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ABSTRACT

The explanatory notes to the graduate work ‘“Non-orthogonal gyroscopic

angular velocity vector meter on an airplane’ contained 54 pages, 19
drawings, 2 tables, 0 flow-charts, 13 information source.

Keywords: ANGULAR VELOCITY VECTOR, GYROSCOPIC METER,
AIRPLANE, SENSOR, SPATIAL POSITION, NONORTHOGONAL .

The purpose of the graduate work is to develop the non-orthogonal
gyroscopic meter of the angular velocity vector on the aircraft, taking into account
the peculiarities of its operation.

The object of the research is the process of measuring the angular velocity
vector on an airplane.

The subject of the research is non-orthogonal gyroscopic angular velocity
vector meter on an airplane.

Research Method - comparative analysis, theory of gyroscopes, statistical
processing, methods of functional redundancy.

The scientific novelty of the research - it is recommended to use the
materials of the thesis when designing the new airborne measuring instruments
with improved characteristics of accuracy and reliability. The increased reliability
and accuracy are provided due to the redundant number of inertial sensors and
using of their nonorthogonal configurations. The failure of the measuring channel
will only lead to an increase in the measurement error. Thus, it is possible to
develop an algorithm that will adapt to possible faults. In case of failures, it will
not even be necessary to modify the algorithms (rebuild the direction cosine
matrix), it will be enough to set too high a dispersion value for the failed channel
In the covariance matrices. The proposed approach will be especially useful for
application in control systems of unmanned aerial vehicles.

The importance of the graduate work - in this thesis, the advantages and
disadvantages of design, the design of micro-mechanical gyroscopes were

considered. The issue of redundancy of non-orthogonal measuring devices to



increase accuracy and reliability is considered. An accuracy study will also be
performed experimentally and theoretically to determine the optimal type of sensor
configuration.

INTRODUCTION

The advantages of a strap-down inertial navigation system are relative
cheapness (it is possible to use sensors from the “low cost” category), small
dimensions and weight, and low power consumption. These advantages are
especially clearly seen in SINS built on micromechanical navigation sensors

(gyroscopes - MMG, accelerometers - MMA).

Blocks of linear micromechanical accelerometers are used as sensors of
the apparent acceleration of a moving object as part of inertial navigation
systems. They do not have high accuracy characteristics (if we consider
inexpensive MMA). However, there are tasks for which they are well suited.
For example, in small aircraft, small size and weight, coupled with a low
power consumption of MMA units, bring many benefits. The same applies to
the automotive industry, where they are integrated with satellite systems
(GPS, GLONASS, etc.).

One of the serious problems of low-cost micromechanical sensors is
random zero drift. In simple terms, drift is when the sensor indicates that the
object is rotating (MMG drift), when in fact there is no rotation. Drift has a
constant component, which can be compensated, and a random component,
which is difficult to compensate. There are different ways to deal with random
errors. One of them is the construction of a non-orthogonal SINS with

information redundancy.

This thesis has made a number of significant contributions to the field

of aviation reliability and flight safety.
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CONSTRUCTION OF NONORTHOGONAL RATE VECTOR
SENSOR

1.1. General characteristic of a gyroscopic rate sensor.

| could start off by writing that a rate gyro includes six gauge with

noncomplanar arrangement of sensitivity axes (measuring axes).

In particular, all six measuring axes (‘71 "“a_é) at nominal arrangement is placed
in parallel to regular hexahedron base edges, added in a cone of rotation with an
angle of semisolution ¢, equaled 0,9553 rad, and having a symmetric arrangement

of edges by a circle of a cone base with angular step 0, equaled to 1,04 rad. [1]

1. As instrumental co-ordinate system is accepted right orthogonal OXx,y.z,,
materialized by planting places on rate gyro case. Orientation of rate gyro sensitivity

axes concerning axes of instrumental co-ordinate system is as follows:

Ox.y,z, — rate gyro instrumental co-ordinate system;

-G . positive sensitivity axes directions of rate gyro (4., A, A, A, As As

measuring instruments, accordingly).

In the same way ensitivity axes % and Auis parallel to the x,0y, plane. In
fig.1.3. positive angles directions of axes deviation of sensitivity measuring

Instruments concerning a nominal position, where:

@,05,83,d4,d5,96 _ nominal sensitivity axes positions of 4., A, AsA. A, A measuring

instrument accordingly;
AB1, A1, AB2, Adn,..., ABs, Ads- positive deviation angles of axes concerning a

nominal position.
10



and on the contrary.

3. Relative orientation of instrumental coordinate system axes and construction
co-ordinate system of a product is that, that axis x,coincides with a negative direction
of an axis z,..; y,axis with a positive direction of an axis X,.; Z,coincides with a
negative direction of an axis Y. [2]

Furthermore with rate gyro, output information in discrete form is given from
each measuring instrument (4., A., 4s, A, As, As) in the form of a unitary code - pulse
link, transmitted in onboard digital computing system (ODCS) by electrically non-
connected channels. Each information channel has two functional communication
lines; on one line pulses is distributed, corresponded to a positive projection, and on
other line, corresponding to a negative projection of rate to an axis of measuring

instrument sensitivity are given.

11



Yo

Fig.1.1. A rate gyro includes six gauge with noncomplanar arrangement of
sensitivity axes (measuring axes)

aSas

Fig.1.2. Rate gyro sensitivity axes orientation concerning axes of instrumental
coordinate system
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where: A, corresponds to Ad1+Ade; % corresponds to 4 T %;i=12....6,

\4

el
(=Y

A

Fig.1.3.Positive angles directions of a sensitivity axes deviation of
measuring instruments concerning a nominal position

1.2. Redundancy basis application features

The first think | should mention is that for measurement of any vector, it is
necessary to realize some measuring basis. Set of measured vectors forms vector
space.

Nonredundant vector measuring instrument intended for nonredundant
measurement of vector space, is called the measuring instrument for which
dimensions of measuring and control bases coincides, that is n = ng [3].

In a case n <ngreceived information are not enough for aircraft’s control, and at
n>ng information is redundant.

As to acceleration measurement, redundant vector accelerometer is formed by

three single-stage accelerometers which axes of sensitivity are noncollinear.

13



As it is known from the literature [2], as a redundant vector measuring
instrument understand a measuring instrument which consists of the single-
stagemeasuring instruments which quantity exceeds the minimum number of the
measuring instruments necessary for vector measurement.

One of basic attribute of such measuring instrument is the parameter of redundancy
which is determined by the formula:
m=n-ng
(1.2.1)
where n - total number of measuring instruments;

No - the minimum number of measuring instruments, necessary for vector’s

measurement.

From expression (1.2.1.) it is visible that the minimum number of redundant
measuring instruments is equal to one.

Under construction of a redundant vector measuring instrument the primary
goal consists in effective redundancy using.

Also, orientation of sensitivity axis of each single-stage measuring instrument
Is characterized by single vector; therefore, for set of vectors the vector space which
is linear vector space is formed.

