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АНОТАЦІЯ 

 

Пояснювальна записка до дипломної роботи «Ансамблевий 

классифікатор на основі бустінгу»: _____ с., ___ рис., _____ табл.  

Ключові слова: АДА БУСТ, КОНТРОЛЬОВАНЕ НАВЧАННЯ, 

НАПІВКОНТРОЛЬОВАНЕ НАВЧАННЯ, АНСАМБЛЬ, БУСТІНГ, 

КЛАСИФІКАТОР, ПРОГРАМНИЙ ІНТЕРФЕЙС 

Предмет дослідження - структурно-параметричний синтез ансамблю 

нейронних мереж з частковим залученням вчителя. 

Мета роботи - отримання метрик та результатів вибірки ансамблевого 

підходу при побудові класифікаторів на основі використання нейронних 

мереж. 

Метод дослідження - класифікація підходів та методів навчання на основі 

бустінгу, Ада Бусту з частковим залученням вчителя. Розробка програмного 

забезпечення з підключенням метрик. Включивши пари алгоритмів для 

побудови мічених та немічених вибірок, буде отримано набір результатів з 

додатковою інформацією для кожної нової вибірки та бустінгового методу 

класифікації. 

За допомогою рішення та результатів алгоритму можна прискорити та 

вдосконалити завдання програмування з великим стеком вхідних даних. Це 

дозволить отримати унікальний швидкодіючий метод з різними типами 

параметрів. 

Проект розробки включає нові пакети даних та бібліотеки для візуалізації 

програмної реалізації вибірки даних. 

 

 

 

 

 

 



ANNOTATION 

 

Explanatory note to the diploma work «Ensemble Classifier Based on 

Boosting»: _____ pages.,  ___ figure.,   _____ table.  

Keywords: SSL, ADA BOOST, SUPERVISED, SEMI-SUPERVISED; 

ENSEMBLE, BOOSTING, CLASSIFICATOR, PROGRAMMING INTERFACE 

The subject of research - Structural parametric synthesis of an ensemble of 

neural networks with partial teacher involvement. 

The purpose of the work is to obtain the metrics and results of the ensemble 

approach sampling in the construction of classifiers based on the use of neural 

networks. 

Research method - classification of approaches and methods of teaching based 

on boosting, Ada Boost with partial consideration of the teacher. Software 

development with metrics connection. By including pairs of algorithms to construct 

labeled and unlabeled samples, a set of results will be obtained with additional 

information for each new set and boosting classification method. 

With solution and results algorithm can boost and improve programming tasks 

with large stack of data inputs. This can obtain a unique quick-stage method with 

different type of parameters. 

The development project includes the latest data packages and libraries for 

better software visualization implementation of the sample data. 

 

 

 

 

 

 

 



 

 

CONTENT 

GLOSSARY………………………………………………………………………11 

INTRODUCTION………………………………………………………………...12 

CHAPTER I. NEURAL NETWORKS AND THEIR CHARACTERISTICS…… 

 1.1 Neural network structure ………………………………………………….…13 

 1.2 Classification of neural network training methods …………………………..16 

 1.3 Semi-supervised learning of neural networks ………………………………..19 

 1.4 Assumptions used to build networks with SSL……………………………..…. 

 1.5 Semi-supervised learning classification of neural network approaches……….. 

CHAPTER 2. SSL NEURAL NETWORK TRAINING……………….…………21 

2.1 Problem statement and data sampling …………………………………….…..21 

2.2 Classification of approaches ………………………………………………….22 

2.3 SSL algorithms for neural networks…………………………..………………28 

CHAPTER 3. STRUCTURALLY PARAMETRIC SYNTHESIS OF AN 

ENSEMBLE OF NEURAL NETWORKS SEMI-SUPERVISED 

LEARNING……………………………………………………………………....60 

3.1 An ensemble approach in the construction of neural network-based 

classifiers……………………………………………………………………….…60 

3.2 A review of neural network ensemble combining-based approaches …….….63 

3.3 Synthesis of algorithm in the construction of an ensemble of neural networks 

with SSL based on boosting ………………………………….……..……………76 

3.4 Research results……………………………………………………………….78 

CHAPTER 4. PYTHON BASED SOFTWARE DEVELOPMENT ……….…….81 

4.1 Implementation of the program's lock scheme ……………………………… 81 

4.2 User interface with selection of the desired algorithmisation …………………82 

4.3 Examples for solving the derived metric problem ………………………..…..86 

CHAPTER 5. PROTECTION OF THE NATURAL ENVIRONMENT…………90 

5.1 Application UAVs for protection nature………………………………………91 

5.2 Waste control………………………………………………………………….92 

5.3 Use of UAVs in environmental monitoring………………………….………..93 



 

 

CHAPTER 6. LABOR PROTECTION…………………………………………...98 

6.1 System of labor protection measures…………………………………………..98 

6.2 Analysis of working conditions at the workplace Organization of the 

workplace…………………………………………………………………………99 

6.3 Analysis of harmful and dangerous production factors…………………… ..102 

6.4 Development of labor protection measures…………………………………..103 

6.5 Fire safety of the production premises……………………………………… 104 

6.6 Conclusions from the section………………………………………………...106 

CONCLUSIONS………………………………………………………...…… ..  108 

LIST OF REFERENCES………………………………………………………...111 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

GLOSSARY 

 

SSL – Semi Supervised Learning 

UL – Unsupervised Learning 

CNN – Convolutional Neural Network 

AB – Ada Boost 

AI – Artificial Intelligence 

ML – Machine Learning 

RPA – Robot-assisted Process Automation 

LR – Logistic Regression 

NN – Neural Network 

SVM – Support Vector Machines 

RF – Random Forest 

KF – Kernel Factory 

RNN – Residual Neural Network 

SAB – Stochastic Adaptive Boosting 

SQL – Structured Query Language 

SSMB – Semi-Supervised Margin Boost 

TGDS – Three-Gaussian Data Set 

GB – Gradient Boost 

ANN – Artificial Neural Network 

EM - Expectation Maximization 

TSVM - Transductive Support Vector Machines 

PU – Positive and Unlabeled learning 

TSNE - Distributed Stochastic Neighbor Embedding 

 

 



 

 

INTRODUCTION 

 

This paper considers the construction of a classifier based on neural networks, 

nowadays AI is a major global trend, as an element of AI, as a rule, an artificial 

neural network is used. One of the main tasks that solves the neural network is the 

problem of classification. For a neural network to become a tool, it must be trained. 

To train a neural network you must use a training sample. Since the marked training 

sample is expensive, the work uses semi-supervised learning, to solve the problem 

we use ensemble approach based on boosting. 

Speaking of unlabeled data, we can move on to the topic of semi-supervised 

learning (SSL). This is due to the need to process hard-to-access, limited data. 

Despite many problems, the first algorithms with similar structures have proven 

successful on a number of basic tasks in applications, conducting functional testing 

experiments in AI testing. There are enough variations to choose marking, where 

training takes place on a different set of information, the possible validation 

eliminates the need for robust method comparison. Typical areas where this occurs 

are speech processing (due to slow transcription), text categorization.  

Choosing labeled and unlabeled data to improve computational power leads to 

the conclusion that semi-supervised learning can be better than teacher-assisted 

learning. Also, it can be on an equal efficiency factor as supervised learning. 

Neural networks represent global trends in the fields of language search, 

machine vision with great cost and efficiency. The use of "Hyper automation" allows 

the necessary tasks to be processed to introduce speedy and simplified task 

execution. Big data involves the introduction of multi-threading, something that 

large companies in the artificial intelligence industry are doing.  

Data analysis is actively used in building applications, engineering as well as 

manufacturing architecture. This is done to learn certain actions that will help 

improve the profitability of the company in the future. Specialists include a couple 

of key areas of relevance between now and 2023: 

- Robot-assisted process automation (RPA) 



 

 

- Artificial intelligence and machine learning (AI\ML) 

- Cognitive research in process automation. 

- Using processes for point-to-point control in software (iBPMS) 

The above-mentioned methods are actively used in pairs, as it can significantly 

improve the tasks of productivity, data processing, obtaining more accurate 

information. Machine learning solves many different problems: saving resources, 

speeding up decision-making for different areas of business, increased demand for 

innovation, such as self-managing bots.  

Machine learning is also being implemented for smart data warehouses, 

information security, implying the use of mathematical models to support learning 

in various ways. The task of prediction is also opening up in new professions, such 

as neuro-design.  

It is worth highlighting the current directions for building architectures, five 

directions can be taken as a basis: 

- The Perceptron, or network with multiple layers, which is a set of 

transformations.  

- Allocation of neural network memory for taking an arbitrary piece of data, 

especially recurrent networks.  

- ResNet networks with accelerated access, which is in fact a simplified and 

improved version of a convolutional neural network.  

- Artificial Intelligence with convolution is used to partially identify an overall 

picture or object, connecting it to the adjacent part speeding up processing. 
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CHAPTER 1. NEURAL NETWORKS AND THEIR 

CHARACTERISTICS. 

1.1 Neural network structure. 

The main prospect of the neural network is the ability to self-learn depending 

on the conditions, as a result of which it is possible to improve the performance. 

If we have an idealized case, then with each iterative pass the output algorithm 

should receive the necessary amount of knowledge from the environment in which 

it works.    

The learning process is usually divided into many structures, it all depends 

on the chosen algorithm and learning stages. In this paper we investigate the 

accuracy with combining variations of the neural network.  

Each self-learning unit has its own parameters that are rebuilt by simulating 

the environment in which the network is included. It is the way of building the 

parameters that determines how the training will be carried out. 

We take into account the following standard for the sequence of training 

organization: 

- The neural network includes "stimuli" from the external environment; 

- Free parameters of the neural network can change as a result of this; 

- When modifying the external structure, the neural network can respond 

to stimuli in a different way. 

At the heart of learning, there is no unique algorithm for learning. By 

creating it and getting a certain set of data and parameters, you can highlight a 

certain advantage and goal with the results of work. 

There are 4 main structures for training: 

-    Error correction based; 

-    competitive learning and Boltzmann learning; 

 



 

 

-    Hebbian learning; 

-    When using memory. 

Construction of a neuron on the basis of k-unique computable node: 

At the output node of the neural fence, you can pass the first rule that uses 

learning. This unit k, is triggered when controlling the signal vector y(n). 

Depending on the number of hidden neuron zones, data from the input vector will 

be obtained, which in turn are transmitted to the initial nodes. Discrete time is 

defined as n, or it is the ordinal number of the iterative pass of the process of 

setting the synaptic weight of neuron k. 

To equalize the results of the expected output dk(n), it is necessary to obtain 

the output signal k, which in the final case is yk(n). 

 

 

Figure 1.1 Block diagram for the output node of the neural network 

 

 

Figure 1.2 Illustration of the neuron signal transmission graph 

 



 

In the case of memory-based learning, there is a need to store data in a 

repository where the examples for learning are properly located.  

