

МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ

НАЦІОНАЛЬНИЙ АВІАЦІЙНИЙ УНІВЕРСИТЕТ

КАФЕДРА КОМП’ЮТЕРНО-ІНТЕГРОВАНИХ КОМПЛЕКСІВ

ДОПУСТИТИ ДО ЗАХИСТУ

 Завідувач кафедри

 Віктор СИНЄГЛАЗОВ

“_____”____________2022 р.

КВАЛІФІКАЦІЙНА РОБОТА
(ПОЯСНЮВАЛЬНА ЗАПИСКА)

ВИПУСКНИКА ОСВІТНЬО-КВАЛІФІКАЦІЙНОГО РІВНЯ

“МАГІСТР”

Тема: Ансамблевий класифікатор на основі бустінгу

Виконавець: Богдан ПЛОДИСТИЙ

Керівник: Віктор СИНЄГЛАЗОВ

д.т.н., проф.

Консультант з екологічної безпеки: Андріан ЯВНЮК

к.т.н., доцент

Консультант з охорони праці: Олексій КОЗЛІТІН

cт. Викладач

Нормоконтролер: Микола ФІЛЯШКІН

к.т.н., проф.

Київ 2022

EDUCATION AND SCIENCE MINISTRY OF UKRAINE

NATIONAL AVIATION UNIVERSITY

DEPARTMENT OF COMPUTER INTEGRATED COMPLEXES

ADMIT TO DEFENSE

Head of department

Viktor SINEGLAZOV

“____” ______________ 2022

QUALIFICATION WORK
(EXPLANATORY NOTE)

GRADUATE OF EDUCATION AND QUALIFICATION LEVEL

“MASTER”

THEME: Ensemble Classifier Based on Boosting

Executor: Bogdan PLODISTYI

Supervisor: Victor SINEGLAZOV

Dr.Sci.(Eng.), Prof.

Advisor on environmental protection: Andrian IAVNIUK

Ph.D., Associate Professor

Advisor on labor protection: Oleksiy KOZLITIN

Senior Lecturer

Norm’s inspector: Mykola FILYASHKIN

Ph.D., Professor

Kyiv 2022

НАЦІОНАЛЬНИЙ АВІАЦІЙНИЙ УНІВЕРСИТЕТ

Факультет аеронавігації, електроніки та телекомунікацій

Кафедра авіаційних комп’ютерно - інтегрованих комплексів

Освітній ступінь: магістр

Спеціальність 151 “Автоматизація та комп’ютерно-інтегровані технології”

Освітньо-професійна програма “Комп’ютерно-інтегровані технологічні

процеси і виробництва”

ЗАТВЕРДЖУЮ

Завідувач кафедри

 Віктор СИНЄГЛАЗОВ

“ ____ ” __________2022 р.

ЗАВДАННЯ

на виконання дипломної роботи студента

Плодистого Богдана Олександровича

1. Тема роботи: Ансамблевий класифікатор на основі бустінгу.

2. Термін виконання роботи: з 19.08.2022р. до 15.11.2022р.

3. Вихідні дані до проекту (роботи): тип задачі – класифікація, тип навчання

-напівкероване, структура нейронної мережі - ансамблева, бібліотеки: Tensor

Flow, PyTorch та NumPy.

4. Зміст пояснювальної записки (перелік питань, що підлягають

розробці): 1. Аналіз нейронних мереж з класифікатором на основі бустингу.

2. Структура та алгоритмізація глибокого напівсамостійного навчання з

частковим залученням вчителя. 3. Структурно параметричний синтез

ансамблю вибірки. 4. Проектування та комбінування алгоритмів XGboost та

AdaBoost. 5. Побудова ансамблю та розробка інтерфейсу нейронної мережі з

бустінгом. 6. Розробка метрики та аналізу результатів класифікатору.

5. Перелік обов’язкового графічного матеріалу: 1. Графіки алгоритмів

ансамблю. 2. Відображення вибірок та статистичні таблиці. 3. Графіки

точності та втрат ансамблю нейронної мережі.

6. Календарний план-графік
№

п/п

Завдання Термін виконання Відмітка про

виконання

1 Формування мети та основних завдань

побудови ансамблю

09.08.2022-26.08.2022

2 Аналіз методів для бустінгу в

нейронних мережах

26.08.2022-02.09.2022

3 Теоретичний розгляд вирішення

задачі напів самостійного навчання

02.09.2022-16.09.2022

4 Розробка побудови блок-схеми

алгоритмів з використанням AdaBoost

16.09.2022-23.09.2022

5 Дослідження лінії управління

безпілотним літальним апаратом

23.09.2022-07.10.2022

6 Розробка програмного та підтримка

апаратного забезпечення на базі мови

програмування Python

07.10.2022-21.10.2022

7 Впровадження метрики графічного

інтерфейсу классифікації

21.10.2022-04.11.2022

8 Підсумки роботи та підготовка

презентації та программного

матеріалу

04.11.2022-15.11.2022

7. Консультанти зі спеціальних розділів
Розділ Консультант

(посада, П. І. Б.)

Дата, підпис

Завдання

видав

Завдання

прийняв

Охорона праці Старший викладач,

Олексій КОЗЛІТІН,

Охорона навколишнього

середовища

к.б.н., доцент,

Андріан ЯВНЮК

8. Дата видачі завдання __

Керівник: _________________ Віктор СИНЄГЛАЗОВ

 (підпис)

Завдання прийняв до виконання: _________________ Богдан ПЛОДИСТИЙ

 (підпис)

NATIONAL AVIATION UNIVERSITY

Faculty of aeronavigation, electronics and telecommunications

Department of Aviation Computer Integrated Complexes

Educational level: master

Specialty 151 “ Automation and computer-integrated technologies”

Educational and professional program “Computer-integrated technological

processes and production”

APPROVED BY

Head of department

 Victor SINEGLAZOV

 “_____”__ __________ 2022

Graduate Student’s Diploma Thesis Assignment

Plodistyi Bohdan Oleksandrovych

1. The thesis title: Ensemble Classifier Based on Boosting.

2. The thesis to be complete between: from 19.08.2022 to 15.11.2022.

3. Output data for the thesis: software packages and Python 3.0 programming

language, classifier based on Tensor Flow, PyTorch and NumPy libraries, neural

network structural diagram, Weka application.

4. The content of the explanatory note (the list of problems to be considered):

1. Analysis of neural networks with boosting based classifier. 2. Structure and

algorithmization of deep semi-supervised learning with partial teacher

involvement. 3. Structurally parametric synthesis of ensemble sampling. 4. Design

and combination of XGboost and AdaBoost algorithms. 5. Ensemble construction

and development of neural network interface with boosting. 6. Development of

metrics and analysis of classifier results.

5. List of compulsory graphic material: 1. Graphs of ensemble algorithms. 2.

display of samples and statistical tables. 3. Graphs of accuracy and losses of the

ensemble neural network.

6. Planned schedule:

7. Special chapters’ advisors

8. Date of task receiving: __

Diploma thesis supervisor: ____________________ Victor SINEGLAZOV

 (signature)

Issued task accepted: ______________________ _Bohdan PLODISTYI

 (signature)

№ Task Execution term Execution

mark

1 Analysis of the relevance of the problem
09.08.2022-26.08.2022

2 Analysis of characteristics of unmanned

aerial vehicles and their application
26.08.2022-02.09.2022

3 Research of information support of

monitoring systems by unmanned aerial

vehicles

02.09.2022-16.09.2022

4 Research of monitoring and control

subsystems of the ground control station
16.09.2022-23.09.2022

5 Research of the unmanned aerial vehicle

control line
23.09.2022-07.10.2022

6 Development and research of the

monitoring and control subsystem of the

unmanned aerial vehicle

07.10.2022-21.10.2022

7 Development of graphical user interface

(operator)
21.10.2022-04.11.2022

8 Conclusions on the work and preparation

of presentation and handouts
04.11.2022-15.11.2022

Chapter
Advisor

(position, name)

Date, signature

Assignment

issue date

Assignment

accepted

Labor protection
Senior lecturer,

Oleksiy KOZLITIN

Environmental

protection

Ph.D, Associate Professor,

Andrian IANIUK

АНОТАЦІЯ

Пояснювальна записка до дипломної роботи «Ансамблевий

классифікатор на основі бустінгу»: _____ с., ___ рис., _____ табл.

