1016/j.rsase.2021.100635
https://doi.org/10.1016/j.rse.2017.06.031
https://doi.org/10.1080/22797254.2018.1451782
https://doi.org/10.1016/j.isprsjprs.2020.04.001
https://doi.org/10.1109/JSTARS.2020.3021052
https://doi.org/10.1109/JSTARS.2020.3021052
https://doi.org/10.1080/22797254.2017.1299557
https://doi.org/10.1016/j.rse.2008.02.011


26. M. Belgiu and L. Drăguţ, “Random forest in remote sensing: a review of applications and
future directions,” ISPRS J. Photogramm. Remote Sens. 114, 24–31 (2016).

27. L. Breiman, “Random forests,” Mach. Learn. 45(1), 5–32 (2001).
28. C. Lei et al., “A comparison of random forest and support vector machine approaches to

predict coal spontaneous combustion in gob,” FUEL 239, 297–311 (2019).
29. P. Teluguntla et al., “A 30-m landsat-derived cropland extent product of Australia and China

using random forest machine learning algorithm on Google Earth Engine cloud computing
platform,” ISPRS J. Photogramm. Remote Sens. 144, 325–340 (2018).

30. R. G. Rejith et al., “GIS-based machine learning algorithms for mapping beach placer
deposits in the southwest coast of India using Landsat-8 OLI images,” J. Appl. Remote
Sens. 16(1), 012011 (2022).

31. A. Shivani and H. Harini, “Classification of Indian cities using Google Earth Engine,”
J. Land Use Sci. 14(4–6), 425–439 (2019).

32. B. F. Frimpong and F. Molkenthin, “Tracking urban expansion using random forests for
the classification of Landsat imagery (1986–2015) and predicting urban/built-up areas for
2025: a study of the Kumasi Metropolis, Ghana,” Land 10(1), 44 (2021).

33. A. Ghosh, R. Sharma, and P. K. Joshi, “Random forest classification of urban landscape
using Landsat archive and ancillary data: combining seasonal maps with decision level
fusion,” Appl. Geogr. 48, 31–41 (2014).

34. J. Ye et al., “Analysis on land-use change and its driving mechanism in Xilingol, China,
during 2000–2020 using the Google Earth engine,” Remote Sens. 13(24), 5134 (2021).

35. M. F. Baqa et al., “Monitoring and modeling the patterns and trends of urban growth using
urban sprawl matrix and CA-MarkovModel: a case study of Karachi, Pakistan,” Land 10(7),
700 (2021).

36. R. S. Defries and J. R. Townshend, “NDVI-derived land cover classifications at a global
scale,” Int. J. Remote Sens. 15(17), 3567–3586 (1994).

37. W. Takeuchi and Y. Yasuoka, “Development of normalized vegetation, soil and water
indices derived from satellite remote sensing data. C-9.4,” in Remote Sens. Appl., 25th
ACRS, Chiang Mai (2004).

38. R. C. Estoque and Y. Murayama, “Classification and change detection of built-up lands from
Landsat-7 ETM+ and Landsat-8 OLI/TIRS imageries: a comparative assessment of various
spectral indices,” Ecol. Indic. 56, 205–217 (2015).

39. M. Pal and K. Antil, “Comparison of Landsat 8 and Sentinel 2 data for accurate mapping of
built-up area and bare soil,” in 38th Asian Conf. Remote Sens., New Delhi, India (2017).

40. P. S. Rahar and M. Pal, “Comparison of various indices to differentiate built-up and bare soil
with Sentinel 2 data,” Appl. Geomat. Civil Eng. 33, 501–509 (2019).

41. H. Xu, “A new index for delineating built-up land features in satellite imagery,” Int. J.
Remote Sens. 29(14), 4269–4276 (2008).

42. P. Lynch, L. Blesius, and E. Hines, “Classification of urban area using multispectral indices
for urban planning,” Remote Sens. 12, 2503 (2020).

43. X.-L. Chen et al., “Remote sensing image-based analysis of the relationship between
urban heat island and land use/cover changes,” Remote Sens. Environ. 104(2), 133–146
(2006).