{(Yi, Di)}n, i=1  

Yi is the input vector  

Di - the corresponding signal at the output 

Moreover, you can take a binary distribution for recognition or classification 

into several classes. From the basics of binarity, the variable outcomes can take 

the value 0 or -1 for the first class, and 0 for the last.  

There are two basic rules for constructing this type of learning: 

- Mutual inclusion of the parameter, to find the outer zone of the vector. 

- In case of finding this zone of the trial vector, use the learning rule. 

For the simplest case with memory-based use, the NNR rule is set - Nearest 

Neighbor Rule. The example that is closest to the test one is added to the location 

zone. 

 

Figure 1.3 Graphical representation of the region with values 0, 1 and the 

trial vector d. 

 

Hebb's doctrine can be stated as a certain axiom:  



 

- If one point is permanently, or temporarily, close enough to another point 

to cause it to be excited, after a certain period of time, a modification of both or 

one point can be seen. 

Knowing this, we can assume constant training based on this rule. 

Below is a table 1.1 of Hebb's synapse: 

Qualities Meanings 

Dependence on the 

time period 

mechanism 

• Depending on the type of signal, you can find out the 

accuracy of the time difference of the signal, namely pre 

and post synapses. 

Local mechanism • Based on the case of a node of data that is gradually 

transmitted, we can assume that all elements of the 

system are in space-time proximity. 

Interactivity of the 

mechanism 

• By examining the limbs of the synapse, Hebb signals 

can be determined. Depending on the species, 

interactivity can be either static or deterministic. 

Correlational 

mechanism 

• As a condition for modifying this connection, to 

improve the algorithm, it is necessary to have the same 

response time on both signals 

 

1.2 Classification of neural network training methods 

Human vision is an active process by which we sequentially scan the optical 

environment. It is an intelligent, task-specific matrix that uses a small area with a 

large, low-resolution environment. We expect that future advances in image 

processing will come from systems that learn from one device to another and 

combines convolutional networks and SNNs that use reinforcement learning to 

decide where to look. To decide where to look. Systems combining deep learning 

and reinforcement learning are still in their infancy. 



 

Systems using reinforcement learning are still in their infancy, but are 

already outperforming passive vision systems. Passive vision systems show 

impressive results in classification tasks leads to the ability to play a wide range 

of video games. 

Natural language understanding is another area where deep learning will 

have a big impact in the coming years. This is another area where deep learning 

will have a major impact in the coming years. Expected systems using SNR to 

understand sentences or entire documents in the future will improve in the future 

if an electoral strategy is used paying attention one piece at a time. 

Ultimately, there will be significant advances in artificial intelligence 

systems that combine representational learning: 

- It enables rule-based manipulation of symbolic information. 

- Have expressions through operations on large vectors. 

 

Figure 1.4 Neural network recognition process with logic output 

 

One of the most popular strategies for improving classification performance 

is the use of data variety. Even if a particular learner performs better than other 

learners on many tasks. 

In the case of the Random Forest, you still get: 

- Algorithms for each new task. No algorithm is optimal for all possible data 

sets, so there is no such thing as a free lunch. Strategy 

- Evaluating more than one algorithm and selecting the best performing one 

is called Single Best. 



 

 - It is one of the simplest but most reliable strategies and is therefore used 

industrially.  

- Referenced strategies. However, it should be noted that Single Best is much 

more complex than simply selecting an algorithm. 

- Implementing a data-driven ensemble technique. To be able to do this, a 

high level of experience is required to implement specific algorithms correctly. 

The complexity of Single Best is increased by the fact that expert knowledge 

is required for all algorithms in the benchmark. Despite the difficulties associated 

with implementing the Single Best method, it is the preferred option for improving 

classification performance in industrial applications. 

While the focus of this paper is on diversity generation mechanisms, an 

important part of ensemble design is the combination rule. In the literature, there 

are various fusion methods that depend on the results of the base classifiers. While 

there is a kind of voting is the most widely used method in classifier fusion, but it 

may not always be the best option. Since only the output of class labels is used, a 

lot of information is lost.  

Confidences or posteriori probabilities contain the largest amount of 

information and reduces the generalization error. Therefore, in our hybrid design, 

we calibrate all our models to ensure that we have a measurement-level output for 

each base classifier. As a result, we can combine our classifiers using a weighted 

average. In this study, we restrict ourselves to linear combinations as we do not 

need to estimate the number of parameters there are a number of factors that need 

to be estimated to make the analysis manageable. 

For the calculation of weights, we can resort to fixed rules or trained weights. 

While fixed rules offer very low time complexity and simplicity, their results are 

likely to be worse than trained rules. The simplest way to combine different 

metrics is to take the simple average. The performance of this simple method is 

usually close to that of the weighted average, but in many cases the weighted 

average can outperform the simple average. 



 

Simple average in performance or authority-based weighting, the weight of 

each classifier is proportional to its performance on a validation set. This method 

usually produces better results, but at the cost of more computational effort. 

 

1.3. Semi-supervised learning of neural networks 

Most of the generated data is uncategorized or unlabeled, thereby making it 

difficult to use supervised approaches to automate applications like personal news 

filtering, email spam filtering, and document and image classification. Typically, 

there is only a small amount of labeled data available, for example, based on 

which articles a user mark interesting, or which email he marks as spam, but there 

is a huge amount of data that has not been marked. As a result, there is an immense 

need for algorithms that can utilize the small amount of labeled data, combined 

with the large amount of unlabeled data to build efficient classification systems. 

Existing semi-supervised classification algorithms may be classified into 

two categories based on their underlying assumptions. An algorithm is said to 

satisfy the manifold assumption if it utilizes the fact that the data lie on a low- 

dimensional manifold in the input space. Usually, the underlying geometry 

of the data is captured by representing the data as a graph, with samples as the 

vertices, and the pairwise similarities between the samples as edge-weights. 

Usually, machine learning has been divided into two categories. Into rules of 

supervised and unsupervised learning. Supervised learning finds a rule that can 

be used to predict the relationship between inputs and outputs. Finite instances in 

the form of input-output pairs, unsupervised learning in finding a structure of 

interest as the basis for a data set.  

Mostly, SL has many Examples of training that produces a satisfactory 

learner. a topic generalization ability. Acquiring training is not trivial for the SL, 

who should comment on examples of enter the data with the appropriate labels. 

In many practical applications range from data mining to machine performance. 



 

However, input data annotations are often difficult, costly and time 

consuming, and in particular have to be done manually by experts. On the other 

hand, there is often a large amount of undisclosed data available. In order to use 

undisclosed data, semi-Supervised learning has become the new paradigm 

combination with a large number of unscored points with a small number of 

annotated examples to create a better learner. Because SSL requires less human 

effort, only greater accuracy can be achieved, because it is based on unpublished 

data largely support SL has attracted the attention of the machine learning 

community. 

So become the main solution obtained and develop an optimization 

algorithm taking into account that all the technical information needed. First, we 

present the initial setup initial unlabeled data labeling, training and the first 

classifier and a nonlinear function producing density estimate. Then, the semi-

supervised boosting algorithm for binary classification and explaining this 

algorithm with an example commonly used component cost function AdaBoost, 

ASSEMBLE and many other boosting algorithms. 

SSL is a learning paradigm associated with constructing models that use both 

labeled and unlabeled data. SSL methods can improve learning performance by 

using additional unlabeled instances compared to supervised learning algorithms, 

which can use only labeled data. It is easy to obtain SSL algorithms by extending 

supervised learning algorithms or unsupervised learning algorithms. SSL 

algorithms provide a way to explore the latent patterns from unlabeled examples, 

alleviating the need for a large number of labels. Depending on the key objective 

function of the systems, one may have a semi-supervised classification, a semi-

supervised clustering, or a semi-supervised regression. 

From that, following conditions are true: 

- Semi-supervised classification. Given a training dataset that consists of 

both labeled instances and unlabeled instances, semi-supervised classification 



 

aims to train a classifier from both the labeled and unlabeled data, such that it is 

better than the supervised classifier trained only on the labeled data. 

- Semi-supervised clustering. Given a training dataset that consists of 

unlabeled instances, and some supervised information about the clusters, the goal 

of semi-supervised clustering is to obtain better clustering than the clustering from 

unlabeled data alone. Semi-supervised clustering is also known as constrained 

clustering. 

- Semi-supervised regression. Given a training dataset that consists of both 

labeled instances and unlabeled instances, the goal of semi-supervised regression 

is to improve the performance of a regression algorithm from a regression 

algorithm with labeled data alone, which predicts a real-valued output instead of 

a class label. 

 

Figure 1.5 taxonomy of deep semi-supervised learning methods based on 

loss function and model design. 

 

Looking at the classical SSL methods, generative models assume a model 

p(x,y) = p(y)p(x|y), where the density function p(x|y) is an identifiable 

distribution, for example, polynomial, Gaussian mixture distribution, etc., and the 

uncertainty is the parameters of p(x|y). Generative models can be optimized by 

using iterative algorithms. This applies EM algorithm for classification. They 

compute the parameters of p(x|y) and then classify unlabeled instances according 

to the Bayesian full probability formula. Moreover, generative models are harsh 



 

on some assumptions. Once the hypothetical p(x|y) is poorly matched with the 

actual distribution, it can lead to classifier performance degradation. 

A representative example following the low-density separation principle is 

Transductive Support Vector Machines (TSVMs). As regular SVMs, TSVMs 

optimize the gap between decision boundaries and data points, and then expand 

this gap based on the distance from unlabeled data to the decision margin. To 

address the corresponding non-convex optimization problem, a number of 

optimization algorithms have been proposed. For instance, a smooth loss function 

substitutes the hinge loss of the TSVM, and for the decision boundary in a low-

density space, a gradient descent technique may be used. 

Graph-based methods rely on the geometry of the data induced by both 

labeled and unlabeled examples. This geometry is represented by an empirical 

graph G = (V, E), where nodes V represent the training data points with 

|V| = n and edges E represent similarities between the points. By exploiting 

the graph or manifold structure of data, it is possible to learn with very few labels 

to propagate information. For example, Label propagation is to predict the label 

information of unlabeled nodes from labeled nodes. Each node label 

propagates to its neighbors according to the similarity.  

At each step of node propagation, each node updates its label according to 

its neighbors’ label information. In the label propagation label, the label of the 

labeled data is fixed so that it propagates the label to the unlabeled data. The label 

propagation method can be applied to deep learning. set in strong supervision. 

There are three types of weakly supervised data: incomplete supervised data, 

inexact supervised data, and inaccurate supervised data. Incomplete supervised 

data means only a subset of training data is labeled. In this case, representative 

approaches are SSL and domain adaptation. Inexact supervised data suggests that 

the labels of training examples are coarse-grained, e.g., in the scenario of multi-

instance learning.   Inaccurate supervised data means that the given labels are not 

always ground-truth, such as in the situation of label noise learning. 