Ключові слова: АДА БУСТ, КОНТРОЛЬОВАНЕ НАВЧАННЯ,

НАПІВКОНТРОЛЬОВАНЕ НАВЧАННЯ, АНСАМБЛЬ, БУСТІНГ,

КЛАСИФІКАТОР, ПРОГРАМНИЙ ІНТЕРФЕЙС

Предмет дослідження - структурно-параметричний синтез ансамблю

нейронних мереж з частковим залученням вчителя.

Мета роботи - отримання метрик та результатів вибірки ансамблевого

підходу при побудові класифікаторів на основі використання нейронних

мереж.

Метод дослідження - класифікація підходів та методів навчання на основі

бустінгу, Ада Бусту з частковим залученням вчителя. Розробка програмного

забезпечення з підключенням метрик. Включивши пари алгоритмів для

побудови мічених та немічених вибірок, буде отримано набір результатів з

додатковою інформацією для кожної нової вибірки та бустінгового методу

класифікації.

За допомогою рішення та результатів алгоритму можна прискорити та

вдосконалити завдання програмування з великим стеком вхідних даних. Це

дозволить отримати унікальний швидкодіючий метод з різними типами

параметрів.

Проект розробки включає нові пакети даних та бібліотеки для візуалізації

програмної реалізації вибірки даних.

ANNOTATION

Explanatory note to the diploma work «Ensemble Classifier Based on

Boosting»: _____ pages., ___ figure., _____ table.

Keywords: SSL, ADA BOOST, SUPERVISED, SEMI-SUPERVISED;

ENSEMBLE, BOOSTING, CLASSIFICATOR, PROGRAMMING INTERFACE

The subject of research - Structural parametric synthesis of an ensemble of

neural networks with partial teacher involvement.

The purpose of the work is to obtain the metrics and results of the ensemble

approach sampling in the construction of classifiers based on the use of neural

networks.

Research method - classification of approaches and methods of teaching based

on boosting, Ada Boost with partial consideration of the teacher. Software

development with metrics connection. By including pairs of algorithms to construct

labeled and unlabeled samples, a set of results will be obtained with additional

information for each new set and boosting classification method.

With solution and results algorithm can boost and improve programming tasks

with large stack of data inputs. This can obtain a unique quick-stage method with

different type of parameters.

The development project includes the latest data packages and libraries for

better software visualization implementation of the sample data.

CONTENT

GLOSSARY………………………………………………………………………11

INTRODUCTION………………………………………………………………...12

CHAPTER I. NEURAL NETWORKS AND THEIR CHARACTERISTICS……

 1.1 Neural network structure ………………………………………………….…13

 1.2 Classification of neural network training methods …………………………..16

 1.3 Semi-supervised learning of neural networks ………………………………..19

 1.4 Assumptions used to build networks with SSL……………………………..….

 1.5 Semi-supervised learning classification of neural network approaches………..

CHAPTER 2. SSL NEURAL NETWORK TRAINING……………….…………21

2.1 Problem statement and data sampling …………………………………….…..21

2.2 Classification of approaches ………………………………………………….22

2.3 SSL algorithms for neural networks…………………………..………………28

CHAPTER 3. STRUCTURALLY PARAMETRIC SYNTHESIS OF AN

ENSEMBLE OF NEURAL NETWORKS SEMI-SUPERVISED

LEARNING……………………………………………………………………....60

3.1 An ensemble approach in the construction of neural network-based

classifiers……………………………………………………………………….…60

3.2 A review of neural network ensemble combining-based approaches …….….63

3.3 Synthesis of algorithm in the construction of an ensemble of neural networks

with SSL based on boosting ………………………………….……..……………76

3.4 Research results……………………………………………………………….78

CHAPTER 4. PYTHON BASED SOFTWARE DEVELOPMENT ……….…….81

4.1 Implementation of the program's lock scheme ……………………………… 81

4.2 User interface with selection of the desired algorithmisation …………………82

4.3 Examples for solving the derived metric problem ………………………..…..86

CHAPTER 5. PROTECTION OF THE NATURAL ENVIRONMENT…………90

5.1 Application UAVs for protection nature………………………………………91

5.2 Waste control………………………………………………………………….92

5.3 Use of UAVs in environmental monitoring………………………….………..93

CHAPTER 6. LABOR PROTECTION…………………………………………...98

6.1 System of labor protection measures…………………………………………..98

6.2 Analysis of working conditions at the workplace Organization of the

workplace…………………………………………………………………………99

6.3 Analysis of harmful and dangerous production factors…………………… ..102

6.4 Development of labor protection measures…………………………………..103

6.5 Fire safety of the production premises……………………………………… 104

6.6 Conclusions from the section………………………………………………...106

CONCLUSIONS………………………………………………………...…… .. 108

LIST OF REFERENCES………………………………………………………...111

GLOSSARY

SSL – Semi Supervised Learning

UL – Unsupervised Learning

CNN – Convolutional Neural Network

AB – Ada Boost

AI – Artificial Intelligence

ML – Machine Learning

RPA – Robot-assisted Process Automation

LR – Logistic Regression

NN – Neural Network

SVM – Support Vector Machines

RF – Random Forest

KF – Kernel Factory

RNN – Residual Neural Network

SAB – Stochastic Adaptive Boosting

SQL – Structured Query Language

SSMB – Semi-Supervised Margin Boost

TGDS – Three-Gaussian Data Set

GB – Gradient Boost

ANN – Artificial Neural Network

EM - Expectation Maximization

TSVM - Transductive Support Vector Machines

PU – Positive and Unlabeled learning

TSNE - Distributed Stochastic Neighbor Embedding

INTRODUCTION

This paper considers the construction of a classifier based on neural networks,

nowadays AI is a major global trend, as an element of AI, as a rule, an artificial

neural network is used. One of the main tasks that solves the neural network is the

problem of classification. For a neural network to become a tool, it must be trained.

To train a neural network you must use a training sample. Since the marked training

sample is expensive, the work uses semi-supervised learning, to solve the problem

we use ensemble approach based on boosting.

Speaking of unlabeled data, we can move on to the topic of semi-supervised

learning (SSL). This is due to the need to process hard-to-access, limited data.

Despite many problems, the first algorithms with similar structures have proven

successful on a number of basic tasks in applications, conducting functional testing

experiments in AI testing. There are enough variations to choose marking, where

training takes place on a different set of information, the possible validation

eliminates the need for robust method comparison. Typical areas where this occurs

are speech processing (due to slow transcription), text categorization.

Choosing labeled and unlabeled data to improve computational power leads to

the conclusion that semi-supervised learning can be better than teacher-assisted

learning. Also, it can be on an equal efficiency factor as supervised learning.

Neural networks represent global trends in the fields of language search,

machine vision with great cost and efficiency. The use of "Hyper automation" allows

the necessary tasks to be processed to introduce speedy and simplified task

execution. Big data involves the introduction of multi-threading, something that

large companies in the artificial intelligence industry are doing.

Data analysis is actively used in building applications, engineering as well as

manufacturing architecture. This is done to learn certain actions that will help

improve the profitability of the company in the future. Specialists include a couple

of key areas of relevance between now and 2023:

- Robot-assisted process automation (RPA)

- Artificial intelligence and machine learning (AI\ML)

- Cognitive research in process automation.