Practical interest represents interrelation of the vector space created by a
redundant vector measuring instrument and vector space, created by non-redundant
vector measuring instrument. Considering that linear vector space can have some
bases, we will call the space, having some bases, as a redundant vector space [1].
Thus, the vector space, under formation of redundant vector measuring instrument,
Is redundant vector space concerning vector space, under formation of a vector
measuring instrument and bases of these spaces are, accordingly, redundant and non-
redundant.

Characteristic feature of an aircraft control systems redundancy application
consists in all components of efficiency improving allowance, namely: accuracy,
readiness, reliability. At control system designing to minimize an error of the

acceleration measured by the vector accelerometer, it is possible by optimum
14



selection of a measuring instrument orientation and optimum processing of
redundant information [2].

Most effectively redundancy can be used, if linear independence of all single
vectors connected with orientation of sensitivity axes of single-stage measuring
instruments is supplied, that is at use of so-called functional redundancy. In this case
there is a refused vector measuring instrument redundancy replacement capability,
to an operable one, or a capability of formation of the non-redundant vector
measuring instruments greatest number.

Under consideration of redundant measuring instruments orientation ways
there are two primary goals. One of them is connected with selection of set of
parameters, which unequivocally determines orientation of each measuring
instrument concerning the main (control) basis. The second problem consists in
obtaining of transformation formulas of vector coordinates from every redundant
measuring basis in the main.

Problem of vector’s coordinate transformation is caused by discrepancy of
measuring and control bases.

Selection of this or another way of orientation, and also set of the parameters
characterizing orientation of redundant measuring instruments, is conducted taking
into account all problems arising in redundant aircraft control systems. Except a
direct problem of orientation it is necessary to consider convenience and efficiency
of coordinate’s transformation of the vectors measured, simplicity of detection of

failures and reorganization of a control system structure[4].

1.3. Orientation schemes of redundant measuring instrument

For that time for construction of a redundant measuring instrument four ways
of orientation of sensitive element’s redundant measuring instruments with use as a
figure of symmetry of a cone [5] are known:
1st way — all n measuring instruments are guided by the generatrix of cone, a

symmetry axis - on measured vector or in an optimum direction for a case of variable

15



in a direction measured vector. Thus sensitivity axes of measuring instruments take

place on generatrix of cone through equal angles o = Z—f (fig. 1.3.)

Vi
[n /
\ 0,4/,
\\ | ]
\ |
N\
Z
B
0
X
Vy

Fig. 1.3. Orientation of redundant measuring instruments by the generatrix of cone

over equal angles a=2n/n

2nd way - one of measuring instruments is disposed on an axis of symmetry

of a cone, others (n —1) measuring instruments are disposed on the generatrix of

cone over equal angles a:% (fig. 1.4.)
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Fig. 1.4. Orientation of redundant measuring instruments by generatrix of cone

over equal angles

3rd way - multicone arrangement with unified for all cones symmetry axis;

4th way - multicone arrangements with various for each of cones symmetry;

In fig. 1.3. and 1.4. sensitivity axes of measuring instruments are designated
as l;.

One of possible ways of orientation consists in identical orientation of
sensitivity axes concerning edges of regular polyhedron, for example,
perpendicularly to their edges [5]. In some regular polyhedrons separate edges can
be parallel each other and consequently the number of independent measuring
instruments (for example, accelerometers) at the given way of orientation does not
coincide with number of edges. It is known that exists only five regular polyhedrons,
which characteristics, and also the maximum numbers of redundant accelerometers

are resulted in table 1.1.

17



Table 1.1.

Redundant accelerometers of five regular polyhedrons

Polyhedron Number of | Number of | Facets The maximum
name tops edges number number A
Cube 8 12 6 3
Tetrahedron | 4 6 4 4

Octahedron 6 12 8 4
Dodecahedron | 20 30 12 6
Icosahedron 12 30 20 10

One of variants of such approach that found enough extended coverage in the
domestic and foreign technological literature represents orientation of six measuring
instruments to perpendicularly edges of a dodecahedron. Choosing orientation of a
dodecahedron with relation to control basis, it is possible to obtain symmetric
orientation of sensitivity axes of measuring instruments concerning axes of this basis

and related to each other (fig.1.5)

Fig.1.5. Symmetric orientation of axes of sensitivity of redundant measuring

instruments

18



In the presented scheme of a sensitivity axis of all measuring instruments are
orientated concerning the nearest axes of control basis on angle y= 31°43’.
Orientation of two measuring instruments in one plane corresponds to the minimum
number of measuring instruments for obtaining of the information about the vector,
disposed in a plane. The single vectors directed on sensitivity axes of measuring
instruments, form vector space with linearly-independent making, thus, its
dimension is equal to number of measuring instruments. [6]

In the given project 7 possible variants of construction schemes of a redundant
vector measuring instrument are considered:

I. 4 sensitive elements are located by generatrix of cone;
Il.  3sensitive elements are located by generatrix of cone and 1 sensitive element
by the symmetry axis;
I1l. 5 sensitive elements located by generatrix of cone;
IV. 4 sensitive elements are located by generatrix of cone and 1 sensitive element
by the symmetry axis;
V. 6 sensitive elements are located by generatrix of cone;
VI. 5 sensitive elements are located by generatrix of cone and 1 sensitive element
by the symmetry axis;
VII. 6 sensitive elements are located over the dodecahedron edges.
For the analysis of each of schemes we enter following designations:
vector of measuring coordinate system. Dimension of this vector coincides with
quantity of sensitive elements measuring instruments;
o - State vector, i.e. vector of basic coordinate system:
o=[wx 0y ®]";
H - matrix of transformation of basic coordinate system into measuring

coordinate system, than, in the matrix form we can write:

I=Ho
(1.3.1)

whence
19



o=H"1l
(1.3.2.)

where

|=[I1|2...In]T ; m:[mxwysz :

(1.3.3)

n - quantity of sensitive elements in measuring instrument. Dimension of
matrix H isnx 3.
Let's consider each of the offered schemes and according to (1.3.1.) we will obtain
a matrix of direction cosines.

Variant of 4 sensitive elements location by the generatrix of cone.