 

Positive and unlabeled (PU) learning is a variant of positive and negative 

binary classification, where the training data consists of positive samples and 

unlabeled samples. Each unlabeled instance can be either the positive and 

negative class. During the training procedure, only positive samples and unlabeled 

samples are available. We can think of PU learning as a special case of SSL. 

Meta-learning. Meta-learning, also known as “learning to learn”, aims to 

learn new skills or adapt to new tasks rapidly with previous knowledge and a few 

trainings example. It is well known that a good machine learning model often 

requires a large number of samples for training. The meta-learning model is 

expected to adapt and generalize to new environments that have been encountered 

during the training process. The adaptation process is essentially a mini learning 

session that occurs during the test but has limited exposure to new task 

configurations. Eventually, the adapted model can be trained on various learning 

tasks and optimized on the distribution of functions, including potentially unseen 

tasks. 

Self-supervised learning. Self-supervised learning has gained popularity due 

to its ability to prevent the expense of annotating large-scale datasets. It can 

leverage input data as supervision and use the learned feature representations for 

many downstream tasks. In this sense, self-supervised learning meets our 

expectations for efficient learning systems with fewer labels, fewer samples, or 

fewer trials. Since there is no manual label involved, self-supervised learning can 

be regarded as a branch of unsupervised learning. 

 

1.4. Assumptions used to build networks with SSL 

In the case of SSL, the implicit assumption is the example with the i.e., there 

are few labeled examples, but many unlabeled points in the training set. Unlabeled 

points in the training set. Therefore, it is very important it is likely that many 

unlabeled points have no labeled points at all in their neighborhood. Moreover, 



 

defined in the point, suggests that we should consider the dis in labeling of 

unlabeled points. 

In the clustering tends to be more reliable than in the case of the 

neighborhood of the unlabeled point in particular as the unlabeled point i is in a 

region with low data density. Consequently, all density-based clustering 

algorithms, can be used to group the training data into clusters. 

There are some assumptions with explanations notation for the better 

understanding in the table 1.2 below: 

Variable Meaning 

G Generator 

C Classifier 

R Consistency constraint 

g A graph 

X Input space, for example X = Rn 

Y Regression: Y=R, output space classification: y = {y1, y2, …, yk}. 

Dii The degree of node i 

v A node v ∈ V  

XL Labeled dataset xi ∈ X, yi ∈ Y 

XU Unlabeled dataset xi ∈ X 

L Loss function 

E Expectation 

H Entropy 



 

Z Embedding matrix 

A The adjacency matrix of a graph 

W The weight matrix 

Wij The weight associated with edge eij 

D The degree matrix of a graph 

Dii The degree of node i 

V The set of vertices in a graph 

Ԑ The set of edges in a graph 

Zv An embedding for node v 

S Similarity matrix of a graph 

D Discriminator 

Hv
(k) Hidden embedding for node v in kth layer 

S[u, v] Similarity measurement between node u and v 

N(v) The neighbors of a node v 

mN(v) Message aggregated from node v’s neighborhoods 

 

And then a competition based on kinship would take place within each 

cluster other than its neighborhood for labeling unlabeled points. Largely also 

because it solves the sparsity problem of the labeled example because all 

unlabeled points of a cluster are unlabeled points in a cluster can be labeled 

because there is a labeled point in the cluster. 



 

SSL aims to predict more accurately with the aid of unlabeled data than 

supervised learning that uses only labeled data. However, an essential prerequisite 

is that the data distribution should be under some assumptions. Otherwise, SSL 

may not improve supervised learning and may even degrade the prediction 

accuracy by misleading inferences. 

Following and, the related assumptions in SSL include: 

- Self-training assumption; 

- Co-training assumption; 

- Generative model assumption; 

- Cluster assumption; 

- Low-density separation; 

- Manifold assumption. 

Taking into account assumption of self-training, predictions of the self-

training model, especially those with high confidence, tend to be correct. We can 

assume that when the hypothesis is satisfied, those high-confidence predictions 

are considered to be ground-truth. This can happen when classes form well-

separated clusters. 

Different reasonable assumptions lead to different combinations of labeled 

and unlabeled data, and accordingly, different algorithms are designed to take 

advantage of these combinations. For example, proposed co-training model, 

which works under the assumptions: instance x has two conditionally independent 

views, and each view is sufficient for a classification task. It’s the meaning of co-

training. 

Generally, in generative model it is assumed that data are generated from a 

mixture of distributions. When the number of mixed components, a prior p(y) and 

a conditional distribution p(x|y) are correct, data can be assumed to come from 

the mixed model. This assumption suggests that if the generative model is correct 

enough, we can establish a valid link between the distribution of unlabeled data 

and the category labels by p(x, y) = p(y)p(x|y). 



 

In cluster assumption two points x1 and x2 are in the same cluster, they 

should belong to the same category. This assumption refers to the fact that data in 

a single class tend to form a cluster, and when the data points can be connected 

by short curves that do not pass through any low-density regions, they belong to 

the same class cluster. According to this assumption, the decision boundary 

should not cross high-density areas but instead lie in low-density regions. 

Therefore, the learning algorithm can use a large amount of unlabeled data to 

adjust the classification boundary. 

For the low-density separation case - decision boundary should be in a low-

density region, not through a high-density area. The low-density separation 

assumption is closely related to the cluster assumption. We can consider the 

clustering assumption from another perspective by assuming that the class is 

separated by areas of low density. Since the decision boundary in a high-density 

region would cut a cluster into two different classes and within such a part would 

violate the cluster assumption. 

Representing manifold assumption we know, that two points x1 and x2 are 

located in a local neighborhood in the low-dimensional manifold, they have 

similar class labels. This assumption reflects the local smoothness of the decision 

boundary. It is well known that one of the problems of machine learning 

algorithms is the curse of dimensionality. It is hard to estimate the actual data 

distribution when volume grows exponentially with the dimensions in high 

dimensional spaces. If the data lie on a low-dimensional manifold, the learning 

algorithms can avoid the curse of dimensionality and operate in the corresponding 

low-dimension space. 

 

1.5 Semi-supervised learning classification of neural network 

approaches  

Semi-supervised learning algorithms use not only the labeled data but also 

unlabeled data to construct a classifier. The goal of semi-supervised learning is to 



 

use unlabeled instances and combine the information in the unlabeled data with 

the explicit classification information of labeled data for improving the 

classification performance. The main issue of semi-supervised learning is how to 

exploit information from the unlabeled data.  

A number of different algorithms for semi-supervised learning have been 

presented, such as the Expectation Maximization based algorithms self-training, 

co-training, Transductive Support Vector Machine, Semi-Supervised SVM, 

graph-based methods, and boosting based semi-supervised learning methods. 

Self-training is a commonly used method to semi-supervised learning in many 

domains, such as Natural Language Processing and object detection and 

recognition. A self-training algorithm is an iterative method for semi-supervised 

learning, which wraps around a base learner. It uses its own predictions to assign 

labels to unlabeled data.  

The main difficulty in self-training is to find a set of high-confidence 

predictions of unlabeled data. Although for many domains decision tree classifiers 

produce good classifiers, they provide poor probability estimates. The reason is 

that the sample size at the leaves is almost always small, and all instances at a leaf 

get the same probability. The probability estimate is simply the proportion of the 

majority class at the leaf of a (pruned) decision tree. A trained decision tree indeed 

uses the absolute class frequencies of each leaf of the tree as follows: 

p(k|x) =
K

N
 

Then, a set of newly-labeled data, which we call a set of high-confidence 

predictions, are selected to be added to the training set for the next iterations. The 

performance of the self-training algorithm strongly depends on the selected 

newly-labeled data at each iteration of the training procedure. 

First, we briefly review the online boosting tracking system, which is based 

on online boosting for feature selection, and replaced by our proposed online 

SemiBoost algorithm. The basic idea is to formulate the tracking as a binary 



 

classification problem between the foreground object to be tracked and the local 

background. where K is the number of instances of the class k out of N instances 

at a leaf. However, these probabilities are based on very few data points, due to 

the fragmentation of data over the decision tree. 

Assuming that the object is detected in the first frame, the initial 

classification is performed by taking positive samples of the object and randomly 

selected negative samples of the background. The tracking loop consists of the 

following steps. From I to I+1 the classifier is evaluated pixel by pixel in the local 

environment. The classifier gives a response corresponding to the likelihood ratio. 

 

Figure 1.6 Presentation of the object according to a certain time in the 

tracking process 

 

In short, we extend the analysis of decision trees to ensembles of decision 

trees. An ensemble combines many possibly weak classifiers, hopefully into a 

single strong classifier. Ensemble methods differ according to the base learner and 

the way the classifiers are combined. Examples of ensemble methods are batch 

method, boosting, random forest method and random subspace method. 

In general, self-training is a wrapper algorithm, and is hard to analyze. 

However, for specific base classifiers, theoretical analysis is feasible, for example 

showed that the algorithm minimizes an upper-bound on a new definition of cross 

entropy based on a specific instantiation of the Bregman distance. In this paper, 

we focus on using a decision tree learner as the base learner in self-training. We 



 

show that improving the probability estimation of the decision trees will improve 

the performance of a self-training algorithm. 

Semi-supervised assumptions (SSAs) hold for the data distribution. As 

summarized in, there are three fundamental SSAs: semi-supervised smoothness, 

cluster and manifold assumptions. 

The semi-supervised smoothing assumption states that if two points in a 

high-density region are close, then their corresponding labels should be the same 

or consistent. The cluster assumption is described as follow: if points are located 

in the same cluster, they are likely to belong to the same class. In other words, the 

decision boundary is likely to lie in a low data-density region, which is also 

referred to as the low density separation assumption. The manifold assumption 

states that the high-dimensional data lies on a low-dimensional manifold whose 

properties ensure more accurate density estimate and or more appropriate 

similarity measures. 

 To work on the aforementioned SSAs, regularization has been employed in 

SSL to exploit unlabeled data. A number of regularization methods have 

beenproposed based on cluster or smoothness assumption, which exploits 

unlabeled data to regularize the decision boundary and therefore affects the 

selection of learning hypotheses. Working on cluster or smoothness assumption, 

most of regularization methods are naturally inductive.  

 

Figure 1.7 Distance of unlabeled examples  

 



 

On the other hand, the manifold assumption has also been applied for 

regularization where the geometric structure behind labeled and unlabeled data is 

explored with a graph-based representation. In such a representation, examples 

are expressed as the vertices and the pairwise similarity between examples is 

described as a weighted edge. Thus, graph-based algorithms make good use of the 

manifold structure to propagate the known label information over the graph for 

labeling all nodes. In nature, most of such graph-based regularization algorithms 

are transductive although they can be converted into inductive algorithms with the 

out-of-sample extension. 

As a generic ensemble learning framework, boosting works via sequentially 

constructing a linear combination of base learners, which appears remarkably 

successful for SL. Boosting has been extended to SSL with different strategies. 

Semi-supervised MarginBoost and ASSEMBLE were proposed by introducing 

the “pseudo-class” or the “pseudo-label” concepts to an unlabeled point so that 

unlabeled points can be treated as same as labeled examples in the boosting 

procedure. 