- Using processes for point-to-point control in software (iBPMS)

The above-mentioned methods are actively used in pairs, as it can significantly

improve the tasks of productivity, data processing, obtaining more accurate

information. Machine learning solves many different problems: saving resources,

speeding up decision-making for different areas of business, increased demand for

innovation, such as self-managing bots.

Machine learning is also being implemented for smart data warehouses,

information security, implying the use of mathematical models to support learning

in various ways. The task of prediction is also opening up in new professions, such

as neuro-design.

It is worth highlighting the current directions for building architectures, five

directions can be taken as a basis:

- The Perceptron, or network with multiple layers, which is a set of

transformations.

- Allocation of neural network memory for taking an arbitrary piece of data,

especially recurrent networks.

- ResNet networks with accelerated access, which is in fact a simplified and

improved version of a convolutional neural network.

- Artificial Intelligence with convolution is used to partially identify an overall

picture or object, connecting it to the adjacent part speeding up processing.

ACIC DEPARTMENT

Page

NAU 22 07 05 000 EN

 Performed Bogdan PLODISTYI
 Supervisor Victor SINEGLAZOV

S. controller Mykola FILYASHKIN

 Dep. head Victor SINEGLAZOV

Ensemble Classifier

Based

 On Boosting

N. Pages

225 151

CHAPTER 1. NEURAL NETWORKS AND THEIR

CHARACTERISTICS.

1.1 Neural network structure.

The main prospect of the neural network is the ability to self-learn depending

on the conditions, as a result of which it is possible to improve the performance.

If we have an idealized case, then with each iterative pass the output algorithm

should receive the necessary amount of knowledge from the environment in which

it works.

The learning process is usually divided into many structures, it all depends

on the chosen algorithm and learning stages. In this paper we investigate the

accuracy with combining variations of the neural network.

Each self-learning unit has its own parameters that are rebuilt by simulating

the environment in which the network is included. It is the way of building the

parameters that determines how the training will be carried out.

We take into account the following standard for the sequence of training

organization:

- The neural network includes "stimuli" from the external environment;

- Free parameters of the neural network can change as a result of this;

- When modifying the external structure, the neural network can respond

to stimuli in a different way.

At the heart of learning, there is no unique algorithm for learning. By

creating it and getting a certain set of data and parameters, you can highlight a

certain advantage and goal with the results of work.

There are 4 main structures for training:

- Error correction based;

- competitive learning and Boltzmann learning;

- Hebbian learning;

- When using memory.

Construction of a neuron on the basis of k-unique computable node:

At the output node of the neural fence, you can pass the first rule that uses

learning. This unit k, is triggered when controlling the signal vector y(n).

Depending on the number of hidden neuron zones, data from the input vector will

be obtained, which in turn are transmitted to the initial nodes. Discrete time is

defined as n, or it is the ordinal number of the iterative pass of the process of

setting the synaptic weight of neuron k.

To equalize the results of the expected output dk(n), it is necessary to obtain

the output signal k, which in the final case is yk(n).

Figure 1.1 Block diagram for the output node of the neural network

Figure 1.2 Illustration of the neuron signal transmission graph

In the case of memory-based learning, there is a need to store data in a

repository where the examples for learning are properly located.

{(Yi, Di)}n, i=1

Yi is the input vector

Di - the corresponding signal at the output

Moreover, you can take a binary distribution for recognition or classification

into several classes. From the basics of binarity, the variable outcomes can take

the value 0 or -1 for the first class, and 0 for the last.

There are two basic rules for constructing this type of learning:

- Mutual inclusion of the parameter, to find the outer zone of the vector.

- In case of finding this zone of the trial vector, use the learning rule.

For the simplest case with memory-based use, the NNR rule is set - Nearest

Neighbor Rule. The example that is closest to the test one is added to the location

zone.

Figure 1.3 Graphical representation of the region with values 0, 1 and the

trial vector d.

Hebb's doctrine can be stated as a certain axiom:

- If one point is permanently, or temporarily, close enough to another point

to cause it to be excited, after a certain period of time, a modification of both or

one point can be seen.

Knowing this, we can assume constant training based on this rule.

Below is a table 1.1 of Hebb's synapse:

Qualities Meanings

Dependence on the

time period

mechanism

• Depending on the type of signal, you can find out the

accuracy of the time difference of the signal, namely pre

and post synapses.

Local mechanism • Based on the case of a node of data that is gradually

transmitted, we can assume that all elements of the

system are in space-time proximity.

Interactivity of the

mechanism

• By examining the limbs of the synapse, Hebb signals

can be determined. Depending on the species,

interactivity can be either static or deterministic.

Correlational

mechanism

• As a condition for modifying this connection, to

improve the algorithm, it is necessary to have the same

response time on both signals

1.2 Classification of neural network training methods

Human vision is an active process by which we sequentially scan the optical

environment. It is an intelligent, task-specific matrix that uses a small area with a

large, low-resolution environment. We expect that future advances in image

processing will come from systems that learn from one device to another and

combines convolutional networks and SNNs that use reinforcement learning to

decide where to look. To decide where to look. Systems combining deep learning

and reinforcement learning are still in their infancy.

Systems using reinforcement learning are still in their infancy, but are

already outperforming passive vision systems. Passive vision systems show

impressive results in classification tasks leads to the ability to play a wide range

of video games.

Natural language understanding is another area where deep learning will

have a big impact in the coming years. This is another area where deep learning

will have a major impact in the coming years. Expected systems using SNR to

understand sentences or entire documents in the future will improve in the future

if an electoral strategy is used paying attention one piece at a time.

Ultimately, there will be significant advances in artificial intelligence

systems that combine representational learning:

- It enables rule-based manipulation of symbolic information.

- Have expressions through operations on large vectors.

Figure 1.4 Neural network recognition process with logic output

One of the most popular strategies for improving classification performance

is the use of data variety. Even if a particular learner performs better than other

learners on many tasks.

In the case of the Random Forest, you still get:

- Algorithms for each new task. No algorithm is optimal for all possible data

sets, so there is no such thing as a free lunch. Strategy

- Evaluating more than one algorithm and selecting the best performing one

is called Single Best.

 - It is one of the simplest but most reliable strategies and is therefore used

industrially.

- Referenced strategies. However, it should be noted that Single Best is much

more complex than simply selecting an algorithm.

- Implementing a data-driven ensemble technique. To be able to do this, a

high level of experience is required to implement specific algorithms correctly.

The complexity of Single Best is increased by the fact that expert knowledge

is required for all algorithms in the benchmark. Despite the difficulties associated

with implementing the Single Best method, it is the preferred option for improving

classification performance in industrial applications.

While the focus of this paper is on diversity generation mechanisms, an

important part of ensemble design is the combination rule. In the literature, there

are various fusion methods that depend on the results of the base classifiers. While

there is a kind of voting is the most widely used method in classifier fusion, but it

may not always be the best option. Since only the output of class labels is used, a

lot of information is lost.

Confidences or posteriori probabilities contain the largest amount of

information and reduces the generalization error. Therefore, in our hybrid design,

we calibrate all our models to ensure that we have a measurement-level output for

each base classifier. As a result, we can combine our classifiers using a weighted

average. In this study, we restrict ourselves to linear combinations as we do not

need to estimate the number of parameters there are a number of factors that need

to be estimated to make the analysis manageable.

For the calculation of weights, we can resort to fixed rules or trained weights.

While fixed rules offer very low time complexity and simplicity, their results are

likely to be worse than trained rules. The simplest way to combine different

metrics is to take the simple average. The performance of this simple method is

usually close to that of the weighted average, but in many cases the weighted

average can outperform the simple average.

Simple average in performance or authority-based weighting, the weight of

each classifier is proportional to its performance on a validation set. This method

usually produces better results, but at the cost of more computational effort.