44. S. Bouzekri, A. A. Lasbet, and A. Lachehab, “A new spectral index for extraction of built-up
area using Landsat-8 data,” J. Indian Soc. Remote Sens. 43(4), 867–873 (2015).

45. G. Sun et al., “Combinational Build-Up Index (CBI) for effective impervious surface
mapping in urban areas,” IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 9(5), 2081
(2016).

46. D. Lu, E. Moran, and S. Hetrick, “Detection of impervious surface change with multitem-
poral Landsat images in an urban-rural frontier,” ISPRS J. Photogramm. Remote Sens. 66(3),
298–306 (2011).

47. Q. Weng, X. Hu, and D. Lu, “Extracting impervious surfaces from medium spatial reso-
lution multispectral and hyperspectral imagery: a comparison,” Int. J. Remote Sens. 29(11),
3209–3232 (2008).

48. C. Deng and C. Wu, “BCI: a biophysical composition index for remote sensing of urban
environments,” Remote Sens. Environ. 127, 247–259 (2012).

Belenok et al.: Machine learning based combinatorial analysis for land use and land cover assessment. . .

Journal of Applied Remote Sensing 014506-21 Jan–Mar 2023 • Vol. 17(1)

https://doi.org/10.1016/j.isprsjprs.2016.01.011
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1016/j.fuel.2018.11.006
https://doi.org/10.1016/j.isprsjprs.2018.07.017
https://doi.org/10.1117/1.JRS.16.012017
https://doi.org/10.1117/1.JRS.16.012017
https://doi.org/10.1080/1747423X.2020.1720842
https://doi.org/10.3390/land10010044
https://doi.org/10.1016/j.apgeog.2014.01.003
https://doi.org/10.3390/rs13245134
https://doi.org/10.3390/land10070700
https://doi.org/10.1080/01431169408954345
https://doi.org/10.1016/j.ecolind.2015.03.037
https://doi.org/10.1007/978-981-13-7067-0_39
https://doi.org/10.1080/01431160802039957
https://doi.org/10.1080/01431160802039957
https://doi.org/10.3390/rs12152503
https://doi.org/10.1016/j.rse.2005.11.016
https://doi.org/10.1007/s12524-015-0460-6
https://doi.org/10.1109/JSTARS.2015.2478914
https://doi.org/10.1016/j.isprsjprs.2010.10.010
https://doi.org/10.1080/01431160701469024
https://doi.org/10.1016/j.rse.2012.09.009


49. J. Xu et al., “Extraction of built-up area using multi-sensor data—a case study based on
Google earth engine in Zhejiang Province, China,” Int. J. Remote Sens. 42(2), 389–404
(2021).

50. G. Cai et al., “Detailed urban land use land cover classification at the metropolitan scale
using a three-layer classification scheme,” Sensors 19(14), 3120 (2019).

51. S. W. Myint et al., “Per-pixel vs. object-based classification of urban land cover extrac-
tion using high spatial resolution imagery,” Remote Sens. Environ. 115(5), 1145–1161
(2011).

52. L. G. E.-D. Taha and R. E. Ibrahim, “A machine learning model for improving building
detection in informal areas: a case study of Greater Cairo,” Geomat. Environ. Eng. 16(2),
39–58 (2022).

53. H. S. Jaber, M. A. Shareef Shareef, and Z. F. Merzah, “Object-based approaches for land
use-land cover classification using high-resolution quick bird satellite imagery (a case study:
Kerbela, Iraq),” Geod. Cartogr. 48(2), 85–91 (2022).

54. A. Shetty, P. Umesh, and A. Shetty, “An exploratory analysis of urbanization effects on
climatic variables: a study using Google Earth Engine,”Model. Earth Systems and Environ.
8(1), 1363–1378 (2022).

55. U. Heiden et al., “Determination of robust spectral features for identification of urban
surface materials in hyperspectral remote sensing data,” Remote Sens. Environ. 111(4),
537–552 (2007).

56. “Passport of the city of Kyiv,” 2021, https://dei.kyivcity.gov.ua/content/kmu.html (access
19.03.2022).

57. “Ecological passport of the city of Kyiv,” 2019, https://ecodep.kyivcity.gov.ua/content/
ekologichnyy-pasport.html (access 07.03.2022).