In essence, such extensions work in a self-training like style; the unlabeled 

points are assigned pseudo-class labels based on the constructed ensemble learner 

so far, and in turn those pseudo-class labels will be used to find a new learner to 

be added to the ensemble. As pointed out in, such algorithms attempt to minimize 

both labeled and unlabeled margin cost only. Thus, a hypothesis can be very 

certain about the classification of unlabeled points with very low margin cost even 

though these unlabeled points are not classified correctly. 

From single decision trees to ensembles of decision trees, in particular the 

Random Subspace Method and Random Forest. In this case, probability is 

estimated by combining the predictions of multiple trees. However, if the trees in 

the ensemble suffer from poor probability estimation, the ensemble learner will 

not benefit much from self-training on unlabeled data. Using the modified 

decision tree learners as the base learner for the ensemble will improve the 



 

performance of self-training with the ensemble classifier as the base learner. The 

results of the experiments on the several benchmark datasets confirm this.  

 

Figure 1.8 Standart and Grafted decision trees examples. 

 

We show that these modifications do not produce better performance when 

used on the labeled data only, but they do benefit more from the unlabeled data in 

self-training. 

The modifications that we consider are Naive Bayes Tree, a combination of 

no-pruning and Laplace correction, grafting, and using a distance-based measure. 

We then extend this improvement to algorithms for ensembles of decision trees 

and we show that the ensemble learner gives an extra improvement over the 

adapted decision tree learners. 

The performance of the self-training algorithm strongly depends on the 

selected newly-labeled data at each iteration of the training procedure. This 

selection strategy is based on confidence in the predictions and therefore it is vital 

to self-training that the confidence of prediction, which we will call here 

probability estimation, is measured correctly.  

There is a difference between learning algorithms that output a probability 

distribution, neural networks, logistic regression, margin-based classifiers, and 

algorithms that are normally seen as only outputting a classification model, like 

decision trees. Most of the current approaches to self-training utilize the first kind 

of learning algorithms as the base learner. 



 

Summarizing the first section, it was possible to classify methods with the 

partial involvement of the teacher, assumptions and understand the basic 

component of classical methods or ancient teachings. The next section will deal 

with AdaBoost, MarginBoost methods, and the concept of boosting. 
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CHAPTER 2. NEURAL NETWORK TRAINING WITH PARTIAL 

TEACHER INVOLVEMENT. 

2.1 Problem statement and data sampling. 

The basis for starting to process data in the areas of data assembly, pattern 

detection and machine learning will require detailed consideration of models and 

datasets. 

The concept of a dataset includes future vectors, among which, each vector 

is a description of an object using its characteristics. For example, consider a 

synthetic three-Gaussians dataset. 

 

Figure 2.1 The synthetic three-Gaussians data set 

 

The data structure is usually presented in the form of a prediction model, and 

as a model with a study or dataset construction. For example, a support vector 

machine, a neural network or a decision tree.  

The basic process of model emergence from the data is referred to as learning 

or training, using a learning algorithm. There are different learning settings 

through which the most basic are supervised learning and unsupervised learning. 

 



 

 

There are different parameters for learning, the most important of which are 

supervised learning and unsupervised learning. Predicting the value of a target or 

an undefined instance is the goal in supervised learning. Predictor is a unique 

name for a learned model. 

Crosses and circles need to be marked to define the data assembly and the 

task of the predictor is to determine the unknown values of the instance. 

A similar parsing is called classification with a classifier.  

Having numerical values in the data sample, it is possible to redefine the 

coordinates by regression with a learning model called fitted regression model. 

The collection of data for training in all cases will be referred to as an example. 

In the case of binary classification definitions, finding positive and negative 

points is used to highlight markers. Unsupervised learning involves some data or 

input to investigate the internal distribution. 

Clustering, is a concept that reveals the achievement of a cluster structure of 

data points. 

The ensemble has a number of advantages in operation: 

- With tagged and untagged data, every classification algorithm that has 

weight membership can be enhanced. 

- Using different classes, from two, to multi-classes, it is possible to 

determine the marginal value involving unspecified data. 

- SSMBoost can only be used with a specific step dimension. Assemble, on 

the other hand, has a matched step-size, each regular student is weighted in the 

right ensemble supervision methods. 

- Speaking for acceleration, unlabelled data with a significant number of 

classifier pair reductions can be seen. 

- It is well used in practice with hardware acceleration, which improves 

performance and data processing. 



 

- By running experiments with first-pass, one can see the efficiency that can 

refine a particular ensemble, AdaBoost loses out on performance with the same 

starting number of pairs of learners. 

 

2.2 Classification of approaches 

For comparison with a single learning unit, ensemble methods try to 

construct a collection of learners with a consequent combination of them. There 

are a couple of similar definitions for ensemble: commite-based learning, and 

multiple classifier systems. 

 

Figure 2.2 Architecture of a common ensemble 

 

There are three key approaches to problem-solving in ensemble methods: 

ensembles of weak learners, combining classifiers, mixture of experts. 

Combining classifiers are usually used to define patterns. 

Following machine learning can highlight the acceleration of the data 

sampling process, in building powerful algorithms to increase performance with 

the method of ensembles of weak learners. It is from this method that AdaBoost 

and Bagging were subsequently described. 

By expounding on the topic of weak learners we can redefine weak learners 

into strong learners. 



 

The third method moves into the neural network section. Using combinations 

and joins of parametric models, groups of rules "mixture of experts" helps to 

obtain an optimal solution to the problem. 

This is shown through errors, noise level, and average in the Hansen and 

Salamon study.  

 

Figure 2.3 Illustration of the Combining method with better results 

 

This method was more accurate than single purpose. Errors and noise level 

is lower in such case. This makes it clear that there is an advantage in using the 

combinatorial method. 

There are a number of algorithms for solving different problems in an 

ensemble. Each of them has its pros and cons, the combination includes a number 

of advantages for boosting tasks. 

These algorithms include: AdaBoost, Logistics Regression, Neural Network, 

Support Vector Machines, Random Forest and Kernel Factory, k-nearest 

neighbor. 

The Lasso approach - is used to define the concept of logistic regression.  

The scientist attributes a constraint to the sum of the full values of the coefficients. 

In the output from this the coefficients are reduced to zero. We process the 

shrinkage value through cross validation. Different data packages are used for this 

task, e.g., glmnet. The variable α is overridden by a value of one to detect lasso 



 

properties, thus allowing the function to find and compute the sequence λ by 

setting the value of nlambda to 100. 

To create a Random Forest view, two values must be set: the total amount of 

variables to be processed for each partitioning and the number of trees in the 

ensemble. Revisiting Breyman's advice and finding the number of values equal to 

the square root of the allowable value of the predictors and using a large number 

of trees up to 500. The processing of the Random Forest type of data uses a library 

of appropriate name. 

The first applications of the boosting phenomenon can be seen as an affinity 

to deterministic weighting. Stochastic boosting, is a boosting that enhances single 

algorithms by adding randomness as a mandatory part of the process. The two 

non-negotiable values are the number of terminal connections in the underlying 

classifiers and the number of iterations. 

By setting the maximum number of connections to eight, setting the 

maximum tree depth to three values, we can achieve appropriate 

recommendations. In addition, the number of iterations is set to 500. Stochastic 

boosting can be seen in the implementation using the Ada library. 

Support vector machines are commonly used in binary classification with 

high margin classifiers that select areas of different classes with the required 

hyperplane at the maximum margin. Minimum distance between two unknown’s 

parameters to the classification hyperplane. 

The purpose of the k-nearest neighbor method is to rule that every input pair 

of objects is similar to the output pair. This briefly describes lazy learning, without 

a direct learning process with an easy way to store the set. During the learning 

process, the condition appears that the test dataset is similar to the dataset close to 

the learning instance. Then, a preferential class is determined, through k instances. 

Based on the regression, the test dataset is assigned to the mean of the k instances.  



 

The term boosting was first proposed to define the change of weak learners 

to strong learners. When the strong learner is close to perfect performance, the 

weak learner has almost no noticeable advantage at the start. 

It is assumed that every weak participant is capable of turning into a strong 

one. Counting is easy, but getting the desired result with training is difficult. The 

basic principle of operation does not include difficulty in the process.  Initially, 

positive and negative instances are classified. As an example, weak learners 

identify a binary distribution problem in the data sample. 

At location Y, we can consider training the instances with distribution V and 

the ground-truth function f. Assuming that the total area is divided into 3 parts Y1, 

Y2, Y3, each part is equal to 1/3 of the total distribution and randomly assumes 

50% of the classification error of the weak learner problem. It is necessary to 

eliminate as much as possible the errors of the classification problem by having 

only weak learners in the first two areas and 1/3 of the classification errors in the 

third area. In this zone we can label the weak classifier as J1, it is logical that this 

value is not desirable in the subsequent work. 

The main point of the work is to change the errors from the J1 variable. We 

can redefine V' from V, for obviousness in the initial blunders from J and focus 

on the value of Y3. The next step is to train the classifier J2 from V. Understanding 

that J2 is identically weak in the classifier, we can say that it has incorrect values 

in zone Y2 and correct values in zones Y1 and Y3.  By crossing the values of J1 

and J2 the resulting classifier will have the correct classifications in zone Y1, and 

possibly some errors in the other locations. 

To find more evidence in combined classifier errors we need to get a new 

distribution V” and learn a new classifier j3 from the distribution. Apply, that 

zones X2 and X3 have correct classifications. Approved, that in a place of Y1, Y2 

and Y3 we know each of two classifiers to make needed classifications. It is 

observed that the last learners focus on the errors of the first learners. 

Base procedure for boosting will be described in a few steps: 



 

Data on input: sample distribution – V; the basis of learning algorithm – L; 

quantity of a learning iterations - Q; 

1. V1 = V (for the process of distribution initialization) 

2. for t = 1…….Q: 

3. Jt = L(Vt); (than we find a weak leaner with training from Vt) 

4. Et = Px~Vt (jt (x) ≠ f(x)); (find the error of jt) 

5. Vt+1 = Adding distribution(Vt, Et ) 

Output data: H(x) = mixed output ({J1(x),…,Jt(x)}) 

Based on the experiment done, it can be said that the bussing works with a 

data set of distributions into zones with a combination of elements within zones 

to make further assumptions. 

MarginBoost is a stage-wise procedure corresponds to a gradient descent of 

a cost functional based on a decreasing function of the margin, in the space of 

linear combinations of base classifiers. This new method enhances work based on 

a direct plug-in extension of AdaBoost in the sense that all the ingredients of the 

gradient algorithm such as the gradient direction and the stopping rule are defined 

from the expression of the new cost function. Moreover, while the algorithm has 

been tested using the mixtures of models, SMMBoost is designed to combine any 

base classifiers that deals with both labeled and unlabeled data.  

 

2.3 Learning algorithms for semi-supervised learning neural networks 

Based on the achievements of the past algorithm, one can well see the 

uncertainty in such variables: distribution adjustment and combination of output 

values. 