Space orientation of a redundant vector measuring instrument which consists
from 4 sensitive elements placed by generatrixes of cone, is presented in fig. 1.6.,

where OXYZ - basic coordinate system, Ol l,l,l, - measuring coordinate system, an

angle 0 = 54°44',

¥ X
‘j !’.’ ;[ !ll
‘Ir: U !r.l
) 9 /4
0
Z Z 0 Z
0 . -
X /4
T }/ f,a .Fl
' X

Fig. 1.6. Orientation of the 4 sensitive elements by the generatrix of cone
Taking into account fig. 3.2.2.4 it is possible to create a matrix of directing

cosines:

20



—cosm/4sin® —cosO cosmw/4sin0
—cosm/4sin® —cosO —cosw/4sin0

cosm/4sin®0 —cos® —cosm/4sin0
cosm/4sin® —cosO cosm/4sin0

(1.3.4)

Taking into account value of an angle 0 it is possible to rewrite (1.2.2.4) in a

following kind:

(313 —3/3 3/3]
—J3/3 =313 -/3/3
J313 —3/3 —3/3]|
| 313 =313 3/3]

(1.3.5)
Variant of 3 sensitive elements location by the generatrix of cone and 1
sensitive element over a symmetry axis.
Orientation of a vector measuring instrument is presented in fig. 1.7. which
consist of 3 sensitive elements placed by the generatrix of cone and 1 sensitive
element which are located over a symmetry axis, where Oxyz — basic coordinate

system, Ol l,l;l, - measuring coordinate system, an angle 6 = 54 © 44 ',

-y
iy
[ 0 !
0 0
0
X
vy

Fig.1.7. sensitive elements orientation by the generatrix of cone and 1

sensitive element over a symmetry axis
21



Taking into account fig. 1.7. it is possible to create a matrix of directing

cosines:

sin® —cos0 0
—cosm/3sin® —cosO cosm/6sin0

—cosm/3sin® —cos® —cosm/6sin0 |
0 -1 0

(1.3.6.)
Taking into account value of an angle 0, matrix (1.2.2.6) can be overwritten

in a following view:

[ J6/3 —J3/3 0

616 =313 272

616 =313 =2/2
0 0

-1

(1.3.7.)

Variant of 5 sensible elements location by generatrix of cone.
Orientation of redundant vector measuring instrument which consists of 5
sensitive elements located by generatrix of cone is presented in fig. 1.8., where Oxyz

- basic coordinate system, Ol,L,L;l,l: - measuring coordinate system, an angle 6 =

54°44',

ls

TN
[\

T~

2a | 2a

[s Y I
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Fig. 1.8. Orientation of 5 sensitive elements by the generatrix of cone

Taking into account fig. 1.8., matrix of directing cosines becomes:

[—cosm/4sin® —cos® cosm/4sin® |
—CoSm/4sin® —cos® —cosm/4sin0
H=| cosnt/4sin® —cos® —cosn/4sin0
cosm/4sin® —cos® cosm/4sin0
i 0 -1 0 ]

(1.3.8)

Taking into account value of an angle 6, matrix (1.3.8.) can be overwritten in

a following view:

(313 —J3/3 3/3]
313 =313 =/3/3
H=| /3/3 -J3/3 -3/3
J313 =313 313

0 -1 0

(1.3.9)

Variant of 6 sensitive elements location by generatrix of cone.
Orientation of redundant vector measuring instrument which consist of 6
sensitive elements located by generatrix of cone, is presented in fig. 1.9., where

Oxyz - basic coordinate system; Ol 1,1,l,l:l; - measuring coordinate system, an angle

0 = 54°44".

23
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Fig.1.9. sensitive elements orientation over generatrix of cone

The matrix of directing cosines for the given scheme of sensitive elements

orientation looks like:

sin@
cosm/3sin0
—Ccosm/3sin0O

-sin®
—cosmt/3sin0
| cosmt/3sin0

—cos0 0
—cosO sinmw/3sin0O
—cos0 sinmw/3sin0
—cos0 0
—c0osO —sinm/3sin0O

—c0s0 —sinm/3sin0 |

(1.3.10)

Taking into account value of an angle 6, matrix (1.2.2.11) can be overwritten

in a following kind:

BNFE
J61/6
—6/6
673
616

| /616

-J3/3 0
313 212
313 212
-J3/3 0
313 =212
313 —21/2]

(1.3.11.)
24



Variant of 5 sensitive elements location by generatrix of cone and 1 sensitive
element over a symmetry axis.

Orientation of redundant vector measuring instrument which consist of 5
sensitive elements which is located over generatrix of cone and 1 sensitive element
which is located over the symmetry axis is presented in fig. 1.10., where Oxyz -

basic coordinate system, Ol LLl,ll; - measuring coordinate system, angles

0=54°44', a=36°.

-X
[;
14
20
-Z o Z
=
20 20
/_.
[s /
X

Fig. 1.10.Orientation of 5 sensitive elements over generatrix of cone and 1

sensitive element over a symmetry axis

Directing cosines matrix for the given scheme of sensitive elements

orientation has the following view:

sin@ —cos0 0
cos20.sin® —cosO sin2asin®
—Ccosasin® —cosO sinasin®
—cosasin® —cos® —sinasin®
c0s20.sin® —cosO —sin2asin®

0 -1 0

(1.3.12)

25



Variant of 6 sensitive elements location over a dodecahedron.

Space orientation of redundant vector measuring instrument is presented in
fig. 1.5. Projections of vector of the measuring coordinate system (1.3.2.), consisting
of 6 sensitive elements which are located on edges of a dodecahedron in the scalar

form it is possible to write taking into account (1.3.4.) in a following view:

|, = o,cosy —w,siny,
l, = ®,cosy + w,siny,
l; = »,cosy —o,siny,
|, = ®,cosy +w,siny,
| = ®,cosy —w,siny,
lg = ®,C08Y + w,siny ,
(1.3.13)
where y =31°43",
Taking into account (1.3.13.) it is possible to write down a directing cosines
matrix H, which looks like:

[ cosy —siny 0 |
cosy  siny 0
- 0 cosy -—siny
0 cosy  siny
—-siny 0 cosy
| siny 0 cosYy |

(1.3.14)

Symmetric location of measuring instruments supplies identical accuracy of

measurement with each measuring instrument that follows from (1.3.1.), (1.3.13.)
and (1.3.14.)

26



1.4. Determination of the redundant measuring equipment optimal
orientation

Optimum orientation of redundant measuring instruments should be
determined, proceeding from a condition of obtaining of redundant value of the
chosen criterion.

Conclusive at criterion selection is necessity of obtaining of the best accuracy
(minimization of measurement errors of vector) and reliability [6]. One of stages of
the solution of a problem of selection of optimum orientation of redundant
measuring instruments consists in obtaining of communications of the chosen
criterion with parameter, which is optimized. At obtaining of such communications
it is necessary to consider not only orientation of measuring instruments, but also a
data processing way, that is, as a whole optimization of a redundant vector
measuring instrument should implement simultaneously, as on the parameters,
determining orientation, and on parameters of processing of surplus information [7].
One of exhaustive characteristics of quality (accuracy) of measurement is the
correlation matrix of errors. At the organization of processing of surplus information
and selection of corresponding methods and algorithms it is necessary to start with
satisfaction of following basic requirements:

a) maximum accuracy and reliability;

b) simplicity of control of a measuring instrument condition, problem
diagnostics and reorganizations of structure or adaptation of algorithms
of a data processing;

¢) minimum expenses of machine time for a data processing.

Accuracy of estimations depends on quantity and quality of the primary
information (measurements) and a way of processing of surplus information.

Under processing of the redundant information [6] it is possible to use a least squares
method. For the given method of a data processing at independent statistical
characteristics with a zero mathematical expectation as a criterion of optimality we

will use the minimum trace of a correlation matrix of errors [8].

27



Trace of a correlation matrix of errors, is determined by expression:
D=[H"H]"
(1.4.1)
where H- the transposed matrix of the directing cosines;
H — a directing cosines matrix that is the sum of its diagonal elements of
matrix D, i.e. dispersions of errors:
3
trD=> d
i=l i
(1.4.2)

where d.. - diagonal elements of matrix D.