58. V. I. Zatserkovny et al., “Black sea level change monitoring using altimetry data and
geo-information technologies,” in XVIIIth Int. Conf. Geoinf. – Theor. and Appli.Aspects:
May 13–16, 2019, European Association of Geoscientists & Engineers, Kyiv, pp. 13–16
(2019).

59. D. Liashenko et al., “Landslide GIS modelling with QGIS software,” in XIV Int. Sci. Conf.
Monit. of Geol. Processes and Ecol. Cond. of the Environ.: Nov. 10–13, 2020, European
Association of Geoscientists & Engineers, Kyiv (2020).

60. Senior Department of Statistics in Kyiv, “State Statistics Service of Ukraine,” Population,
2022, http://www.kyiv.ukrstat.gov.ua/ (access 9.03.2022).

61. State Service of Ukraine for Emergencies, “Central geophysical observatory named after
Boris Sreznevsky,” http://cgo-sreznevskyi.kyiv.ua/index.php?fn=k_klimat&f=kyiv (access
07.03.2022).

62. Official Portal of Kyiv City, “The project of the City Target Program for the Use and
Protection of Lands of the City of Kyiv for 2022-2025, No. 1425 of the Kyiv City Council
dated June 22, 2021, The official portal of the city of Kyiv,” https://kyivcity.gov.ua/news/
kivrada_zatverdila_misku_tsilovu_programu_vikoristannya_ta_okhoroni_zemel_na_2022-
2025_roki/ (access 09.03.2022).

63. The European Space Agency, “Copernicus open access hub,” https://scihub.copernicus.eu/
(accessed 30 June 2022).

64. “Google Earth Engine,” https://earthengine.google.com/ (accessed 30 June 2022).
65. G. Mateo-García et al., “Multitemporal cloud masking in the Google Earth Engine,” Remote

Sensing 10(7), 1079 (2018).
66. The European Space Agency (ESA), “Radiometric resolutions,” https://sentinels.copernicus

.eu/ (accessed 30 June 2022).
67. M. Main-Knorn et al., “Sen2Cor for sentinel-2,” Proc. SPIE 10427, 2278218 (2017).
68. M. Popov et al., “Assessing long-term land cover changes in the watershed by spatio-

temporal fusion of classifications based on probability propagation: the case of Dniester
river basin,” Remote Sens. Appl.: Soc. Environ. 22, 100477 (2021).

69. “The Humanitarian data exchange,” https://data.humdata.org (accessed 30 June 2022).
70. H. Zhou et al., “A hybrid approach of combining random forest with texture analysis and

vdvi for desert vegetation mapping based on UAV RGB data,” Remote Sensi. 13(10), 1891
(2021).

Belenok et al.: Machine learning based combinatorial analysis for land use and land cover assessment. . .

Journal of Applied Remote Sensing 014506-22 Jan–Mar 2023 • Vol. 17(1)