The AdaBoost algorithm, is considered one of the most successful for 

speeding up processing. By including consideration of binary classification in the 

-1 to +1 area, the output of the algorithm can be achieved through an exponential 

loss minimization function: 

lexp(j | V) = Ex~V[e-f(x)j(x)] 



 

Input data: data set V = {(y1, r1), (y2,r2),…,(ym, rm)}; mane learning algorithm 

L; quantity of a learning iterations – Q. 

1. V1(x) = 1/m. (to find the weight L) 

2. for t = 1,…,T: 

3. jt = L(V, Vt); 

4. et = Px~Vt (jt (x) ≠ f(x)); (find the error of jt) 

5. if et > 0,5 then break 

6. at = ½ ln (1-et / et); (find the value of the jt weight) 

7. Vt+1(x) = (Vt(x) / Zt) * {exp(-at) if jt(x) = f(x)}; {exp(at) if jt(x) ≠ f(x)}             

= Vt(x)exp(-atf(x)jt(x)/ Zt  (Zt can describe as a factor which enables Vt+1 

to the distribution stage) 

Output data: H(x) = sign (ƩТ
t=1 atjt (x)) 

We can use summarize weighted combination for weak learners: 

H(x)  = ƩT
t=1 atjt (x) 

For using an exponential loss formula obtained a new basic and simple one, 

for getting minimalization of classification error. Main goal is to minimize the J 

value, often partial derivative of the loss for each x is equal to zero. 

de-f(x)J(x)
dJ(x) = -f(x)e-f(x)J(x) = -e-J(x)P(f(x) = 1 | x) + eJ(x)P(f(x) = -1 | x) = 0 

After getting an answer we obtain: 

J(x) = ½ ln {P(f(x) = 1 | x)}; 

{P(f(x) = -1 | x)} and other, 

sign(J(x) = sign {1/2 ln P(f(x) = 1 | x}; {P(f(x) = -1 | x} = {1, P(f(x) = 1|x) > 

P(f(x) = -1 | x)}; {-1, P = (f(x) = 1 | x) < P(f(x) = -1 | x)} = argmax P(f(x) = y | x); 

y є {-1;1} 

Furthermore, introduce that sign(J(x)) can get the Bayes error rate. In this 

example of algorithm was one of the cases was ignored – P(f(x) = 1|x) = P(f(x) = 

-1|x). Also, known that exponential loss is minimized, the classification error too. 

If we replaced the non-differentiable classification problem, we can get better 

optimization point. 



 

J created one-by-one with iteratively generating Jj and at. Seen that first 

classifier j1 can be represented as activation of the weak learning algorithm with 

the new distribution. So, parameter jt is generated near the distribution Vt, it’s 

weight at also determined as atjt with exponential loss and minimizing.  

Lexp(atht | Vt) = E x~Vt[e
-f(x)atht(x)] = E x~Vt [e

-at|| (f(x) = jt(x)) + eat|| f(x) ≠ Jt(x))] = 

e-atPx~Vt(f(x) = jt(x)) + eatPx~Vt(f(x) ≠ Jt(x)) = e-at(1-et) + eatet; 

Where et = Px~Vt(jx(x) ≠ f(x)). So, if we get the needed at, exponential loss 

will be equal to zero: 

Dlexp(atjt | Vt) / dat = -e-at(1-et) + eatet = 0; 

at = ½ ln(1-et/et) 

After combining processes one of equation with weak classifiers with 

weights can combined as Ht-1. With the help of AdaBoost adjusting the sample 

distribution for the next iteration, main algorithm can get output data with a weak 

classifier Jt with refusing a few mistakes of Ht-1. To minimize the exponential loss, 

it needs to see the ideal classifier jt that corrects full obtain mistakes of Ht-1: 

Lexp(Ht-1 + ht | V) = Ex~V[e-f(x)(Ht-1(x)+ht(x))] = Ex~V[e-f(x)Ht-1(x)e-f(x)jt(x)] 

In addition, Taylor formula for the case of e-f(x)jt(x), the exponential loss can 

be described with approximation by: 

Lexp(Ht-1 + jt | V) ≈ Ex~V[e-f(x)Jt-1(x)(1-f(x)jt(x) + f(x)2jt(x)2/2)] = Ex~V[e-f(x)Jt-

1(x)(1-f(x)jt(x)+1/2)] 

From the task, we know f(x)2 = 1 and Jt(x)2 = 1; 

Main classifier Jt is: 

Jt(x) = argminhlexp(Jt-1 + j | V) = argminhEx~V[e-f(x)Jt-1(x)(1-f(x)j(x)+1/2)] =  

=argmaxhEx~V[e-f(x)jt-1(x)f(x)j(x)]=argminhEx~V[Ex~V
e-f(x)Jt-1(x)

[e-f(x)Jt-1(x)]f(x)j(x)] 

Knowing that Ex~V[e-f(x)Jt-1(x)] is a stable quantity. 

Describe a distribution Vt as: 

Vt(x) = V(x)e-f(x)Jt-1(x) / Ex~V[E-f(x)Jt-1(x)]  

Throw the math representative form of upper formula we can obtain: 

Jt(x) = argmaxhEx~V[e-f(x)Jt-1(x)
[E-f(x)Jt-1(x)]f(x)j(x)] = argmaxhEx~Vt[f(x)j(x)] 



 

We can write that in appropriate way: f(x)jt(x) = 1-2|| (f(x) ≠ jt(x)), normal 

classifier was jt(x) = argminhEx~Vt[
||(f(x) ≠ j(x))]. 

Moreover, the perfect jt minimize the classification error with the distribution 

Vt. We observe, that weaker learner trained under Vt and 0.5 classification error 

due to Vt. Describing the relation between Vt and Vt+1: 

 Vt+1(x) = V(x)e-f(x)Jt(x)
Ex~V[e-f(x)Jt(x)] = V(x)e-f(x)Jt-1(x)e0f(x)atjt(x)

 Ex~V[e-f(x)Jt(x)] = 

 = Vt(x)e-f(x)atjt(x)
 Ex~V[e-f(x)Jt(x)] 

Ex~V[e-f(x)Jt-1(x)] 

From the formula above AdaBoost update with the sample distribution. 

That’s how this algorithm works and can be learnable with specific distribution. 

The aim is to re-weighting with training examples in every iteration per one pass. 

On the other side, without handling weighted training parameters, usually 

used the meaning of re-sampling and it gives sampling training parameters in 

every iteration per one iteration, including needed distribution. It applies main 

task. 

Both of two variants include a part of performance which can be unique and 

not be clear between them at all. Re-sampling can produce other option for 

Boosting with restart. Every iteration of AdaBoost, program check for each 

learner and know that he better than random guess. Having an optimal number of 

rounds T AdaBoost will be early-refused far in a case of each T. Including even 

on multiclass problems.  

If we have base learner which cannot be on pass check, re-sampling removed 

them, continue with a new pair of a generated base learners. So, the AdaBoost 

provides solving and avoiding for the early-termination tasks. 

Starting from parsing the description of the previous working algorithm, you 

can see the advantages of processing it in a dataset. Having a coordinate axis in 

two projections, it is possible to parse 4 points where y(i) = f(zi), a unique point 

label. In this way, one can see the XOR problem. Most classes (positive and 

negative) cannot be crossed by a linear classifier. 



 

Parsing the problem with the basic learning algorithm one can see the 

solution of eight different functions. By training the data under the required 

distribution, and having the output with the smallest error. If more than one 

function with the smallest error is found, one random function will be selected. 

All of the examples discussed below can include both classes. 

     

Figure 2.4 The XOR data and 1st iteration 

 

 

    

Figure 2.5:   2nd iteration and 3rd iteration 

 

It is necessary to connect the trained algorithm to the data. Given that j2, j3, 

j5 and j8 have the smallest qualification error of 0.25, we can consider - j2 as the 

classifier. Parameters x1, x2 are part of x in the first and last dimension. 



 

j1(x) = {
+1, 𝑖𝑓 (𝑥1 >  −0.5)

−1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
          j2(x) = {

−1, 𝑖𝑓 (𝑥1 >  −0.5)

+1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

j3(x) = {
+1, 𝑖𝑓 (𝑥1 >  +0.5)

−1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
          j4(x) = {

−1, 𝑖𝑓 (𝑥1 >  +0.5)

+1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

j5(x) = {
+1, 𝑖𝑓 (𝑥2 >  −0.5)

−1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
          j6(x) = {

−1, 𝑖𝑓 (𝑥2 >  −0.5)

+1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
     

j7(x) = {
+1, 𝑖𝑓 (𝑥2 >  +0.5)

−1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
       j8(x) = {

−1, 𝑖𝑓 (𝑥2 >  +0.5)

+1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
  

Figure 2.5 Bringing up the learning algorithm on eight functions 

 

 

Figure 2.6 Single decision tree 



 

 

Figure 2.7 AdaBoost usage 

 

Figure 2.8 Three-Gaussian data set usage with AdaBoost decision trees 

 

From the decision boundaries 0.25 if a fourth half of error from the first 

figures. The weight of j2 is 0.5ln 3 is equal to 0.55, so describing an image with 

the classification weight on the black and grey sides we can see the values of 0.55 

and -0.55. 



 

On figure 2.3 Parameter z1 is higher, we can see other iteration with rounds 

of the main algorithm on the invoking stage. In each case of j3, j5 and j8 parameters 

have smallest error with taking a supposed parameter j3 with weight 0.8. 

Next figure shows combination of parameters j2 and j3 using grey levels. The 

weight of z2 increasing during parameters j5 and j8 have small error. Against taken 

j5 as supposed parameter and optimal weight that saw on picture 2.4 with 

combined classification parameters j2, j3 and j5 accordingly.   

The last step is to distribute the classification: z1 and z2 are positive weights. 

Other cases are negative sets of weights. You can see the correct placement of the 

weights. AdaBoost produced a non-linear classifier with an error of zero. 

The main drawback of the algorithm is that it is overloaded in its data 

processing, which significantly reduces performance in some cases. 