1.3. Semi-supervised learning of neural networks

Most of the generated data is uncategorized or unlabeled, thereby making it

difficult to use supervised approaches to automate applications like personal news

filtering, email spam filtering, and document and image classification. Typically,

there is only a small amount of labeled data available, for example, based on

which articles a user mark interesting, or which email he marks as spam, but there

is a huge amount of data that has not been marked. As a result, there is an immense

need for algorithms that can utilize the small amount of labeled data, combined

with the large amount of unlabeled data to build efficient classification systems.

Existing semi-supervised classification algorithms may be classified into

two categories based on their underlying assumptions. An algorithm is said to

satisfy the manifold assumption if it utilizes the fact that the data lie on a low-

dimensional manifold in the input space. Usually, the underlying geometry

of the data is captured by representing the data as a graph, with samples as the

vertices, and the pairwise similarities between the samples as edge-weights.

Usually, machine learning has been divided into two categories. Into rules of

supervised and unsupervised learning. Supervised learning finds a rule that can

be used to predict the relationship between inputs and outputs. Finite instances in

the form of input-output pairs, unsupervised learning in finding a structure of

interest as the basis for a data set.

Mostly, SL has many Examples of training that produces a satisfactory

learner. a topic generalization ability. Acquiring training is not trivial for the SL,

who should comment on examples of enter the data with the appropriate labels.

In many practical applications range from data mining to machine performance.

However, input data annotations are often difficult, costly and time

consuming, and in particular have to be done manually by experts. On the other

hand, there is often a large amount of undisclosed data available. In order to use

undisclosed data, semi-Supervised learning has become the new paradigm

combination with a large number of unscored points with a small number of

annotated examples to create a better learner. Because SSL requires less human

effort, only greater accuracy can be achieved, because it is based on unpublished

data largely support SL has attracted the attention of the machine learning

community.

So become the main solution obtained and develop an optimization

algorithm taking into account that all the technical information needed. First, we

present the initial setup initial unlabeled data labeling, training and the first

classifier and a nonlinear function producing density estimate. Then, the semi-

supervised boosting algorithm for binary classification and explaining this

algorithm with an example commonly used component cost function AdaBoost,

ASSEMBLE and many other boosting algorithms.

SSL is a learning paradigm associated with constructing models that use both

labeled and unlabeled data. SSL methods can improve learning performance by

using additional unlabeled instances compared to supervised learning algorithms,

which can use only labeled data. It is easy to obtain SSL algorithms by extending

supervised learning algorithms or unsupervised learning algorithms. SSL

algorithms provide a way to explore the latent patterns from unlabeled examples,

alleviating the need for a large number of labels. Depending on the key objective

function of the systems, one may have a semi-supervised classification, a semi-

supervised clustering, or a semi-supervised regression.

From that, following conditions are true:

- Semi-supervised classification. Given a training dataset that consists of

both labeled instances and unlabeled instances, semi-supervised classification

aims to train a classifier from both the labeled and unlabeled data, such that it is

better than the supervised classifier trained only on the labeled data.

- Semi-supervised clustering. Given a training dataset that consists of

unlabeled instances, and some supervised information about the clusters, the goal

of semi-supervised clustering is to obtain better clustering than the clustering from

unlabeled data alone. Semi-supervised clustering is also known as constrained

clustering.

- Semi-supervised regression. Given a training dataset that consists of both

labeled instances and unlabeled instances, the goal of semi-supervised regression

is to improve the performance of a regression algorithm from a regression

algorithm with labeled data alone, which predicts a real-valued output instead of

a class label.

Figure 1.5 taxonomy of deep semi-supervised learning methods based on

loss function and model design.

Looking at the classical SSL methods, generative models assume a model

p(x,y) = p(y)p(x|y), where the density function p(x|y) is an identifiable

distribution, for example, polynomial, Gaussian mixture distribution, etc., and the

uncertainty is the parameters of p(x|y). Generative models can be optimized by

using iterative algorithms. This applies EM algorithm for classification. They

compute the parameters of p(x|y) and then classify unlabeled instances according

to the Bayesian full probability formula. Moreover, generative models are harsh

on some assumptions. Once the hypothetical p(x|y) is poorly matched with the

actual distribution, it can lead to classifier performance degradation.

A representative example following the low-density separation principle is

Transductive Support Vector Machines (TSVMs). As regular SVMs, TSVMs

optimize the gap between decision boundaries and data points, and then expand

this gap based on the distance from unlabeled data to the decision margin. To

address the corresponding non-convex optimization problem, a number of

optimization algorithms have been proposed. For instance, a smooth loss function

substitutes the hinge loss of the TSVM, and for the decision boundary in a low-

density space, a gradient descent technique may be used.

Graph-based methods rely on the geometry of the data induced by both

labeled and unlabeled examples. This geometry is represented by an empirical

graph G = (V, E), where nodes V represent the training data points with

|V| = n and edges E represent similarities between the points. By exploiting

the graph or manifold structure of data, it is possible to learn with very few labels

to propagate information. For example, Label propagation is to predict the label

information of unlabeled nodes from labeled nodes. Each node label

propagates to its neighbors according to the similarity.

At each step of node propagation, each node updates its label according to

its neighbors’ label information. In the label propagation label, the label of the

labeled data is fixed so that it propagates the label to the unlabeled data. The label

propagation method can be applied to deep learning. set in strong supervision.

There are three types of weakly supervised data: incomplete supervised data,

inexact supervised data, and inaccurate supervised data. Incomplete supervised

data means only a subset of training data is labeled. In this case, representative

approaches are SSL and domain adaptation. Inexact supervised data suggests that

the labels of training examples are coarse-grained, e.g., in the scenario of multi-

instance learning. Inaccurate supervised data means that the given labels are not

always ground-truth, such as in the situation of label noise learning.

Positive and unlabeled (PU) learning is a variant of positive and negative

binary classification, where the training data consists of positive samples and

unlabeled samples. Each unlabeled instance can be either the positive and

negative class. During the training procedure, only positive samples and unlabeled

samples are available. We can think of PU learning as a special case of SSL.

Meta-learning. Meta-learning, also known as “learning to learn”, aims to

learn new skills or adapt to new tasks rapidly with previous knowledge and a few

trainings example. It is well known that a good machine learning model often

requires a large number of samples for training. The meta-learning model is

expected to adapt and generalize to new environments that have been encountered

during the training process. The adaptation process is essentially a mini learning

session that occurs during the test but has limited exposure to new task

configurations. Eventually, the adapted model can be trained on various learning

tasks and optimized on the distribution of functions, including potentially unseen

tasks.

Self-supervised learning. Self-supervised learning has gained popularity due

to its ability to prevent the expense of annotating large-scale datasets. It can

leverage input data as supervision and use the learned feature representations for

many downstream tasks. In this sense, self-supervised learning meets our

expectations for efficient learning systems with fewer labels, fewer samples, or

fewer trials. Since there is no manual label involved, self-supervised learning can

be regarded as a branch of unsupervised learning.

1.4. Assumptions used to build networks with SSL

In the case of SSL, the implicit assumption is the example with the i.e., there

are few labeled examples, but many unlabeled points in the training set. Unlabeled

points in the training set. Therefore, it is very important it is likely that many

unlabeled points have no labeled points at all in their neighborhood. Moreover,

defined in the point, suggests that we should consider the dis in labeling of

unlabeled points.

In the clustering tends to be more reliable than in the case of the

neighborhood of the unlabeled point in particular as the unlabeled point i is in a

region with low data density. Consequently, all density-based clustering

algorithms, can be used to group the training data into clusters.

There are some assumptions with explanations notation for the better

understanding in the table 1.2 below:

Variable Meaning

G Generator

C Classifier

R Consistency constraint

g A graph

X Input space, for example X = Rn

Y Regression: Y=R, output space classification: y = {y1, y2, …, yk}.