https://doi.org/10.1080/01431161.2020.1809027
https://doi.org/10.3390/s19143120
https://doi.org/10.1016/j.rse.2010.12.017
https://doi.org/10.7494/geom.2022.16.2.39
https://doi.org/10.3846/gac.2022.14453
https://doi.org/10.1007/s40808-021-01157-w
https://doi.org/10.1016/j.rse.2007.04.008
https://dei.kyivcity.gov.ua/content/kmu.html
https://dei.kyivcity.gov.ua/content/kmu.html
https://dei.kyivcity.gov.ua/content/kmu.html
https://dei.kyivcity.gov.ua/content/kmu.html
https://dei.kyivcity.gov.ua/content/kmu.html
https://ecodep.kyivcity.gov.ua/content/ekologichnyy-pasport.html
https://ecodep.kyivcity.gov.ua/content/ekologichnyy-pasport.html
https://ecodep.kyivcity.gov.ua/content/ekologichnyy-pasport.html
https://ecodep.kyivcity.gov.ua/content/ekologichnyy-pasport.html
https://ecodep.kyivcity.gov.ua/content/ekologichnyy-pasport.html
https://ecodep.kyivcity.gov.ua/content/ekologichnyy-pasport.html
http://www.kyiv.ukrstat.gov.ua/
http://www.kyiv.ukrstat.gov.ua/
http://www.kyiv.ukrstat.gov.ua/
http://www.kyiv.ukrstat.gov.ua/
http://www.kyiv.ukrstat.gov.ua/
http://cgo-sreznevskyi.kyiv.ua/index.php?fn=k_klimat&f=kyiv
http://cgo-sreznevskyi.kyiv.ua/index.php?fn=k_klimat&f=kyiv
http://cgo-sreznevskyi.kyiv.ua/index.php?fn=k_klimat&f=kyiv
http://cgo-sreznevskyi.kyiv.ua/index.php?fn=k_klimat&f=kyiv
https://kyivcity.gov.ua/news/kivrada_zatverdila_misku_tsilovu_programu_vikoristannya_ta_okhoroni_zemel_na_2022-2025_roki/
https://kyivcity.gov.ua/news/kivrada_zatverdila_misku_tsilovu_programu_vikoristannya_ta_okhoroni_zemel_na_2022-2025_roki/
https://kyivcity.gov.ua/news/kivrada_zatverdila_misku_tsilovu_programu_vikoristannya_ta_okhoroni_zemel_na_2022-2025_roki/
https://kyivcity.gov.ua/news/kivrada_zatverdila_misku_tsilovu_programu_vikoristannya_ta_okhoroni_zemel_na_2022-2025_roki/
https://kyivcity.gov.ua/news/kivrada_zatverdila_misku_tsilovu_programu_vikoristannya_ta_okhoroni_zemel_na_2022-2025_roki/
https://scihub.copernicus.eu/
https://scihub.copernicus.eu/
https://scihub.copernicus.eu/
https://earthengine.google.com/
https://earthengine.google.com/
https://earthengine.google.com/
https://doi.org/10.3390/rs10071079
https://doi.org/10.3390/rs10071079
https://sentinels.copernicus.eu/
https://sentinels.copernicus.eu/
https://sentinels.copernicus.eu/
https://doi.org/10.1117/12.2278218
https://doi.org/10.1016/j.rsase.2021.100477
https://data.humdata.org
https://data.humdata.org
https://data.humdata.org
https://doi.org/10.3390/rs13101891


71. C. W. Hsu, C. C. Chang, and C. J. Lin, “A practical guide to support vector classification,”
Technical Report; Department of Computer Science and Information Engineering, University
of National Taiwan: Taipei, Taiwan, pp. 1–12 (2003).

72. L. Leroux et al., “Land cover mapping using Sentinel-2 images and the semi-automatic
classification plugin: a Northern Burkina Faso Case Study,” in N. Baghdadi, C. Mallet,
and M. Zribi, Eds., QGIS and Applications in Agriculture and Forest, Vol. 2, ISTE Ltd
(2018).

73. E. Głowienka and K. Michałowska, “Analyzing the impact of simulated multispectral
images on water classification accuracy by means of spectral characteristics,” Geomat.
Environ. Eng. 14(1), 47–58 (2020).

74. P. S. Rahar and M. Pal, “Comparison of various indices to differentiate built-up and bare soil
with sentinel 2 data,” in J. K. Ghosh and I. da Silva, Eds., Applications of Geomatics in Civil
Engineering, pp. 501–509, Springer, Singapore (2020).

75. R. Nedkov, “Orthogonal transformation of segmented images from the satellite Sentinel-2,”
C. R. Acad. Bulg. Sci. 70(5), 687–692 (2017).

76. G. S. Bhunia, P. Kumar Shit, and H. R. Pourghasemi, “Soil organic carbon mapping
using remote sensing techniques and multivariate regression model,” Geocarto Int. 34(2),
215–226 (2019).

77. T. M. Lillesand, R. W. Kiefer, and J. Chipman, Remote Sensing and Image Interpretation,
7th ed., Wiley (2015).

78. R. Congalton, “Assessing positional and thematic accuracies of maps generated from
remotely sensed data,” in Remote Sensing Handbook, Data Characterization, Classification,
and Accuracies, P. Thenkabail, Ed., Vol. I, pp. 583–601, CRC/Taylor & Francis, Boca
Raton, Florida (2015).