 

Figure 2.9 Decision Stump results 



 

 

Figure 2.10: Pruned decision tree results 

 

 

Figure 2.11: Unpruned decision tree results 

 

Including the latest results of the AdaBoost method, we can consider the 

available range of classifications of SSA, let’s construct table 2.1: 

T – transductive property; 

I – inductive property; 

 

 



 

Group Approach Summary T/I 

Manifold 

Assumption 

Label 

Propagation 

Graph-based; Maximize label consistency 

using Graph Laplacian 

T 

Min-Cuts Edge-weight based graph-partitioning 

algorithm constraining nodes with same label 

to be in same partition 

T 

MRFs, 

GRFs 

Markov random field and Gaussian random 

field models 

T 

LDS TSVM trained on a dimensionality reduced 

data using graph-based kernel 

 

T 

SGT Classification cost minimized with a 

Laplacian regularizer 

T 

LapSVM SVM with Laplacian regularization I 

Cluster 

Assumption 

Co-training Maximizes predictor consistency among two 

distinct feature views 

I 

Self-training Assumes pseudo-labels as true labels and 

retrains the model 

I 

SSMB Maximizes pseudo-margin using boosting I 

ASSEMBLE Maximizes pseudo-margin using boosting I 

Mixture of 

Experts 

EM based model-fitting of mixture models I 

EM-Naive 

Bayes 

EM based model-fitting of Naive Bayes I 

TSVM, 

S3VM 

Margin maximization using density of 

unlabeled data 

I 

Gaussian 

processes 

Bayesian discriminative model I 

Manifold & 

Cluster As- 

sumptions 

SemiBoost Boosting with a graph Laplacian inspired 

regularization 

I 

  

To summarize, in the next section we can consider several algorithms 

involving ensemble, for processing semi-guided learning on a sample. By 

selecting the correct ensemble with an iterative pass, you can view the 

performance and quality of the algorithm's response. 
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CHAPTER 3. STRUCTURALLY PARAMETRIC SYNTHESIS OF 

AN ENSEMBLE OF NEURAL NETWORKS. 

3.1 An ensemble approach in the construction of neural network-

based classifiers. 

Develop a Hybrid Ensemble consisting of six sub-ensembles: Bagged 

Logistic Regression, Random Forest, Kernel Factory, Bagged Support Vector 

Machines, Stochastic Boosting, and Bagged Neural Networks. We test the 

algorithm on eleven data sets using five times twofold cross-validation. The 

Hybrid Ensemble significantly and consistently outperforms the Single Best sub-

ensemble on all data sets when the authority method or Self Organizing Migrating 

Algorithm is used for weight estimation.  

Analyses also indicate that the Hybrid Ensemble yields increasingly 

important classification improvements with increasingly difficult tasks. To the 

best of our knowledge this study is the first to assess the added value of algorithm-

induced diversity over and above data-induced diversity in ensemble design. 

While data perturbation techniques have flourished in recent years, the use 

of algorithm variation has remained largely unexplored. Although several papers 

recognized that combining multiple inductive biases is an effective way to create 

diversity, only few scholars have used this strategy so far. Furthermore, even less 

authors recognized that the integration of both schemes could be beneficial in 

improving the ensemble accuracy. Summarizes the literature by including a set of 

ground-breaking, pivotal papers that use data variation and algorithm variation. 

Let’s describe the Hybrid Diversity Generation Strategies on table 3.1:



 

 

 

Depend on the output that is received from the base classifiers. While some 

form of (weighted) voting has become the most frequently used method in 

classifier fusion, it is not necessarily the best option. A lot of information is lost 

as it only uses class label output. Confidences or posteriori probabilities contain 

the highest amount of information and are able to reduce the generalization error. 

Therefore, in our hybrid design we calibrate all of our models to ensure we have 

measurement level output for every base classifier. As a result, we can fuse our 

classifiers using weighted averaging. In this study we restrict ourselves to linear 

combinations because we want to limit the number of parameters that needs to be 

estimated in order to keep the analysis tractable. 

To calculate the weights, one can make use of fixed rules or trained weights. 

While fixed rules have a very small-time complexity and provide simplicity, their 

result is expected to be worse than that of the trained ones. The easiest way to 

combine the different measures is to take the simple average. The performance of 

this simple method is often close to that of the weighted average but in most cases, 

a weighted average is able to outperform the simple average. In performance- or 

authority- based weighting the weight of each classifier is set proportional to its 

performance on a validation set. 



 

This method typically performs better albeit at the cost of more 

computational effort. Weights can be trained by either a statistical method or a 

general-purpose solver. The latter category has the advantage that the objective 

function can be chosen freely to fit the application and that it is more likely to 

find global optima for the parameters. Although not the primary focus of this 

study, we tried to benchmark as many methods as possible in each category. 

Characteristics of base classifiers will represent in table 3.2 

 

Base classifier parameter tuning is performed by cross-validation using X 

train, Y train, X validate, and Y validate. The combiners that are tuned use Y’ 

validate and Y validate. 

Input: 

• x = predictor variables 

• y = response variable with class labels {0,1} 

• combine = one of the following combination methods {GA, DEA, GSA, 

MALSC, PSO, SOMA, TSA, NNBL, GINNLS, LHNNLS, AUTH, MEAN} 



 

• member parameters=parameters of base classifiers  

• combination parameters=parameters of combiners  

Classifier Generation: 

Randomly divide x into X train (50% of instances) and X validate (50%) 

Make the same split for y: Y train and Y validate 

Algorithms ← (LR, RF, AB, KF, NN, SV) 

for Algorithms do 

Tuned Parameters ← tune (X train, Y train, X validate, Y validate) 

Classifiers ← train (X train, Y train, Tuned Parameters) 

Y’ validate ← predict (Classifiers, X validate) 

Calibrators ← train calibrator (Y’ validate, Y validate) 

Y’ validate ← calibrate (Calibrators, Y’ validate) 

Evaluations ← evaluate (Y validate, Y validate) 

Classifiers ← train (X, Y, Tuned Parameters) 

End. 

Classifier combination: 

if combine one of {GA, DEA, GSA, MALSC, PSO, SOMA, TSA, NNBL, 

GONNLS, LHNNLS} 

then 

weights ← optimize classifier weights (Y’ validate, Y validate) 

else if combine == AUTH then 



 

weights ← evaluations/sum(evaluations) 

else if combine == MEAN then 

weights ← (1/6,1/6,1/6,1/6,1/6,1/6) 

Result: Calibrators, Classifiers, Weights 

Semi-supervised learning deals with methods for exploiting the unlabeled 

data in addition to the labeled data to improve performance on the classification 

task. Semi-supervised learning has been the topic of four different Neural 

Information Processing Workshops. Ensemble methods such as AdaBoost work 

by iteratively using a base learning mechanism to construct a classifier to improve 

the ensemble classifier and then adding the classifier to the current ensemble with 

an appropriate scalar multiplier (the step-size). It is well known that such 

algorithms are performing gradient descent of an error function in function space. 

Depending on the measure of quality of the classifier, different criteria are 

produced for choosing the base classifier and assigning the step-size. 

The advantages of Ensemble: 

• Any weight-sensitive classification algorithm can be boosted using 

labeled and unlabeled data; 

• Unlabeled data can be assimilated into margin-cost based ensemble 

algorithms for both two-class and multi-class problems; 

• Ensemble can efficiently exploit the adaptive step-sizes used to weight 

each base learner within existing supervised ensemble methods. SSMBoost is 

practically limited to fixed step-sizes; 

• Ensemble can exploit unlabeled data to reduce the number of classifiers 

needed in the ensemble therefore speeding up learning. 



 

• Computational results show the approach is effective on a number of test 

problems, producing more accurate ensembles than AdaBoost using the same 

number of base learners. 

Determine unlabeled data we must come up with a mechanism for defining 

the margin associated with unlabeled data points. While the strategy is in general 

applicable to many different margin cost functions, we focus on the one used in 

AdaBoost.  

Let the base classifiers be fj (x): Rn → [1, −1] where fj is the jth classifier 

in the ensemble.  

Let the labeled training data, L, be the n-dimensional points x1, . . ., x` with 

know labels, y1, . . ., yl.  

For now, assume the problem has two classes yi = 1 or −1. A multi-class 

extension is discussed in later sections. The ensemble classifier F (x) is formed 

from a linear combination of the J base classifiers: 

F (x) = Ʃe-yiF(xi) (3.1) 

F(x) = Ʃj
i=1 wj fj (x), where wj is the weighting term for the jth classifier. 

For labeled data points the margin is yiF (xi). AdaBoost performs gradient descent 

in function space in order to minimize an exponential margin cost function. 

U – unlabeled data.  

To incorporate unlabeled data, we must define the margin of an unlabeled 

data point. We do not know the class yi for unlabeled data points. Note that for 

labeled data points, the margin, yiF(xi), is positive if the point is correctly 

classified and negative if the point is wrongly classified. An unlabeled point is 

never right or wrong. 



 

So, we define the margin for an unlabeled data point xi to allow the same 

margin to be used for both supervised and unsupervised data we can introduce the 

concept of a pseudo-class. The pseudo-class of an unlabeled data point xi is 

defined as yi  = sign (F(xi)).  

The margin then is yiF(xi) where yi is the known class label if xi is labeled 

or the pseudo-class if xi is unlabeled. The introduction of the pseudo-class is the 

critical difference between our approach and the independently developed 

SSMBoost. By introducing pseudo-classes, we can show that our Adaptive Semi- 

Supervised Ensemble method, which corresponds to the intuitive semi-supervised 

ensemble algorithm, maximizes the margins of both the labeled and unlabeled 

points in function space. As noted above, given that the margin for labeled points 

is yiF (xi), we can define the margin for unlabeled data points as |F (xi)|. Using 

these values, we can then define a margin cost function that incorporates both 

labeled and unlabeled data.  

The Essemble cost function for AdaBoost is: 

(3.2) 

In general, the Essemble cost function for any margin cost function, M, is  

(3.3)  

The terms αi and αj are used to weight the labeled and unlabeled data so that 

we could, for example, choose to weight the margins associated with unlabeled 

data points as counting only 40% as much as the margins for labeled data points. 

To create a practical descent-based algorithm we build on the AnyBoost 

approach. Recall the AnyBoost algorithm from: 

1. Let F0(x): = 0; 



 

2. for t: = 0 to T do; 

3.       Let ft+1: = L (Ft, −∇C(Ft)); 

4.       if − < ∇C(Ft), ft+1 >≤ 0 then; 

5.             return Ft; 

6.       end if; 

7.       Choose wt+1 

8.       Let Ft+1: = Ft + wt+1ft+1 

9. end for 

10. return FT+1 

3.2 A review of neural network ensemble combining-based 

approaches 

The boosting algorithm within the generic margin cost functional 

framework for boosting. Boosting is treated as a greedy yet stage-wise functional 

minimization procedure where each stage seeks a function from a given subspace 

so that combining it with those functions already found in the same way can lead 

to the greatest reduction in terms of a cost functional defined based on training 

examples. Since our algorithm is within the generic margin cost functional 

framework developed for generic yet abstract boosting algorithms, it allows a 

range of various margin cost functions to be applied.  

To facilitate our boosting learning, we also come up with an initialization 

setting based on clustering analysis. It is worth stating that our algorithm is 

developed for binary classification tasks but easily extended to cope with 

multiclass classification tasks via the one-against-rest scheme although this 

treatment might be less efficient than those methods developed very recently for 



 

multi-class boosting without the use of binary decomposition. Extensive 

experiments demonstrate that algorithm yields favorite results for benchmark and 

real-world classification tasks in comparison to many state-of-the-art SSL 

algorithms including semi-supervised boosting algorithms. 

The generic form of an ensemble learner constructed by boosting is the 

voted combination of base learners, sign [F(x)]. F(x) is the linear combination of 

base learners as follows: 

F(x) = ∑t Wt ft(x) (3.4) 

For binary classification, ft: X → {+1, −1} are base classifiers and wt ∈ R, 

are weights for linear combination. 