Dii The degree of node i

v A node v ∈ V

XL Labeled dataset xi ∈ X, yi ∈ Y

XU Unlabeled dataset xi ∈ X

L Loss function

E Expectation

H Entropy

Z Embedding matrix

A The adjacency matrix of a graph

W The weight matrix

Wij The weight associated with edge eij

D The degree matrix of a graph

Dii The degree of node i

V The set of vertices in a graph

Ԑ The set of edges in a graph

Zv An embedding for node v

S Similarity matrix of a graph

D Discriminator

Hv
(k) Hidden embedding for node v in kth layer

S[u, v] Similarity measurement between node u and v

N(v) The neighbors of a node v

mN(v) Message aggregated from node v’s neighborhoods

And then a competition based on kinship would take place within each

cluster other than its neighborhood for labeling unlabeled points. Largely also

because it solves the sparsity problem of the labeled example because all

unlabeled points of a cluster are unlabeled points in a cluster can be labeled

because there is a labeled point in the cluster.

SSL aims to predict more accurately with the aid of unlabeled data than

supervised learning that uses only labeled data. However, an essential prerequisite

is that the data distribution should be under some assumptions. Otherwise, SSL

may not improve supervised learning and may even degrade the prediction

accuracy by misleading inferences.

Following and, the related assumptions in SSL include:

- Self-training assumption;

- Co-training assumption;

- Generative model assumption;

- Cluster assumption;

- Low-density separation;

- Manifold assumption.

Taking into account assumption of self-training, predictions of the self-

training model, especially those with high confidence, tend to be correct. We can

assume that when the hypothesis is satisfied, those high-confidence predictions

are considered to be ground-truth. This can happen when classes form well-

separated clusters.

Different reasonable assumptions lead to different combinations of labeled

and unlabeled data, and accordingly, different algorithms are designed to take

advantage of these combinations. For example, proposed co-training model,

which works under the assumptions: instance x has two conditionally independent

views, and each view is sufficient for a classification task. It’s the meaning of co-

training.

Generally, in generative model it is assumed that data are generated from a

mixture of distributions. When the number of mixed components, a prior p(y) and

a conditional distribution p(x|y) are correct, data can be assumed to come from

the mixed model. This assumption suggests that if the generative model is correct

enough, we can establish a valid link between the distribution of unlabeled data

and the category labels by p(x, y) = p(y)p(x|y).

In cluster assumption two points x1 and x2 are in the same cluster, they

should belong to the same category. This assumption refers to the fact that data in

a single class tend to form a cluster, and when the data points can be connected

by short curves that do not pass through any low-density regions, they belong to

the same class cluster. According to this assumption, the decision boundary

should not cross high-density areas but instead lie in low-density regions.

Therefore, the learning algorithm can use a large amount of unlabeled data to

adjust the classification boundary.

For the low-density separation case - decision boundary should be in a low-

density region, not through a high-density area. The low-density separation

assumption is closely related to the cluster assumption. We can consider the

clustering assumption from another perspective by assuming that the class is

separated by areas of low density. Since the decision boundary in a high-density

region would cut a cluster into two different classes and within such a part would

violate the cluster assumption.

Representing manifold assumption we know, that two points x1 and x2 are

located in a local neighborhood in the low-dimensional manifold, they have

similar class labels. This assumption reflects the local smoothness of the decision

boundary. It is well known that one of the problems of machine learning

algorithms is the curse of dimensionality. It is hard to estimate the actual data

distribution when volume grows exponentially with the dimensions in high

dimensional spaces. If the data lie on a low-dimensional manifold, the learning

algorithms can avoid the curse of dimensionality and operate in the corresponding

low-dimension space.

1.5 Semi-supervised learning classification of neural network

approaches

Semi-supervised learning algorithms use not only the labeled data but also

unlabeled data to construct a classifier. The goal of semi-supervised learning is to

use unlabeled instances and combine the information in the unlabeled data with

the explicit classification information of labeled data for improving the

classification performance. The main issue of semi-supervised learning is how to

exploit information from the unlabeled data.

A number of different algorithms for semi-supervised learning have been

presented, such as the Expectation Maximization based algorithms self-training,

co-training, Transductive Support Vector Machine, Semi-Supervised SVM,

graph-based methods, and boosting based semi-supervised learning methods.

Self-training is a commonly used method to semi-supervised learning in many

domains, such as Natural Language Processing and object detection and

recognition. A self-training algorithm is an iterative method for semi-supervised

learning, which wraps around a base learner. It uses its own predictions to assign

labels to unlabeled data.

The main difficulty in self-training is to find a set of high-confidence

predictions of unlabeled data. Although for many domains decision tree classifiers

produce good classifiers, they provide poor probability estimates. The reason is

that the sample size at the leaves is almost always small, and all instances at a leaf

get the same probability. The probability estimate is simply the proportion of the

majority class at the leaf of a (pruned) decision tree. A trained decision tree indeed

uses the absolute class frequencies of each leaf of the tree as follows:

p(k|x) =
K

N

Then, a set of newly-labeled data, which we call a set of high-confidence

predictions, are selected to be added to the training set for the next iterations. The

performance of the self-training algorithm strongly depends on the selected

newly-labeled data at each iteration of the training procedure.

First, we briefly review the online boosting tracking system, which is based

on online boosting for feature selection, and replaced by our proposed online

SemiBoost algorithm. The basic idea is to formulate the tracking as a binary

classification problem between the foreground object to be tracked and the local

background. where K is the number of instances of the class k out of N instances

at a leaf. However, these probabilities are based on very few data points, due to

the fragmentation of data over the decision tree.

Assuming that the object is detected in the first frame, the initial

classification is performed by taking positive samples of the object and randomly

selected negative samples of the background. The tracking loop consists of the

following steps. From I to I+1 the classifier is evaluated pixel by pixel in the local

environment. The classifier gives a response corresponding to the likelihood ratio.

Figure 1.6 Presentation of the object according to a certain time in the

tracking process

In short, we extend the analysis of decision trees to ensembles of decision

trees. An ensemble combines many possibly weak classifiers, hopefully into a

single strong classifier. Ensemble methods differ according to the base learner and

the way the classifiers are combined. Examples of ensemble methods are batch

method, boosting, random forest method and random subspace method.

In general, self-training is a wrapper algorithm, and is hard to analyze.

However, for specific base classifiers, theoretical analysis is feasible, for example

showed that the algorithm minimizes an upper-bound on a new definition of cross

entropy based on a specific instantiation of the Bregman distance. In this paper,

we focus on using a decision tree learner as the base learner in self-training. We

show that improving the probability estimation of the decision trees will improve

the performance of a self-training algorithm.

Semi-supervised assumptions (SSAs) hold for the data distribution. As

summarized in, there are three fundamental SSAs: semi-supervised smoothness,

cluster and manifold assumptions.

The semi-supervised smoothing assumption states that if two points in a

high-density region are close, then their corresponding labels should be the same

or consistent. The cluster assumption is described as follow: if points are located

in the same cluster, they are likely to belong to the same class. In other words, the

decision boundary is likely to lie in a low data-density region, which is also

referred to as the low density separation assumption. The manifold assumption

states that the high-dimensional data lies on a low-dimensional manifold whose

properties ensure more accurate density estimate and or more appropriate

similarity measures.

 To work on the aforementioned SSAs, regularization has been employed in

SSL to exploit unlabeled data. A number of regularization methods have

beenproposed based on cluster or smoothness assumption, which exploits

unlabeled data to regularize the decision boundary and therefore affects the

selection of learning hypotheses. Working on cluster or smoothness assumption,

most of regularization methods are naturally inductive.

Figure 1.7 Distance of unlabeled examples

On the other hand, the manifold assumption has also been applied for

regularization where the geometric structure behind labeled and unlabeled data is

explored with a graph-based representation. In such a representation, examples

are expressed as the vertices and the pairwise similarity between examples is

described as a weighted edge. Thus, graph-based algorithms make good use of the

manifold structure to propagate the known label information over the graph for

labeling all nodes. In nature, most of such graph-based regularization algorithms

are transductive although they can be converted into inductive algorithms with the

out-of-sample extension.