Vadym Belenok received his degree candidate of physical and mathematical sciences (com-
parable to PhD) on remote-controlled airspace research from National Aviation University,
Kyiv, Ukraine, in 2015. Now, he is an associate professor of the Aerospace Geodesy and
Land Management Department at National Aviation University, Kyiv, Ukraine. His main
research interests include geodesy, GIS, and remote sensing.

Liliia Hebryn-Baidy received her degree candidate of technical sciences (comparable to PhD)
on cadastre and the lands monitoring from Lviv Polytechnic National University, Ukraine, in
2018. Now, she is an associate professor of the Aerospace Geodesy and Land Management
Department at National Aviation University, Kyiv, Ukraine. Her main research interests include
satellite imagery processing, remote aerospace research methods, land and real estate valuation,
and land monitoring.

Nataliia Bielousova received her degree doctor of economics on specialty development of pro-
ductive forces and regional economy from V.I. Vernadsky Taurida National University, Ukraine,
in 2021. Now, she is a professor of the Aerospace Geodesy and Land Management Department
at National Aviation University, Kyiv, Ukraine. Her main research interests include rational use
of natural resources, tourism, and rehabilitation geography.

Valeriy Gladilin received his degree candidate of technical sciences (comparable to PhD) on
geodesy, photogrammetry, and cartography from Kyiv National University of Construction
and Architecture, Ukraine, in 1995. Now, he is an associate professor of the Geodesy and
Land Management Department at Bila Tserkva National Agrarian University, Ukraine. His main
research interests include geodesy and land management, land management design, land market,
territorial planning and balanced land use, and determination of deformations of industrial
equipment by geodetic measurements.

Sergíy Kryachok received his degree candidate of technical sciences (comparable to PhD) on
geodesy, photogrammetry and cartography from Kyiv National University of Construction and
Architecture, Ukraine, in 2001. Now, he is an associate professor of the Department of
Geodesy, Cartography and Land Management at Chernihiv Polytechnic National University,
Ukraine. His main research interests include geodesy, photogrammetry, surveying instruments,
and vertical geodetic measurements.

Belenok et al.: Machine learning based combinatorial analysis for land use and land cover assessment. . .

Journal of Applied Remote Sensing 014506-23 Jan–Mar 2023 • Vol. 17(1)

https://doi.org/10.7494/geom.2020.14.1.47
https://doi.org/10.7494/geom.2020.14.1.47
https://doi.org/10.1080/10106049.2017.1381179


Andrii Tereshchenko received his degree candidate of physical and mathematical sciences
(comparable to PhD) in astrometry, celestial mechanics from National Aviation University,
Kyiv, Ukraine in 2011. Now, he is an associate professor of the Aerospace Geodesy and
Land Management Department at National Aviation University, Kyiv, Ukraine. His main
research interests include dynamics of self-gravitating systems, celestial mechanics, digital
image processing, economic, and mathematical modeling.

Sofiia Alpert received her degree candidate of technical sciences (comparable to PhD) on
remote-controlled airspace research from the Scientific Centre for Aerospace Research of the
Earth of the Institute of Geological Science of the National Academy of Sciences of Ukraine in
2016. Now, she is a researcher at the Department of Geoinformation Technologies in Remote
Sensing of the Earth of Scientific Centre for Aerospace Research of the Earth of the Institute of
Geological Science of the National Academy of Sciences of Ukraine. Her main research interests
include processing and quality assessment of multispectral aerospace images interpretation,
and satellite images classification.

Sergii Bodnar is educated as a geographer and cartographer. Currently, he works as an assistant
in the Department of Geodesy and Cartography, Geography Faculty, Taras Shevchenko
National University of Kyiv. His research interests include photogrammetric measurements
of architectural monuments and historical and cultural heritage, digital photogrammetry and
UAV surveys, large-scale topographic surveys, and engineering geodesy. He has published more
than 50 scientific and educational works.

Belenok et al.: Machine learning based combinatorial analysis for land use and land cover assessment. . .

Journal of Applied Remote Sensing 014506-24 Jan–Mar 2023 • Vol. 17(1)