Given a training set of |L| labeled examples, L = {(x1, y1), …, (x,y|L|)}, 

generated according to a distribution, boosting finds out F(x) so that P(F(x) ≠ y) 

on this distribution is minimized. In reality, the distribution is unknown and a 

training set L is available only. Thus, boosting would find F(x) by minimizing a 

margin cost functional defined on the training set L: 

C(F) =
1

|L|
 Ʃ C[yi F(xi)], (3.5) 

where C: R → R is a non-negative and monotonically decreasing cost 

function. In yiF(xi) is the margin of an example, i ∈ L, with respect to F (x). 

3.3. Synthesis of algorithm in the construction of an ensemble of neural 

networks with partial teacher involvement based on boosting 

1. Let wo(i) = l/l, i = 1, ..., l; 

2. Let go(x) = 0; 

3. For t = 1 ... T (gradient descent); 

4. Learn a gradient direction ht+1 ∈ H with a high value of:  



 

Jt
s = Ʃi∈s wt(i)yyht+1(xi) (3.6) 

5. Apply the stopping rule: if Jt
s ≤ Ʃi∈s wt(i)yigt(xi) then return gt else go on; 

6. Choose a step-length for the obtained direction by a line-search or by 

fixing it as a constant ∈; 

7. Add the new direction to obtain: gt+1 = 
|at|𝑔𝑡+𝑎𝑡−1ℎ𝑡+1

|at+1|
  (3.7) 

8. Fix the weight distribution: Wt+1 = 
𝑐′(𝑝(𝑔𝑡+1(𝑥𝑖),𝑦𝑖))

Ʃi∈s c′(p(gt+1(xj),yi))
  (3.8) 

So, in that way we can synthesis one of the needed boosting algorithms. 

3.4 Research results 

 Taking a dataset with text, we can visualize the value: build a graph (heat 

map) that shows the correction sign between themselves and with the target 

variable (markups). Coding structures will be in next chapter. 

  

 Figure 3.1 Heat map with correction sign 

 Constructing histograms of the distribution of the label boxplot-and the 

attribute and the target variable: 



 

 

Figure 3.2 Boxplot with the target variables 

From that we can build prediction change graphs with the 0 and 1 values: 

 

Figure 3.3 Boxplot with prediction value for ‘a’ case 

 

Figure 3.4 Boxplot with prediction value for ‘the’ case 



 

After normalizing the data, we can obtain a training test split, in our case 

this dataset has 5172 rows x 3000 columns. That we have length in 5172 values. 

 

Figure 3.5 Normalized data structure 

 Our task of this work is to train classifiers and use ensemble with different 

algorithms, first result with confusion matrix will be for kNN method: 

  

Figure 3.6 kNN method results and confusion matrix 

Taken a decision tree classifier with X and Y training fit we testing dataset 

to obtain precision and accuracy for the statistical purpose.  

 

Figure 3.7 Decision tree classifier results 



 

Let’s get an image throw the plot function by a programming way. Here we 

can see the graph of decision tree: 

 

Figure 3.8 Decision tree graph image plot  

For the SVM algorithm we can take Linear Kernel, Polynomial Kernel, 

RBF Kernel and Sigmoid Kernel methods. From this we obtain classificational 

report with accuracy, weighted and macro avg parameters. 

Linear Kernel: 

 

Figure 3.9 Linear Kernel results 

Polynomial Kernel: 



 

 

Figure 3.10 Polynomial Kernel results 

RBF Kernel: 

 

Figure 3.11 RBF Kernel results 

Sigmoid Kernel: 

  

 Figure 3.12 Sigmoid Kernel results 



 

 Including last 4 data from Kernel methods, we can produce SVM 

Gridsearch for prediction results: 

 

 Figure 3.13 Start and end of the grid prediction iterations 

Final confusion matrix with accuracy for SVM algorithm: 

 

Figure 3.14 SVM methods confusion matrix results 

Futhermore, Random Forest method include almost the same result: 



 

 

Figure 3.15 Random Forest results 

With the value of depth = 16, and estimations number = 256 we can do a 

Random Forest Gridsearch: 

 

Figure 3.16 Random Forest Gridsearch results 

Taken the last algorithm, Ada Boost: 

 



 

Figure 3.17 Ada Boost confusion matrix results 

Ada Boost Gridsearch with 200 numbers of estimators and 1 value of 

learning rate: 

 

Figure 3.18 Ada Boost Gridsearch results 

 To see the results on a graph we need to construct fully connected feed-

forward network: 

  

Figure 3.19 Sequential model of fully connected feed-forward network and 

parameters 

So, this way we take results with 15 epochs and all needed values: 



 

 

Figure 3.20 Epoch representation with losses and accuracy 

Final accuracy after 15 epochs with graph: 

 

 Figure 3.21 Final accuracy and graph for AdaBoost ensemble 

In addition, evaluate results from RNN and CNN: 



 

 

Figure 3.22 CNN parameter results with 15 epochs 

 

Figure 3.23 Graphical representation of CNN parameters results 

At the ending, we can obtain embedded model, to achieve better results in 

accuracy:  

 



 

Figure 3.24 Embedded model with parameters 

From the sequential fitting we can obtain best accuracy value: 

 

Figure 3.25 Accuracy results after last 10 epochs 

We can represent the 1 and 0 values from all neural dataset: 

 

Figure 3.26 Prediction points representation 

Let’s find distributed stochastic neighbor embedding using TSNE-1 and 

TSNE-2 dataset columns: 



 

 

Figure 3.27 TSNE results from two sets 

The EM expectation maximization graph: 

 

Figure 3.28 EM representation  

Obtaining latest accuracy from classification confusion matrix: 



 

 

Figure 3.29  

So, after a set of epochs and ensembles of different algorithms: AdaBoost, 

SVM, Kernel Factory we can sort results and know that accuracy = 0,98. 

Additionally find LDA accuracy arrays from all methods: 

 

 

Figure 3.30 Accuracy array results with LDA module  

In next chapter we describe the user interface and coding structures from 

this work. All results will get using Python 3.0, tensor flow, NumPy and additional 

libraries. Best accuracy was 0.98. 
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CHAPTER 4. PYTHON BASED SOFTWARE DEVELOPMENT 

4.1 Implementation of the program’s lock scheme 

The scheme was implemented using the built-in modules of Pandas, NumPy, 

MatPlotlib, Seaborn, PIL, and sklearn libraries. By reading the SQL database, 

opening the CSV file, the database with the set of occurring phrases was 

processed. 

The paper also used graphs to display the metrics and data collection of the 

required methods and algorithmic approaches of ensemble boosting. 

Using programming packages: 

 

Figure 4.1 First part of needed program libraries and modules for solving the 

problem 

Also, we have second part with better graphical representation in other .py 

file:  



 

 

 

 

Figure 4.2 Graphical representation of second part of needed modules 

Programming interface include taskbars, debugger, consoles, error point measure 

line, progress bar, program window and selected files with databases. Other 

frames represent representative work of tensor flow libraries. 

4.2 User interface with selection of the desired algorithmisation 
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CHAPTER 5. ENVIRONMENTAL PROTECTION. 

5.1 Recommendations for the use of computing power for 

environmental protection. 

Addressing today's global challenges such as biodiversity loss, global 

change and increasing demand for ecosystem services requires better 

environmental forecasting. The increasing availability and computational power 

of data is facilitating the development of quantitative methods in ecology. 

However, a flexible methodological framework is needed to apply these advances 

to environmental forecasting. Deep Learning (DL) is a branch of Machine 

Learning (ML) that is rapidly gaining popularity but has not yet been widely 

applied in ecology. It involves training Deep Neural Networks (DNNs), which are 

artificial neural networks composed of multiple layers and a large number of 

neurons. This paper presents an example (with code and data) of designing, 

training and using DNNs for environmental prediction. Using the example of bark 

beetle occurrence in coniferous forests, the authors show that DNNs can very well 

predict both short-term and local risk of infestation and long-term dynamics at 

larger scales. The paper also shows that DNNs are superior to standard methods 

in predicting bark beetle dynamics and have great potential for developing a 

comprehensive forecasting system in this area. 

Machine learning is a family of computer algorithms designed to identify 

patterns in complex, often nonlinear, data and build accurate predictive models 

from that data. Compared to classical statistical approaches, such as regression, 

machine learning focuses on identifying and describing complex relationships and 

has predictive capabilities in parameter estimation and confidence intervals. 

Machine learning, at the intersection of computer science and statistics and the 

core of artificial intelligence and data science, is a rapidly growing field. 

 



 

 

Deep learning is a relatively new area of ML. The main DL tool is the deep 

neural network (DNN). It is based on artificial neural networks (ANNs) invented 

in the middle of the last century. Essentially, DL is a set of methods by which 

large (more neurons) and deeper (more layers) neural networks can be trained. 

These networks are made possible by the development of improved algorithms 

for optimizing the weights that connect neurons (e.g., stochastic gradient descent), 

more available processing power, and more training data. Although these 

improvements may seem minor, today's DNNs not only outperform their simpler 

predecessors, but often outperform other ML approaches in standard tests of 

prediction accuracy. 

Until a decade ago, ML was hardly used in ecology, but in recent years its 

popularity has skyrocketed. However, the potential of ML is far from being fully 

exploited, and there are currently very few applications of deep learning in 

ecology (Figure S1). The aim of this work is to contribute to the wider 

dissemination of deep learning in ecology by demonstrating its potential in 

prediction. As an example, the authors of this paper chose the task of predicting 

bark beetle outbreaks in conifer-dominated forests. 

Convolutional neural network (CNN) is a type of neural network often used 

for pattern recognition in image or time series data. In addition to the full link 

layers, the CNN includes convolution and fusion layers. In the convolutional 

processing layer, filters are applied sequentially to all parts of the input data, using 

the same weights. Subsequent design layers combine the output data from the 

coalescing layers, making them less sensitive to small shifts and distortions in the 

data. A series of such convolution and aggregation layers allows for the extraction 

of fairly high-quality properties from the data. 

During DNN training, the weights are iteratively updated to minimize the 

prediction error. To measure the prediction accuracy on new input data, the data 

is divided into a training set and a test set. The details of the network architecture, 

such as the size of the network, the choice of specific layer types, and the 



 

 

parameters of the training process, largely determine the prediction accuracy and 

are generally task-specific. Section S2 of the Appendix provides guidance on 

DNN design and training, as well as practical considerations for DNN 

applications. 

 

5.2 Using neural networks to track diseases and their factors 

Deep learning is well suited for generalizing beyond experimental data, 

which is essential for making predictions about applied ecological problems. A 

particular strength of DL is its ability to achieve a high level of abstraction using 

raw data. Furthermore, deep learning can help improve traditional environmental 

modelling methods for forecasting tasks. Another promising approach is 

combining deep learning with process-based models to achieve a better 

understanding of environmental processes. 