As a generic ensemble learning framework, boosting works via sequentially

constructing a linear combination of base learners, which appears remarkably

successful for SL. Boosting has been extended to SSL with different strategies.

Semi-supervised MarginBoost and ASSEMBLE were proposed by introducing

the “pseudo-class” or the “pseudo-label” concepts to an unlabeled point so that

unlabeled points can be treated as same as labeled examples in the boosting

procedure.

In essence, such extensions work in a self-training like style; the unlabeled

points are assigned pseudo-class labels based on the constructed ensemble learner

so far, and in turn those pseudo-class labels will be used to find a new learner to

be added to the ensemble. As pointed out in, such algorithms attempt to minimize

both labeled and unlabeled margin cost only. Thus, a hypothesis can be very

certain about the classification of unlabeled points with very low margin cost even

though these unlabeled points are not classified correctly.

From single decision trees to ensembles of decision trees, in particular the

Random Subspace Method and Random Forest. In this case, probability is

estimated by combining the predictions of multiple trees. However, if the trees in

the ensemble suffer from poor probability estimation, the ensemble learner will

not benefit much from self-training on unlabeled data. Using the modified

decision tree learners as the base learner for the ensemble will improve the

performance of self-training with the ensemble classifier as the base learner. The

results of the experiments on the several benchmark datasets confirm this.

Figure 1.8 Standart and Grafted decision trees examples.

We show that these modifications do not produce better performance when

used on the labeled data only, but they do benefit more from the unlabeled data in

self-training.

The modifications that we consider are Naive Bayes Tree, a combination of

no-pruning and Laplace correction, grafting, and using a distance-based measure.

We then extend this improvement to algorithms for ensembles of decision trees

and we show that the ensemble learner gives an extra improvement over the

adapted decision tree learners.

The performance of the self-training algorithm strongly depends on the

selected newly-labeled data at each iteration of the training procedure. This

selection strategy is based on confidence in the predictions and therefore it is vital

to self-training that the confidence of prediction, which we will call here

probability estimation, is measured correctly.

There is a difference between learning algorithms that output a probability

distribution, neural networks, logistic regression, margin-based classifiers, and

algorithms that are normally seen as only outputting a classification model, like

decision trees. Most of the current approaches to self-training utilize the first kind

of learning algorithms as the base learner.

Summarizing the first section, it was possible to classify methods with the

partial involvement of the teacher, assumptions and understand the basic

component of classical methods or ancient teachings. The next section will deal

with AdaBoost, MarginBoost methods, and the concept of boosting.

ACIC DEPARTMENT

Page

NAU 22 07 05 000 EN

 Performed Bogdan PLODISTYI

Supervisor Victor SINEGLAZOV

S. controller Mykola FILYASHKIN

 Dep. head Victor SINEGLAZOV

Ensemble Classifier

Based

 On Boosting

N. Pages

225 151

CHAPTER 2. NEURAL NETWORK TRAINING WITH PARTIAL

TEACHER INVOLVEMENT.

2.1 Problem statement and data sampling.

The basis for starting to process data in the areas of data assembly, pattern

detection and machine learning will require detailed consideration of models and

datasets.

The concept of a dataset includes future vectors, among which, each vector

is a description of an object using its characteristics. For example, consider a

synthetic three-Gaussians dataset.

Figure 2.1 The synthetic three-Gaussians data set

The data structure is usually presented in the form of a prediction model, and

as a model with a study or dataset construction. For example, a support vector

machine, a neural network or a decision tree.

The basic process of model emergence from the data is referred to as learning

or training, using a learning algorithm. There are different learning settings

through which the most basic are supervised learning and unsupervised learning.

There are different parameters for learning, the most important of which are

supervised learning and unsupervised learning. Predicting the value of a target or

an undefined instance is the goal in supervised learning. Predictor is a unique

name for a learned model.

Crosses and circles need to be marked to define the data assembly and the

task of the predictor is to determine the unknown values of the instance.

A similar parsing is called classification with a classifier.

Having numerical values in the data sample, it is possible to redefine the

coordinates by regression with a learning model called fitted regression model.

The collection of data for training in all cases will be referred to as an example.

In the case of binary classification definitions, finding positive and negative

points is used to highlight markers. Unsupervised learning involves some data or

input to investigate the internal distribution.

Clustering, is a concept that reveals the achievement of a cluster structure of

data points.

The ensemble has a number of advantages in operation:

- With tagged and untagged data, every classification algorithm that has

weight membership can be enhanced.

- Using different classes, from two, to multi-classes, it is possible to

determine the marginal value involving unspecified data.

- SSMBoost can only be used with a specific step dimension. Assemble, on

the other hand, has a matched step-size, each regular student is weighted in the

right ensemble supervision methods.

- Speaking for acceleration, unlabelled data with a significant number of

classifier pair reductions can be seen.

- It is well used in practice with hardware acceleration, which improves

performance and data processing.

- By running experiments with first-pass, one can see the efficiency that can

refine a particular ensemble, AdaBoost loses out on performance with the same

starting number of pairs of learners.

2.2 Classification of approaches

For comparison with a single learning unit, ensemble methods try to

construct a collection of learners with a consequent combination of them. There

are a couple of similar definitions for ensemble: commite-based learning, and

multiple classifier systems.

Figure 2.2 Architecture of a common ensemble

There are three key approaches to problem-solving in ensemble methods:

ensembles of weak learners, combining classifiers, mixture of experts.

Combining classifiers are usually used to define patterns.

Following machine learning can highlight the acceleration of the data

sampling process, in building powerful algorithms to increase performance with

the method of ensembles of weak learners. It is from this method that AdaBoost

and Bagging were subsequently described.

By expounding on the topic of weak learners we can redefine weak learners

into strong learners.

The third method moves into the neural network section. Using combinations

and joins of parametric models, groups of rules "mixture of experts" helps to

obtain an optimal solution to the problem.

This is shown through errors, noise level, and average in the Hansen and

Salamon study.

Figure 2.3 Illustration of the Combining method with better results

This method was more accurate than single purpose. Errors and noise level

is lower in such case. This makes it clear that there is an advantage in using the

combinatorial method.

There are a number of algorithms for solving different problems in an

ensemble. Each of them has its pros and cons, the combination includes a number

of advantages for boosting tasks.

These algorithms include: AdaBoost, Logistics Regression, Neural Network,

Support Vector Machines, Random Forest and Kernel Factory, k-nearest

neighbor.

The Lasso approach - is used to define the concept of logistic regression.

The scientist attributes a constraint to the sum of the full values of the coefficients.

In the output from this the coefficients are reduced to zero. We process the

shrinkage value through cross validation. Different data packages are used for this

task, e.g., glmnet. The variable α is overridden by a value of one to detect lasso

properties, thus allowing the function to find and compute the sequence λ by

setting the value of nlambda to 100.

To create a Random Forest view, two values must be set: the total amount of

variables to be processed for each partitioning and the number of trees in the

ensemble. Revisiting Breyman's advice and finding the number of values equal to

the square root of the allowable value of the predictors and using a large number

of trees up to 500. The processing of the Random Forest type of data uses a library

of appropriate name.

The first applications of the boosting phenomenon can be seen as an affinity

to deterministic weighting. Stochastic boosting, is a boosting that enhances single

algorithms by adding randomness as a mandatory part of the process. The two

non-negotiable values are the number of terminal connections in the underlying

classifiers and the number of iterations.

By setting the maximum number of connections to eight, setting the

maximum tree depth to three values, we can achieve appropriate

recommendations. In addition, the number of iterations is set to 500. Stochastic

boosting can be seen in the implementation using the Ada library.