It is possible to present algorithm of a least squares method in the form of
following matrix expression:
W = DH’E
(1.4.3)
or
W =ME
(1.4.4)
where W - vector of estimations of state vector;
E - vector of measurements;
M- transformation matrix of vector E indications of an redundant measuring
instrument in indications of vector W:
M = DH’
(1.4.5)
Thus, from the resulted expressions follows that the correlation matrix of
errors of a vector redundant measuring instrument depends on orientation of

measuring instruments, as is confirmed by results of work.

28



1.5. Conclusion

Motion properties in control systems are determined using accelerometers or
angular velocity meters. The main parameters of such meters include the redundancy
orator of the measuring instrument, which is designed to evaluate the effectiveness
of the use of redundancy. The use of redundancy allows to reduce the measurement
error and also to increase the reliability, because if one of the sensors fails, the
measuring device will continue its work with an increased error instead of complete
failure.

To build a vector space, there are four variants of positioning sensing
elements, the figure of symmetry for which a cone is used, their orientation occurs
along the forming cones. Sensing elements are located on the forming cones at
intervals equal to the value of a certain angle, and can also be located on and off the
axis of symmetry.

One of variants of construction of an excessive vector gauge is its construction
with use of a figure of symmetry - a cone. To create such vector space there are four
variants of arrangement of sensors, orientation of which takes place according to the
forming cones. Sensitive elements are located on the formative cones with an
interval equal to the value of a certain angle, and can also be located on and off the

axis of symmetry.

29



CHAPTER 2 RESEARCH ON RELIABILITY OF EXCESSIVE
METERS

2.1. ldentification of failures of sensitive elements of potential elements

I would like to start with the fact that for ease of detection and localization of failure
of the sensitive element of the redundant gauge we will use the criterion of maximum
probability density of measurement errors. The accuracy characteristic for this can
be the variance of estimates.

The identification task is to determine the number (number in case of several sensors
failures) of the failed measurand. The solution of this problem is closely connected
to the problem of identifying the failure state of redundant gauges. For all methods
of failure state detection based on pairwise comparison, the possibility of detecting
the failure state of redundant meters and the maximum number of identifiable
failures, depending on the degree of redundancy used, can be summarized in the
table. 2.1.

Table. 2.1.

Ability to detect faulty backup meters and the maximum number of
identified failures depending on the degree of used backup

Redundancy

Features

Ability to detect the state

of failure of excessive meters - + + + + +

Maximum number of
meter failures 0 0 1 2 3 4

Using the over-information comparison method to identify failed meters

makes it possible to identify failures of all excessive meters and, in addition, to fix
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the failure of an excessive vector meter based on comparison with the threshold
value of the sensing element.
This paper proposes two methods to identify the failure of sensitive elements.
Each sensor measures the signal along its sensitivity axis. The signal of each

sensitive element has some error p.. If in the analytical analysis of the study we

neglect such traditional errors as instability of the scale factor and zero drift (zero
signal), then the error of measurement of the state vector projections by the given
sensing element can be considered equal to zero.

In the presence of these errors of the sensitive element it is possible to obtain
the error of measurement of the state vector by the following two methods:

The 1st method consists in finding two maximum values of errors of sensitive
elements and disconnecting these sensitive elements as "suspicious" for failure. This
method of identification will be called the method of identification without
correction.

The 2nd method - method of identification with correction consists of two
stages:

a) determination of the first maximum value;

b) recalculation of error readings of all sensing elements when disconnecting
the sensing element suspected of failure.

Consequently, after applying one of the two methods of identification you can
get the numbers of the sensitive element with the maximum values of errors, i.e.
suspicious for failure, which must be temporarily disconnected to check their
operability. The essence of the check consists in obtaining a state vector (estimation
of the state vector) with disabled sensitive elements of the redundant meter. After
that, having received an estimate of the state vector according to Table 2.1, we find
an estimate of the vector of measurements of the excessive vector meter and directly
compare the values and obtained estimates of the "suspicious" for failure sensitive

element meters.
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If the modulus of difference of value and evaluation of these sensitive
elements does not go beyond the set failure threshold value, then this sensitive
element is considered operable, but further more detailed check is required to
confirm its state.

If the modulus of the difference between the value and the evaluation exceeds
the limit value of the operability evaluation (greater than the threshold value of the
sensitive element failure), then the given gauge is considered to be incapable of
work.

The advantages of these identification methods are as follows:

- these methods are simple to understand;

- they are easily implemented on a computer;

- take little time to perform the identification procedure;

- exclude from the identification algorithm such operations as division,
reduction to a degree, etc., that cause certain difficulties for computer
implementation;

- allow you to use only the summation operation with a change of scale.

Let us determine the error of meter readings for the above considered schemes
of redundant meters.

In summary we have considered how we determine the localization and
determination of failure of the sensitive element. Next, | propose to consider the
determination of the error of meter readings for the above considered schemes of

redundant meters.

2.2. Orientation scheme of 6 sensitive elements on the dodecahedron
Consider pairs of triples of meters symmetric with respect to the faces of the

dodecahedron orientation of the base SC (Oxyz):
1) (4 1 L) 1 (L, 1, 1,);
2) (1 1, 1) 1 (L, 1, L),
3) (4 4, 1) 1 (L, 1, L);

32



A ) 1 (LG L)

Let us determine the error of the state vector Aw for the given pairs of triplets
of meters:

AO=m1-02,
(2.2.1)
where w1l is the state vector found with the help of 1st triple meters;
2 is the state vector obtained with the help of 2nd triple meters.
The error vector of the coordinate measuring system is equal to:
p=HAw®,
(2.2.2)

where p=[p1, P2,..., pn]", N number of meters.
To find the vector p, it is not important which pair of triple meters we will use.
To do this, we find Aw for the 1st pair of triple meters and, for example, the 4th pair
of triple meters.
For the three meters (7, 7, I;) we have:
cosy —siny 0

H,s=| O cosy -—siny|,
—sin vy 0 cosy

(2.2.3))
For a triple of meters (7, 1, I,), the matrix of guiding cosines of this triple of

meters H,,.has the form:

cosy siny O
H,,c=| 0 cosy siny
siny 0 cosy

(2.2.4)

The error of the state vector in the projections on the axis of the basic

coordinate system has the form:

2 H =2 2
CoS SNy COS Sin COoS
A = — IR Y 2RV
cos’y—sin®y = cos’y—sin®y ° cos’y-sin®y > cos’y+sin®y
sin ycosy siny

—— 1, - ——lg;
cos®y+sin®y * cosy+sindy °
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=2 2 H =2
Sin COoS SIn vy COS Sin
A®,, = Y L+ Y I, + yEOSY I, — Y I, -

n T cosPy—sin®y b ocosPy—sin®y ° cosPy—sin®y ° cosPy+sin’y ’

cos® y sin ycosy
- 3 3 |4+ 3 23 IG;
cos’y+sin®y *  cos®y+siny

- - 2 2 -
SIn vy COS SN CO0S Sin y COS
Ao, =— ot g Y Y SEVERY
cos’y+sin®y © cos’y—sin®y ° cos’y—sin®y > cos’y+sin’y
siny cos’ y

- - I, — - l..
cos®y+sin®y * cos®y+sindy °

(2.2.5)
Consider the next pair of triple meters, namely, the fourth (7, 1, 1,).
cosy —-siny 0
H,=| O cosy siny
sin vy 0 coSy
(2.2.6.)
For the three meters (7, I, I,) we obtain:
cosy siny 0
H,,s=| O cosy -—siny
—siny 0 coSy
(2.2.7.)