Machine learning in general, and DNNs in particular, are often criticized 

for their "black box" nature - it is difficult to intuitively interpret a trained model 

and its weights. As a result, more traditional models continue to be an important 

tool for improving understanding, especially of causal relationships in nature. It 

should be noted, however, that these classical approaches make a priori 

assumptions about the pattern of the data that may not reflect the actual 

relationship between cause and effect. Although traditional models provide more 

understandable results and have a more rigorous basis for hypothesis testing, they 

often do not reflect reality as accurately. Machine learning can more accurately 

describe cause and effect relationships without making a priori assumptions. 

DNNs work particularly well with environmental data because they can 

effectively combine different types of data (e.g., images, numeric and categorical 

variables). Furthermore, their hierarchical multi-layered structure reflects the fact 

that ecosystems are often governed by multiple processes in hierarchical 

relationships. In this study, DNNs outperformed all other methods for modeling 



 

 

the dynamics of the bark beetle epidemic (with the exception of the random forest 

algorithm). 

Methods based on logical rules make it possible to take into account 

different aspects (semantic, structural, punctuation) of individual words and the 

language itself, but their application encounters a number of problems: 

- A particular collection of various linguistic rules that must take into 

account very different constructive linguistic properties. This aspect requires a 

team of linguists. 

- The narrow scope of the set of rules is due to the following. 

The format of writing various messages on the Internet differs slightly from 

the accepted norms of the Russian language in literary form. Messages posted on 

social networks are characterized by the presence of punctuation and spelling 

errors, the presence of various types of verbal errors and jargon, strange 

punctuation marks, and the use of special symbols and graphics to strengthen the 

emotional distance of the text. 

- Attachment to the language of the analyzed text is always related to unique 

linguistic structures are unique and cannot be transferred and applied to other 

languages. The use of a rule-based approach can only be effective if the text being 

analyzed is grammatically correct and if the various constructions used in the 

language being analyzed are covered by a corpus of rules. 

 

5.3 Using self-learning systems to compute statistics of environmental 

damage 

Creating a fully-fledged artificial intelligence, similar to the human brain, 

is an incredibly difficult task for scientists. They have not yet achieved it, but there 

is already a lot of development and research in this area. 

A lot of energy is required to train an artificial intelligence. And it will grow 

over time. However, researchers say that even at the current level, the process of 

creating artificial intelligence causes a lot of damage to the environment. 



 

 

To verify this, the scientists ran four different machine learning programs 

on a single graphics processor. They then measured the amount of energy 

consumed by each program. The researchers knew how much energy was 

consumed and also calculated how much carbon dioxide was produced. 

The more complex the programs were, the more power they required and 

the more energy they consumed. At the same time, the amount of harmful 

emissions increased. It was found, for example, that the machine learning process 

emitted five times more carbon dioxide equivalents than the lifetime of a car. 

Environmental engineers develop methods to solve environmental 

problems. They participate in local and global environmental efforts, such as air 

and water pollution control, recycling and waste management. 

Depending on the focus of their work, their duties may include collecting 

soil or groundwater samples and analyzing them for contamination, designing 

municipal wastewater and industrial waste treatment systems, analyzing scientific 

data, investigating controversial projects, and conducting quality control studies. 

They may provide legal or financial advice on procedures, equipment or 

environmental problems. They can study the effects of large-scale problems such 

as acid rain, global warming and ozone depletion and try to minimise them. 

They will work with other engineers and scientists to solve large-scale 

problems. Teamwork is almost always part of any engineer's daily routine, but it 

is particularly important for environmental engineers, who often work alongside 

civil, mechanical and other engineers. 
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CHAPTER 6. LABOR PROTECTION 

6.1 Analysis of the use of software in the workplace 

 The engineers created a convolutional neural network and taught it to 

recognize people in streaming video, identify details of equipment - helmets, 

vests, cables - and types of production spaces. In the trial version, the system 

records and responds to the three most common worker behavior scenarios: 

Whether the worker is wearing a helmet on his or her head - the workplace 

norm; 

Whether the worker is wearing the hood of the work coat over his or her 

helmet - this is strictly prohibited; 

Whether the worker is tied up with a rope - mandatory when working at 

high altitudes. 

A common problem in industrial machine learning projects is that, due to 

the novelty of the subject and the sporadic nature of implementations, there are 

no initial sets of templates for training neural networks. We had to develop and 

mark from scratch a reference dataset containing 45 sequences of positive and 

negative scenarios of production personnel behavior.  

The video stream is processed in three steps. First, we filter the frames in 

which no people are present. Then, the parts of the video in which the system 

recognizes people are passed to a convolutional neural network. The network 

identifies the person by the markings, and identifies the elements of holding: a 

helmet on the head or a rope on the torso. The algorithm, which uses the reference 

vector method, then compares the subject's image to the patterns in the database. 

If the frame contains violations, the system sends a notification according to 

regulations. 



 

 

The mask RNN was used for image segmentation. This frame can recognize 

all defined classes of objects and select the objects in the frame. The neural 

network was trained using a mapping script, which is optimal when working with 

a limited dataset and we were not burdened with collecting statistics about the 

work: how many employees are on site, which departments, which locations do 

they spend more time.  

The final version was built with robust video stream analysis, object 

recognition and behavior-based classification. The accuracy is 82-95 percent. Our 

pilot project produced excellent results in the testing phase and now the customer 

is continuing the testing. We will keep an eye on further developments as the road 

from pilot project to industrial solution is very long. 

 Here is an example from our practice: the manager of a wood processing 

company is concerned about a manufacturing defect - a deformation of a wooden 

beam, the quality of which has been checked by a special employee. We propose 

to solve this problem by introducing machine learning and computer vision 

algorithms to automatically detect such defects. 

We place a special device with an optical sensor at a certain point in the 

manufacturing process that films the process, and a special software algorithm 

analyzes the video and automatically identifies the beam profile. If the sample is 

curved, the device sends a signal to the inversion and classification mechanism.  

The new project inversion mechanism will result in an entry in the database 

or CRM: how many problems were detected during the working day, at which 

location and at what time. The customer can now improve their financial 

performance and calculate the financial benefits of automation. 

 

 

 

 



 

 

 6.2 Electrostatics, electronic components and safety when working 

with computer technology 

Сomputer should be ergonomically designed and equipped so that the 

information displayed can be read safely and comfortably under the conditions of 

use: 

- Сomputer shall be designed so that the computer housing, when fixed in 

a particular position, can be rotated horizontally and vertically so that the screen 

is visible from the front; 

- Сomputer should be designed with soft, muted colours and diffused light, 

i.e. light scattered in all directions; 

- Сomputer housing shall have an opaque surface with a coefficient of 

reflection of (0,4-0,6) and no shiny reflective parts; 

- Сomputer shall be designed so that brightness and contrast are adjustable. 

Documentation shall be available on the operation of new (improved) 

computers.  

Workstations shall be positioned so that the computer screen faces sideways 

towards the light apertures (except for peripheral workstations), so that natural 

light is mainly from the left. 

Artificial lighting in computer rooms shall be provided by a general, 

uniform lighting system. In production, administration and public areas where 

documents are primarily handled, a combined lighting system shall be used (in 

addition to general lighting, local luminaires shall be installed to illuminate the 

document area). 

The lighting shall not cause glare on the screen surface. Glare from direct 

light sources and from light sources reflecting from work surfaces (screens, desks, 

keyboards, etc.) shall be reduced by appropriate selection of the type of luminaires 

and by the arrangement of workstations in relation to natural and artificial light 

sources. 



 

 

Luminaires used for local lighting shall be fitted with an anti-glare reflector 

with an angle of at least 40°. 

LB fluorescent tubes and compact fluorescent tubes shall be used as light 

sources for artificial lighting. Metal halide lamps may be used for indirect lighting 

in industrial, administrative and public buildings. Incandescent lamps, including 

halogen lamps, may be used in local luminaires. 

Electronic ballast luminaires with parabolic reflector optics (hereinafter 

referred to as EBG) are used for lighting computer rooms. Multi-lamp luminaires 

may be used with EBGs having the same number of front and rear branches. 

 

6.3 Failure systematics and hazards in neural network operation 

Today's fourth industrial revolution is generally focused on automation 

through technology and intelligent systems, with applications in many areas, 

including smart healthcare, business intelligence, smart cities, and smart 

cybersecurity.  

The power of deep learning approaches has increased dramatically across a 

wide range of applications, particularly in security technology as an excellent 

solution for exploring complex architectures using high-dimensional data. Thus, 

deep-learning techniques can play a key role in creating data-driven intelligent 

systems that meet today's needs due to their excellent capabilities to learn from 

previous data. Consequently, DL can transform the world and people's daily lives 

through the power of automation and experiential learning.  

Consequently, DL technology is relevant to artificial intelligence, machine 

learning, and data science with advanced analytics, which are well-known areas 

of computer science, especially in modern smart computing. In what follows, we 

first review the place of deep learning in artificial intelligence and how DL 

technology relates to this area of computer technology. 

 

 



 

 

6.4 Use of machine learning for occupational safety prevention 

Machine learning systems packaged as predictive analytics systems are 

available on the market that use data from past events and various variables to 

predict future trends. Maximizing the use of predictive analytics systems in your 

organization requires careful input of historical incident data, as well as a variety 

of other sources of safety analytics data, such as safety audits, surveys, and 

integrated personnel data related to the context of the situation and environment. 

The data is then analyzed and used to predict future behavior and alert 

management before an accident occurs. Your organization's predictive analytics 

system should use data based on a variety of factors. 

In addition, occupational safety affects your company's reputation and, 

therefore, its ability to attract the best employees, contracts and investors. 

 

6.5 Computer room fire safety 

From a financial perspective alone, it's easy to see why finding new 

technologies to reduce workplace accidents and increase productivity is essential, 

and why leveraging machine learning with predictive data analytics is the next big 

step in developing a proactive safety culture. The safety professionals of the future 

can rely on machine learning and predictive analytics as a key part of their 

profession to provide up-to-date information for preventive maintenance, 

reducing injuries and developing new safety practices and policies. 

If your organization has a safety-focused culture with a focus on continuous 

process improvement, you are ready to take the next step and consider 

implementing machine learning and predictive data analytics as part of your 

organization's operations. 

 

 

 

 



 

 

CONCLUTIONS 

1. The necessity of using machine learning with the partial involvement of teacher 

ssl, to create an intelligent classifier is substantiated. 

2. Proposed mathematical model of neural network on the basis of boosting, 

which makes it possible to increase the accuracy of solving the problem of 

classification.  

3. Developed an algorithm for machine learning with partial teacher involvement 

based on boosting. 

4. Computer program for building a neural network based on booming is 

developed. Learning algorithms for neural networks with SSL were supplied. 

5. Synthesis of an algorithm for building an ensemble of neural networks with 

SSL on boosting stage was performed. 

6. The new algorithm is developed by means of the software and the block 

diagram of the program with the additional user interface is introduced. 
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