Support vector machines are commonly used in binary classification with

high margin classifiers that select areas of different classes with the required

hyperplane at the maximum margin. Minimum distance between two unknown’s

parameters to the classification hyperplane.

The purpose of the k-nearest neighbor method is to rule that every input pair

of objects is similar to the output pair. This briefly describes lazy learning, without

a direct learning process with an easy way to store the set. During the learning

process, the condition appears that the test dataset is similar to the dataset close to

the learning instance. Then, a preferential class is determined, through k instances.

Based on the regression, the test dataset is assigned to the mean of the k instances.

The term boosting was first proposed to define the change of weak learners

to strong learners. When the strong learner is close to perfect performance, the

weak learner has almost no noticeable advantage at the start.

It is assumed that every weak participant is capable of turning into a strong

one. Counting is easy, but getting the desired result with training is difficult. The

basic principle of operation does not include difficulty in the process. Initially,

positive and negative instances are classified. As an example, weak learners

identify a binary distribution problem in the data sample.

At location Y, we can consider training the instances with distribution V and

the ground-truth function f. Assuming that the total area is divided into 3 parts Y1,

Y2, Y3, each part is equal to 1/3 of the total distribution and randomly assumes

50% of the classification error of the weak learner problem. It is necessary to

eliminate as much as possible the errors of the classification problem by having

only weak learners in the first two areas and 1/3 of the classification errors in the

third area. In this zone we can label the weak classifier as J1, it is logical that this

value is not desirable in the subsequent work.

The main point of the work is to change the errors from the J1 variable. We

can redefine V' from V, for obviousness in the initial blunders from J and focus

on the value of Y3. The next step is to train the classifier J2 from V. Understanding

that J2 is identically weak in the classifier, we can say that it has incorrect values

in zone Y2 and correct values in zones Y1 and Y3. By crossing the values of J1

and J2 the resulting classifier will have the correct classifications in zone Y1, and

possibly some errors in the other locations.

To find more evidence in combined classifier errors we need to get a new

distribution V” and learn a new classifier j3 from the distribution. Apply, that

zones X2 and X3 have correct classifications. Approved, that in a place of Y1, Y2

and Y3 we know each of two classifiers to make needed classifications. It is

observed that the last learners focus on the errors of the first learners.

Base procedure for boosting will be described in a few steps:

Data on input: sample distribution – V; the basis of learning algorithm – L;

quantity of a learning iterations - Q;

1. V1 = V (for the process of distribution initialization)

2. for t = 1…….Q:

3. Jt = L(Vt); (than we find a weak leaner with training from Vt)

4. Et = Px~Vt (jt (x) ≠ f(x)); (find the error of jt)

5. Vt+1 = Adding distribution(Vt, Et)

Output data: H(x) = mixed output ({J1(x),…,Jt(x)})

Based on the experiment done, it can be said that the bussing works with a

data set of distributions into zones with a combination of elements within zones

to make further assumptions.

MarginBoost is a stage-wise procedure corresponds to a gradient descent of

a cost functional based on a decreasing function of the margin, in the space of

linear combinations of base classifiers. This new method enhances work based on

a direct plug-in extension of AdaBoost in the sense that all the ingredients of the

gradient algorithm such as the gradient direction and the stopping rule are defined

from the expression of the new cost function. Moreover, while the algorithm has

been tested using the mixtures of models, SMMBoost is designed to combine any

base classifiers that deals with both labeled and unlabeled data.

2.3 Learning algorithms for semi-supervised learning neural networks

Based on the achievements of the past algorithm, one can well see the

uncertainty in such variables: distribution adjustment and combination of output

values.

The AdaBoost algorithm, is considered one of the most successful for

speeding up processing. By including consideration of binary classification in the

-1 to +1 area, the output of the algorithm can be achieved through an exponential

loss minimization function:

lexp(j | V) = Ex~V[e-f(x)j(x)]

Input data: data set V = {(y1, r1), (y2,r2),…,(ym, rm)}; mane learning algorithm

L; quantity of a learning iterations – Q.

1. V1(x) = 1/m. (to find the weight L)

2. for t = 1,…,T:

3. jt = L(V, Vt);

4. et = Px~Vt (jt (x) ≠ f(x)); (find the error of jt)

5. if et > 0,5 then break

6. at = ½ ln (1-et / et); (find the value of the jt weight)

7. Vt+1(x) = (Vt(x) / Zt) * {exp(-at) if jt(x) = f(x)}; {exp(at) if jt(x) ≠ f(x)}

= Vt(x)exp(-atf(x)jt(x)/ Zt (Zt can describe as a factor which enables Vt+1

to the distribution stage)

Output data: H(x) = sign (ƩТ
t=1 atjt (x))

We can use summarize weighted combination for weak learners:

H(x) = ƩT
t=1 atjt (x)

For using an exponential loss formula obtained a new basic and simple one,

for getting minimalization of classification error. Main goal is to minimize the J

value, often partial derivative of the loss for each x is equal to zero.

de-f(x)J(x)
dJ(x) = -f(x)e-f(x)J(x) = -e-J(x)P(f(x) = 1 | x) + eJ(x)P(f(x) = -1 | x) = 0

After getting an answer we obtain:

J(x) = ½ ln {P(f(x) = 1 | x)};

{P(f(x) = -1 | x)} and other,

sign(J(x) = sign {1/2 ln P(f(x) = 1 | x}; {P(f(x) = -1 | x} = {1, P(f(x) = 1|x) >

P(f(x) = -1 | x)}; {-1, P = (f(x) = 1 | x) < P(f(x) = -1 | x)} = argmax P(f(x) = y | x);

y є {-1;1}

Furthermore, introduce that sign(J(x)) can get the Bayes error rate. In this

example of algorithm was one of the cases was ignored – P(f(x) = 1|x) = P(f(x) =

-1|x). Also, known that exponential loss is minimized, the classification error too.

If we replaced the non-differentiable classification problem, we can get better

optimization point.

J created one-by-one with iteratively generating Jj and at. Seen that first

classifier j1 can be represented as activation of the weak learning algorithm with

the new distribution. So, parameter jt is generated near the distribution Vt, it’s

weight at also determined as atjt with exponential loss and minimizing.

Lexp(atht | Vt) = E x~Vt[e
-f(x)atht(x)] = E x~Vt [e

-at|| (f(x) = jt(x)) + eat|| f(x) ≠ Jt(x))] =

e-atPx~Vt(f(x) = jt(x)) + eatPx~Vt(f(x) ≠ Jt(x)) = e-at(1-et) + eatet;

Where et = Px~Vt(jx(x) ≠ f(x)). So, if we get the needed at, exponential loss

will be equal to zero:

Dlexp(atjt | Vt) / dat = -e-at(1-et) + eatet = 0;

at = ½ ln(1-et/et)

After combining processes one of equation with weak classifiers with

weights can combined as Ht-1. With the help of AdaBoost adjusting the sample

distribution for the next iteration, main algorithm can get output data with a weak

classifier Jt with refusing a few mistakes of Ht-1. To minimize the exponential loss,

it needs to see the ideal classifier jt that corrects full obtain mistakes of Ht-1:

Lexp(Ht-1 + ht | V) = Ex~V[e-f(x)(Ht-1(x)+ht(x))] = Ex~V[e-f(x)Ht-1(x)e-f(x)jt(x)]

In addition, Taylor formula for the case of e-f(x)jt(x), the exponential loss can

be described with approximation by:

Lexp(Ht-1 + jt | V) ≈ Ex~V[e-f(x)Jt-1(x)(1-f(x)jt(x) + f(x)2jt(x)2/2)] = Ex~V[e-f(x)Jt-

1(x)(1-f(x)jt(x)+1/2)]

From the task, we know f(x)2 = 1 and Jt(x)2 = 1;

Main classifier Jt is:

Jt(x) = argminhlexp(Jt-1 + j | V) = argminhEx~V[e-f(x)Jt-1(x)(1-f(x)j(x)+1/2)] =

=argmaxhEx~V[e-f(x)jt-1(x)f(x)j(x)]=argminhEx~V[Ex~V
e-f(x)Jt-1(x)

[e-f(x)Jt-1(x)]f(x)j(x)]

Knowing that Ex~V[e-f(x)Jt-1(x)] is a stable quantity.