Find the error of the state vector in the projections on the axis of the basic

coordinate system:

34



cos” y sin y cosy sin®y cos® y
Ao, = — —— L, +— —— |, —— —— |y ——— —— |, +
cos’y—sin®y ~ cos’y—sin®y * cos’y—sin®y °  cos’y+sin’y
sin y cosy sin’y _
3 —— i+ — ——s;
cos®y+sin®y °  cos’y+siny
sin®y cos® y sin y cosy sin®y
Aoy, = 3 —— |+ — —— |, —— —— s ——— —— |, -
cos’y—sin®y * cos’y—sin®y * cos’y—sin®y ° cos’y+sin’y
cos® y sinycosy |
3 -3 |3_ 3 -3 |5’
cos’y+sin®y ° cos’y+sin’y
—sin ycosy sin®y cos® y sin y cosy
Aw, = — —— |, —— —— |, +— —— g ——— —— 1, +
cos’y—sin®y * cos’y—sin®y * cos’y—sin®y ° cos’y+sin®y
sin®y L cos’y |
cos®y+sin®y ° cos*y+siny >
(2.2.8.)
We show that the vector Am, and the vector Am, coincide.
Ao, =Aw, < Ao, —Aw, =0
(2.2.9.)

Find the projections of the state vector and get the relationship between the

projections of the vectors 7, and 7,,7,,1, :

] ] ] 1 ]
w,=————[2sinycosyl, —sin? vl —sin?yl_|= 2cosyl, —siny(l. +1
, 2sinycos2y[ ycosyl, Yl vl 2Coszy[ vy —siny(lg +15)]
o -1
* 2siny(l, - 1y)
1
0

z

~2cosy(l +1,)

(2.2.10.)
Then, substituting the obtained expressions for ®x, oy, ®z in relation, we

obtain:
=1, _th(ls +ls)

(2.2.11.)
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Then,

sin ycosy(l, —1,)+sin” y(I; +1,)=sin ycosy((l, —tey(ls +1,)) —1,)+sin > y(l; +1,) =
—sin? y(l; +1,)+sin* y(is +1,)=0.

(2.2.12.)
So from the transformations we get that Ao, =Ao,, .
Consider the expressions for the projections Ao, and Aw,,. Perform this
procedure by analogy with finding A®w,, and A®,,, that is, show that
A®,, —A®, =0
(2.2.13)

Then, substituting the obtained expressions for wx, oy, ®z in relation, we
obtain:

or what is the same

2, —1,)cos> y+ (1, +1,)sin YCOSY]'Loswl—sinw - yisin3 Y}:o
(2.2.14.)
Expression (2.2.14) is satisfied if there is a relation:
(1, —1,)cos® y+ (I +1,)sin ycosy =0
(2.2.15.)

Substituting the expression (2.2.11.) In the relation (2.2.15.), We obtain:

(I, =1,)cos® y+(I5 +1, )sin ycosy = (I, —tgy(l; +1,)—1,)cos® y + (I, +1, )sin ycosy =
=sin ycosy[—(l5 +1,)+ (1 +l6)]=CD.

(2.2.16.)
So, we get that Aw,, =A®,.
Consider the performance of relations Aw,, =A®,,.
or what is the same:
sin y cosy sin Y cosy 1 1
3 -3211—"2[2 3 -3+{ 3 E 3 -3:|><
Ccos” y—sm”y cos”y+sm 7y |cos y—sm Yy cOs y+sm”y
x(sin > y(1, +1,) +cos” y(l; — 1)) = 0.
(2.2.17))
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Let's express indications of sensitive elements 1,/,,7, through projections

1,,1,.1,. In this case we get:

ly=1, _th(ls +16);

[, =0, cosy-, sinyzco_l(l6 —1)- 1 5 [2cosysin yl, —sin? y(I, +l6)];
2smn y 2cos”y
. cosy 1
[,=0_cosy+w, smy=——-—I[—-1I)+
2 x Y ) Y 2Si1’l’Y(6 5) 200527

[2cosysin yl, —sin* y(l5 +1, )]

(2.2.18.)
Substituting expression (2.2.17) in relation (2.2.18), we obtain:

cosy cosy

. (ls _Zs)_tgyl4 _O'SthY(ls +lo) . (16 _Zs) +tgyl4 _O'SZng(ls +la)
2sin vy sin y

2sin ycosy 3 — + 3 -3 +
cos’y—sin’y cos’y+sin’y

1 1 ) . 1 1
+{ 3 — 3 — (2l4smzy—sm2tgy(ls+l6))+ 3 ——+ ; —— |X
cos’y—sin"y cos’y+siny cos’y—sin’y cos’y+sin’y

« cos? Y(ls _16): cos’ y(l6 —15)—28in2 yl, +sin’ ytgy(l5 +i6)+ 2.si1312 A, —sin’ ytgq((l5 +16)+ cos’ y(l5 —l())+
cos” y—sin” vy

N cos’ y(l() —1.)+2sin? yl, —sin’ ytgy(l5 +I())—2sin2 yl, +sin ? yrgy(l +l6)+ cos? y(/; —16) _0

cos’ y+sin’y
(2.2.19.)
Therefore, the above ratios show that Aw,, =A®,,. Thus, based on the above,
to find the error of the state vector A, we can consider one of a pair of triples of
sensitive elements symmetrically located relative to the axes of the basic coordinate
system Oxyz.
To find the vector p in (2.2.2) we will use the error of the vector of the state
of expression (2.2.18).
Taking into account the matrix of guiding cosines H for the vector p in the
projections on the sensitivity axis of the meters, we can write the following

expressions:
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p, =Aw cosy — Ao siny
p, =Aw cosy + Ao siny
p; =Aw cosy —Aw,siny
p, = Ao cosy + Ao, siny
ps = Aw,cosy — Aw siny

ps = Aw,cosy +Aw, siny
(2.2.20.)
Substitute (2.2.8) in (2.2.20) and find the projections of the vector p - the error
of the meters as a function of the vector | of the sensitive element:

A 2
sin “ ycosy 1
lg =1, ————————x

cos3y—sin3y| o sin ycos® y |
3 a3
cos®y +sin’y

cos*y+sin®y © T cosPy+sin’y ¢ T cos’y+sindy

1:|

x [(cos3 y —sin®y)I, — 2sin ycosy(l, cosy — I, sin y)}

cosy 2 : i2 cosy 2 ; 02
=———— " — (cos” yl, +sinycosyl, +sin“yl. ) - ———————|\I, cos” y —sinycosyl, +sin vyl J+
P, Cossy—sinsy( Yl Y Vs Ys) cos3y+sin3y(2 Y Y Y4 YG)
sin y _ 5 2 . sin y ., 2 .
——————(sin“yl, +cos” yl, +sin ycosyl, |- ———————1\sin“ yl, +cos” yl, —sin ycosyl, )=
COSS'Y—Sins’Y( Yl Y3 Y YS) COSs’Y-‘rSins’Y( YZ ’Y4 ’Y YB)
=, Jrﬁ[(cos3 y +sin® y)l, +2cosysin y(l, cosy + I, sin y)]:
cos® y—sin“y
cosy . ) . cosy . ) .
p,=—————Isin“ yl, + cos” yl, +sin ycosyl, |- —————1\l,sin“y+1, cos”y—1, sin ycosy)-
3 COSsy—SIn3'y( Y Vs Y 75) c053y+3|n3y(2 YTl Y—lgsINy Y)
sin vy . . ) sin vy . ., )
———————(sinycosyl, +1,sin*y+1. cos® y)+ —————————|-sin ycosyl, +sin“yl, +cos” vyl |=
COS3 —Sln 3 ( Y Y 1 3 ’Y 5 Y) COS3 +S|n 3 ( Y Y 2 Y 4 Y 6)
Y Y Y Y
1 . . .
=1, —ﬁ[(cos3 y —sin®y)I, — 2sin ycosy(l, cosy — 1, sin y)];
cos® y+sin”y
CoSy ., ) . cosy ., ) .
=—————+"—|sin°vyl, +cos” yl, +sinycosyl, ) - ———————II, sin“y +cos” yl, —sin ycosyl, |+
4 COSSW{—Sinsy( Y Vi3 Y Ys) COS3Y+Sin37(2 Y Yl Y Ye)
sin y ; 02 2 sin y ; a2 2
———————\l,;sinycosy +sin“ yl, + 1, cos® y)- —————(-sin ycosyl, +sin“ yl, + cos yl; )=
COS3y—Sinay(1 Y Y Yl T 15 Y) COS3y+Sin3y( Y Yl N Ye)
1 . . .
=—l, + ——————|(cos® y +sin ® y)I, + 2sin ycosy(l, sin y + I, cos
4 3 3 s ycosy(l,siny+1;cosy
cos® y—sin”y
sin y 2 : i2 sin y 2 : a2
=———— " \l,cos” y+sinycosyl, +sin“yl. J+ —————\I, cos“ y—sinycosyl, +sin“ yl, |+
p5 COS3’Y—Sin3Y(1 Y Y YS YS) COS3y+Sin3y<2 Y Y YA YG)
cosy . ., ) cosy . . )
— —\l,sinycosy+1,sin“y+1.cos* y)]- —————————(-sinycosyl, +sin“+yl, +cos” vyl )=
COSSY—SiI’I3'Y(1 Y Yrls Y+ls Y) COS3'Y+SiI’l3'Y( Y Yl Y4 Ye)
1 . . .
=, ———= |(cos®*y—sin®y)l. —2sin ycosvy(l, cosy —1, sin
5 cos3y+sin3y[( y e ycosy(l, cosy -1, Y)}
sin y ) . . sin y ) . .,
=————— " |l,cos” y+sinycosyl, +1. sin - |\l,cos“ y—sinycosyl, +sin“ yl, )+
Ps 0% v —sin® (1 Y yCcosyl; +1; 'Y) 05 v 1 s5in’ (2 Y ycosyl, 'Ye)
Y Y Y Y
cosy . . ) 1
—————————(-sinycosyl, +sin“yl, +cos“ vyl )=—I, + ———————x
c053y+sin3y( 1Y Tl )=l cos®y—sin®y

x [(0053 y +sin® y)e, +2sin ycosy(l, cosy + I sin y)]

(2.2.21)
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Therefore, in (2.2.21) we characterize the vector p of the errors of the meters
in the projections on the axis of the measuring coordinate system for the scheme of

orientation of the sensitive elements along the dodecahedron.

2.3.  Scheme of orientation of 6 sensing elements by forming cones

For this scheme of orientation of the sensitive element we will consider a pair of
triple meters, also symmetrically located relative to the axes of the basic coordinate
system, taking into account the property of independence of finding the error of the
state vector Am.

Consider a pair of triple meters (7, 7, ;) and (i, 1, I,).

Determine A® according to (2.2.1). We will use the matrix of guiding cosines H

(2.2.8):

V613 —43/3 0
Hy,,=|-6/6 —4/3/3 212
~J6/16 —+3/13 —+212
(2.2.22)
Projections of the vector A® on the axis of the basic coordinate system:
Ao, =6/6(21, 1, -1, +21, -1, -1, )
Aw, =313, +1, +1—1, — 1~ 1),
Aw. =~2/2(1, -1 —1, +1,).
(2.2.23)
Now, taking into account (1.2.8) and (2.2.23.) The projection of the vector p

on the axis of the measuring coordinate system have the following form:
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P =V6/300, —3/3Aw, =, +%[14 ~2(l, +1,}

p, =V6/6Aw, —V3/3M0, +42 /200, = {zz +§(15 ~2(, +13))};
Py =—6/6A0, —\3/3h0, +32 /200, =1, +§[z6 —2(L, +1)}
ps=—6/3A0, —3/3A0, = —[14 +%(11 ~2( +15))}

ps =—6/6Aw, —3/300, —2 /200, =1 +%[l2 —2(, +1,)}
pe =6/6Aw, —3 /300, —2/200, = —[l(, +§(z3 ~2(1, +;5))}

(2.2.24)
Consequently, the set of expressions (2.2.24) characterizes the vector p of

errors of meters in projections on the axes of the measuring coordinate system for

the orientation scheme of 6 sensitive elements along the formative cones.

2.4. Scheme of orientation of 5 sensing elements along the forming cones and

1 sensing element along the axis of symmetry
Consider a pair of triples of gauges (/, /, /) and (/, 7, [,) to find the vector ,

according to expression (2.2.1) and the matrix of guiding cosines[1]:

sin 0 —C0s0 0
H,,. =|—cosasin® —cos6 sin0Osina
CoS 2a. —c0sO —sin 2a.sin 0O

(2.2.25)
Where 6=54°44" o = 36°.

Find the inverse matrix

det, =sin? 0.cos(sin 2a + sin o + sin 2a.cos a — sin 0.cos 2a) = sin? 6 cos H(sin 20 + 2sin a);

I 1
135~ Sin? 0 cos O(sin 20+ 23in ) *
(sin 2a.+sin a)sin 6cos®  —sin 20.Sin 6 cosO —sin a.sin 6.cos6
x —sinasin®0 —sin 2a.sin” 0 —sin a.sin? 0
0 sin 6cosO(1—cos2a) —sin 6cosO(1+ cosa)

(2.2.25)
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0 -1 0
Hg,, =| —COsasin® —cos6 —sin asin 6
cos2asin® —cosO sin 2asin 0

(2.2.26)
det, = sin? 6(—sin 20.cos o + Sin 0.coSs 20.) = —sin asin*

—(sin 20+ sin a)sin Bcos®  sin 2asin 6 sin a.sin 6
sin a.sin? 0 0 0
(cosa +cos2a)sin 6cos® —cos2asin® —cosasin O

H=——r
sinasin“ 0
(2.2.27)

Using relations (2.2.25) and (2.2.27), find the vector projections on the axes

of the reference coordinate system Oxyz:

2 1), -2 [, —1
Aw, = 'l (2c0s0+1), ~2cosal; —1, —(2cosal, +1, —1, cosB(2coso +1))|;

sin O 2(coso+1)
Ao, = - 1 |/, +[;+2cosal, 1 cost |

cos0 2(cosa+1)
1—cos2a)l, — (1 l

Aw, = — 1_ (1= cos 20)/, (JFCOSOL)S+l(,(cosa+cos20c)cos(9—cos20cl4—cosod2 .

sin Osin o 2(1+cosa)

(2.2.28)
Find the projections of the vector p on the axes of the measuring system of
coordinates:
p, =1, +1, cos02cosa—2cosal, —I,;

5

» ——{l (4COSZa_l)_ll(cos20t(2cosa+1)+l)+4cosa(l—cosZa)l3—2(cosa+cosZa)ls}
2 = 2

2(cosa+1)
cosa(2cosa+1)+1
2(cosa+1)

py =L+, -1 + 2/, cos0O(cos 20 + cos );

pa=1,(4cos> a—1)+I; +1,2cosa—1, cosO(4cos” a+2cosa)+
N [,(I-cosa(2cosa+1))+2l,(cos2a+cosa)
2(1+cosa) ’

1+cos2a(2cosa+1)
2(cosa+1) ’

[, +15+2cosal,
Pe =1~ :
cos02(cosa+1)

ps=1,+1, -2l cosO+]

(2.2.29)
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Consequently, the expression (2.2.29) characterizing the vector p in
projections on the axes of the measuring coordinate system is obtained. It is not
difficult to notice the connection with the readings of the most sensitive elements in

these expressions.

2.5.  Scheme of orientation of the 5 sensing elements along the forming cones
Consider a pair of triples of gauges in which one of the gauges is "common,"
for example (7,,1,,0,) 1 1,,1,,1,).
Let's show that if there is a common gauge in the triplet, two of the three
projections of the state vector error A® on the base coordinate system axes will be
proportional, which corresponds to the gauge proportionality theorem.

Given the matrix of directional cosines, find the inverse matrices H,}, i
-1 .
H1,4,5 )

sin —c0s0 0
H,,, =| cos2asin® —cosO sin 2asin 6
—cosasin® —cosO  sinasin 0

(2.2.30)
sin 0 —cos6 0
H,,s =| —cosasin® —cos® —sinasino
cos2asin® —cos® —sin 2asin 6
(2.2.31)
Where 0=54°44";0.= 36".
Find the inverse matrices:
det, = det, = det =sin? 0 cosO(sin 3a + sin 20— sin o)
(—sin o+ sin 2a) sin B¢cos 6 sin a.sin 6.¢cos 6 —sin 2a.sin 6cos0
H,=— —sin 3usin? sin asin? 0 —sin 2a.sin? 0

det . . :
—(cosa +cos2a)sin 6¢cosO  sin BcosB(L+cosa) —sin BcosH(L— cos2a)

(2.2.32)
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(=sin a+sin 2a)sin 6¢cos®  —sin 2asin 6coso sin a.sin 6.cos6
H=— —sin 3o:sin? 0 —sin 2a:sin? 0 sin a:sin? @
(cosa +cos2a)sin 6cosO  sin BcosO(L—cos2a) —sin BcosH(L+cosa)

(2.2.33)
Find the projections of the vector on the axes of the reference coordinate
system:
sinBcosO, . . . .
Aw, =——""]I, sin o.— I, sin 20+, sin 20— [, sin a;
X det 3 5
sin > 0 . . . )
Ao, = ™ [l2 sin o.—/; sm 20+ /, sin 20—/, sin a];
i e
Ao = smz—ctose [— 2/, (cos2a+cosa) + (1+cosa)(/, +/5) —(1—cos2a)(l; + 14)1
e

(2.2.34)

It is easy to see that in the relation (2.2.34.): Aw, =196 Aw, , the two

projections X, @y are proportional.
By its physical nature, the vector p characterizes the deviation of the vector

|, that is, some error in the readings of the sensitive element /..
In other words, if the readings of the sensing element have no error, then p. =0

It is not difficult to express the readings of one sensitive element because of the
readings of other sensitive elements of the chosen orientation scheme. Then the error
of the given sensitive element will be characterized by the difference between the
signal of the sensitive element and the function from other sensitive elements of the
given scheme. Let us consider the proposed approach of finding the errors p, in more
detail. We will consider the projection on the z-axis, i.e. @, as a finding of the state
vector projection «_, since the relation (2.2.34.) is valid for this circuit.
For the expression when the common sensitive element is the first element,
we get:
o. = f,(,,L,,1) = f,,1,.L)
(2.2.35)

From where:
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! [(1, +1,)A=cos2a) — (I, + I )1+ cosa)| = f(L,,1,,1,,15)

' D(cos 20+ cos )

(2.2.36)

Then:

p =1 - f(,1,.1,,1)

(2.2.36)

For the expression when the common sensitive element is the second element,

we get:
o. = fi(l,,15,1,) = f,(,15,1)

(2.2.37)

From where:

L, =1, +(,~1,)2cos,
P, =L = fs.1.1,)

(2.2.38)

For the expression when the common sensitive element is the third element,

we get:
o, = fi(l5,1,,1) = f,(5.1,,1,)

(2.2.39)

From where:

=L x
sin 3o+ sin 20 + sin a(l — cos 2a)
x [I, (sin 30+ sin 20— sin o) + 2sin o7, (1+ cos &) —, (cos a + cos 2a)) |,
ps=L—fU,.1,1)

(2.2.40.)

For the expression when the common sensitive element is the fourth element,
we get:
o, = f,,,1,1)1,U,,1,,L15)
(2.2.41))
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From where:

1
| = X
* sin 3o+ sin 20 + sin o1 — cos 2a)

x [13 (sin 3a.+sin 20 —sin o) + 2sin a(/s (1 +cosa) -/, (cosa + cos 2(1))],

p4 :l4 _f(l3’15911)

(2.2.42.)

For an expression where the common sensitive element is the fifth element,

we get:
o, = f,(,1,,1,) = f,(,1,,1,)

(2.2.43)

From where:

I, =1, +2cosa(l, —1,),
ps =1s = [y, 1,,15)

(2.2.44)

So, we got expressions (2.2.36), (2.2.38), (2.2.40), (2.2.42), (2.2.44) and
(2.2.46), characterizing a vector of gauges errors in projections on measuring system

coordinate axes.

2.6. Conclusion

Motion properties in control systems are determined using accelerometers or
angular velocity meters. The main parameters of such meters include the redundancy
orator of the measuring instrument, which is designed to evaluate the effectiveness
of the use of redundancy. The use of redundancy allows to reduce the measurement
error and also to increase the reliability, because if one of the sensors fails, the
measuring device will continue its work with an increased error instead of complete
failure.

To build a vector space, there are four variants of positioning sensing

elements, the figure of symmetry for which a cone is used, their orientation occurs
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along the forming cones. Sensing elements are located on the forming cones at
intervals equal to the value of a certain angle, and can also be located on and off the
axis of symmetry.

One of variants of construction of an excessive vector gauge is its construction
with use of a figure of symmetry - a cone. To create such vector space there are four
variants of arrangement of sensors, orientation of which takes place according to the
forming cones. Sensitive elements are located on the formative cones with an
interval equal to the value of a certain angle, and can also be located on and off the

axis of symmetry.
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CHAPTER 3

TECHNOLOGICAL FEATURES AND EXAMPLES OF MODERN
MEMS GYROSCOPES

3.1. Analog Devices

Analog Devices is a leader in the development of MEMS gyroscopes, the
main representatives of which are chamberton gyroscopes of different types.

Its sensors are represented in the market by iIMEMS® and iSensor™ Gyros
technologies, which constitute the main part of MEMS gyroscopes for angular
velocity measurement. The IMEMS technology concentrates on the placement of the
micromechanical sensor structure and processing circuitry on a single chip [9].

Gyroscopes using this technology are represented by the ADXRS family,

representative images are shown in Fig. 3.1.1.

A

L

-
-
L 3
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o

Fig. 3.1.1. AXDRS type gyroscopic speed meter manufactured by Analog
Devices

3.2. i1Sensor Gyros
The special feature of the iSensor Gyros technology is the built-in signal

control and processing. It is implemented in the ADIS Gyros sensor line.
Both technologies are performed on a single crystal, which houses the

integrated circuit for the specific implementation and the mechanical part. Due to
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the fact that the mass is connected to a polycrystalline frame, resonance occurs in
the same direction. Capacitive sensors measure the displacement of the resonating
mass and the frame, which is due to the Coriolis force.

All gyroscopes in the ADXRS family are designed to measure angular
velocity. They are used for safety, navigation, stabilization and inertial
measurements. These gyroscopes feature a capacitive measurement capability of
12*10721F with a deviation of 16*10~*E. This family is also characterized by
increased resistance to vibration and overloads up to 1 g. Two independent
resonators are used for angular velocity measurements, which makes it possible to
ignore external accelerations. The measurement results are two singals of different
polarity, the difference of which is proportional to the angular velocity.

The AIDS iSensor line of gyroscopes are designed to improve the
performance of the ADXRS series by adding signal processing functionality such as
programming, power management, adding digital input or input, adding additional
ASIC interfaces, etc. These sensors have a wide range of applications in navigation,
security, unmanned systems, autopilot systems, communication systems, etc.

One of the representatives of this line is ADIS16060, the scheme of which is
shown in Fig. 3.2.1. In which the mechanical signal after demodulation is fed to the
SPI interface that provides digital data proportional to angular velocity. The unified
construction of the sensor and signal processing means allows to increase the
resistance of the sensor to external noise. The SPI interface also provides external

temperature measurement data. [10].
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NOTES

1.NC = NO CONNECT
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LAYOUT VIEW, WHICH REPRESENTS THE PIN CONFIGURATION, F THE PACKAGE IS LOOKED
THROUGH FROM THE TOP. THiS CONFIGURATION 1S PROVIDED FOR PCB LAYOUT PURPOSES.

Fig. 3.2.1. ADIS16060 gyro circuit with SPI interface

3.3. BEI Systron Donner

BEI Systron Donner is the main developer and supplier of gyroscopes for
automobile transport. The sensors are produced on the basis of all-quartz inertial
sensor (Fig. 3.3.1.). These MEMS gyroscopes are based on vibrating tuning forks
and piezoelectric processing principles. Due to the use of piezoelectric quartz
material, there is a simplification of the sensor element capable of operating in wear-
free modes, thus providing increased reliability, stability and durability.

Illustrations of the sensing element (Fig.3.3.1), the finished enclosure
(Fig.3.3.2) and the modular version (Fig.3.3.3) are shown below[11].

Fig.3.3.1. Systron Donner quartz sensing element
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Fig.3.3.2. Enclosure design

Fig.3.3.3. Modular design

3.4. Silicon Sensing Systems
Silicon Sensing Systems gyroscopes use the Silicon Vibrating

Structure Gyroscope (SiVSG) technology to create a vibration ring whose
mode changes due to the Coriolis force (Fig. 3.4.1). The ring resonator is
supplemented with a central magnet to create electromagnetic resonance.
A current is transmitted to the supports of the ring which creates
resonance. The motion of the ring is determined by the voltage applied to

the supports[12].
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Fig. 3.4.1. Resonating ring volume, gyroscope manufactured by

Silicon Sensing Systems

Fig. 3.4.2. A gyroscope design with a permanent magnet mounted

on top of the sensor

3.5. Melexis

The MLX90609 gyroscope from Melexis.

This sensor consists of a silicon micromechanical part and a signal processing
circuit. The manufacturing is based on a process called SOI (Silicon on Insulator).
Each part of the gyro structure consists of a two frame silicon based gyroscope. A
special feature of this gyroscope is the ability to generate two types of signal: digital
and analog, proportional to angular velocity. The gyroscope meter has the following

applications: navigation, stabilization and robotics[13].

o1



Fig. 3.5.1. The MLX90609 gyroscope is manufactured by Melexis

3.6. Conclusions on the structure and characteristics of modern MEMS
gyroscopes

Gyroscopes occupy a significant portion of the MEMS market in the
integrated sensor industry. Applications do not end with navigation and are
widely used in medical, industrial, security, communications, and
stabilization systems.

The MEMS gyro consists of a resonator mounted on the sensing axis
and a micro sensor mounted on the measuring axis. The characteristics of the
gyroscope are mostly dependent on possible deviations during manufacturing
and design of the layout, linear acceleration and temperature.

Micromechanical sensors, discussed in the previous subsection, form
the basis for the development of new modifications of MEMS gyroscopes.
The most relevant for the present are capacitive vibration gyroscopes, the
operation of which is based on the Coriolis effect.
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CONCLUSION

In the course of the thesis an analysis of implementations of
micromechanical gyroscopes with angular velocity sensors was carried out.
Traditional resonant gyroscopes occupy most of the market, since their cost is
the most optimal, given their characteristics.

Manufacturers of gyroscopes offer a wide choice of layout of elements
of micromechanical sensors. Thus, Analog Devices offers gyroscopes with
placement of both the sensor and the system for processing its data on one
chip, such layout allows to avoid external noise.

A surplus of micro mechanical gyroscopes is necessary to increase the
reliability and accuracy of the measurement, this is done by increasing the
number of sensors. Thus, if one of the sensors fails, the measuring device will

still work, but with less accuracy.
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