Describe a distribution Vt as:

Vt(x) = V(x)e-f(x)Jt-1(x) / Ex~V[E-f(x)Jt-1(x)]

Throw the math representative form of upper formula we can obtain:

Jt(x) = argmaxhEx~V[e-f(x)Jt-1(x)
[E-f(x)Jt-1(x)]f(x)j(x)] = argmaxhEx~Vt[f(x)j(x)]

We can write that in appropriate way: f(x)jt(x) = 1-2|| (f(x) ≠ jt(x)), normal

classifier was jt(x) = argminhEx~Vt[
||(f(x) ≠ j(x))].

Moreover, the perfect jt minimize the classification error with the distribution

Vt. We observe, that weaker learner trained under Vt and 0.5 classification error

due to Vt. Describing the relation between Vt and Vt+1:

 Vt+1(x) = V(x)e-f(x)Jt(x)
Ex~V[e-f(x)Jt(x)] = V(x)e-f(x)Jt-1(x)e0f(x)atjt(x)

 Ex~V[e-f(x)Jt(x)] =

 = Vt(x)e-f(x)atjt(x)
 Ex~V[e-f(x)Jt(x)]

Ex~V[e-f(x)Jt-1(x)]

From the formula above AdaBoost update with the sample distribution.

That’s how this algorithm works and can be learnable with specific distribution.

The aim is to re-weighting with training examples in every iteration per one pass.

On the other side, without handling weighted training parameters, usually

used the meaning of re-sampling and it gives sampling training parameters in

every iteration per one iteration, including needed distribution. It applies main

task.

Both of two variants include a part of performance which can be unique and

not be clear between them at all. Re-sampling can produce other option for

Boosting with restart. Every iteration of AdaBoost, program check for each

learner and know that he better than random guess. Having an optimal number of

rounds T AdaBoost will be early-refused far in a case of each T. Including even

on multiclass problems.

If we have base learner which cannot be on pass check, re-sampling removed

them, continue with a new pair of a generated base learners. So, the AdaBoost

provides solving and avoiding for the early-termination tasks.

Starting from parsing the description of the previous working algorithm, you

can see the advantages of processing it in a dataset. Having a coordinate axis in

two projections, it is possible to parse 4 points where y(i) = f(zi), a unique point

label. In this way, one can see the XOR problem. Most classes (positive and

negative) cannot be crossed by a linear classifier.

Parsing the problem with the basic learning algorithm one can see the

solution of eight different functions. By training the data under the required

distribution, and having the output with the smallest error. If more than one

function with the smallest error is found, one random function will be selected.

All of the examples discussed below can include both classes.

Figure 2.4 The XOR data and 1st iteration

Figure 2.5: 2nd iteration and 3rd iteration

It is necessary to connect the trained algorithm to the data. Given that j2, j3,

j5 and j8 have the smallest qualification error of 0.25, we can consider - j2 as the

classifier. Parameters x1, x2 are part of x in the first and last dimension.

j1(x) = {
+1, 𝑖𝑓 (𝑥1 > −0.5)

−1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 j2(x) = {

−1, 𝑖𝑓 (𝑥1 > −0.5)

+1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

j3(x) = {
+1, 𝑖𝑓 (𝑥1 > +0.5)

−1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 j4(x) = {

−1, 𝑖𝑓 (𝑥1 > +0.5)

+1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

j5(x) = {
+1, 𝑖𝑓 (𝑥2 > −0.5)

−1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 j6(x) = {

−1, 𝑖𝑓 (𝑥2 > −0.5)

+1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

j7(x) = {
+1, 𝑖𝑓 (𝑥2 > +0.5)

−1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 j8(x) = {

−1, 𝑖𝑓 (𝑥2 > +0.5)

+1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Figure 2.5 Bringing up the learning algorithm on eight functions

Figure 2.6 Single decision tree

Figure 2.7 AdaBoost usage

Figure 2.8 Three-Gaussian data set usage with AdaBoost decision trees

From the decision boundaries 0.25 if a fourth half of error from the first

figures. The weight of j2 is 0.5ln 3 is equal to 0.55, so describing an image with

the classification weight on the black and grey sides we can see the values of 0.55

and -0.55.

On figure 2.3 Parameter z1 is higher, we can see other iteration with rounds

of the main algorithm on the invoking stage. In each case of j3, j5 and j8 parameters

have smallest error with taking a supposed parameter j3 with weight 0.8.

Next figure shows combination of parameters j2 and j3 using grey levels. The

weight of z2 increasing during parameters j5 and j8 have small error. Against taken

j5 as supposed parameter and optimal weight that saw on picture 2.4 with

combined classification parameters j2, j3 and j5 accordingly.

The last step is to distribute the classification: z1 and z2 are positive weights.

Other cases are negative sets of weights. You can see the correct placement of the

weights. AdaBoost produced a non-linear classifier with an error of zero.

The main drawback of the algorithm is that it is overloaded in its data

processing, which significantly reduces performance in some cases.

Figure 2.9 Decision Stump results

Figure 2.10: Pruned decision tree results

Figure 2.11: Unpruned decision tree results

Including the latest results of the AdaBoost method, we can consider the

available range of classifications of SSA, let’s construct table 2.1:

T – transductive property;

I – inductive property;

Group Approach Summary T/I

Manifold

Assumption

Label

Propagation

Graph-based; Maximize label consistency

using Graph Laplacian

T

Min-Cuts Edge-weight based graph-partitioning

algorithm constraining nodes with same label

to be in same partition

T

MRFs,

GRFs

Markov random field and Gaussian random

field models

T

LDS TSVM trained on a dimensionality reduced

data using graph-based kernel

T

SGT Classification cost minimized with a

Laplacian regularizer

T

LapSVM SVM with Laplacian regularization I

Cluster

Assumption

Co-training Maximizes predictor consistency among two

distinct feature views

I

Self-training Assumes pseudo-labels as true labels and

retrains the model

I

SSMB Maximizes pseudo-margin using boosting I

ASSEMBLE Maximizes pseudo-margin using boosting I

Mixture of

Experts

EM based model-fitting of mixture models I

EM-Naive

Bayes

EM based model-fitting of Naive Bayes I

TSVM,

S3VM

Margin maximization using density of

unlabeled data

I

Gaussian

processes

Bayesian discriminative model I

Manifold &

Cluster As-

sumptions

SemiBoost Boosting with a graph Laplacian inspired

regularization

I

To summarize, in the next section we can consider several algorithms

involving ensemble, for processing semi-guided learning on a sample. By

selecting the correct ensemble with an iterative pass, you can view the

performance and quality of the algorithm's response.

ACIC DEPARTMENT

Page

NAU 22 07 05 000 EN

 Performed Bogdan PLODISTYI
 Supervisor Victor SINEGLAZOV

S. controller Mykola FILYASHKIN

 Dep. head Victor SINEGLAZOV

Ensemble Classifier

Based

 On Boosting

N. Pages

225 151

CHAPTER 3. STRUCTURALLY PARAMETRIC SYNTHESIS OF

AN ENSEMBLE OF NEURAL NETWORKS.

3.1 An ensemble approach in the construction of neural network-

based classifiers.

Develop a Hybrid Ensemble consisting of six sub-ensembles: Bagged

Logistic Regression, Random Forest, Kernel Factory, Bagged Support Vector

Machines, Stochastic Boosting, and Bagged Neural Networks. We test the

algorithm on eleven data sets using five times twofold cross-validation. The

Hybrid Ensemble significantly and consistently outperforms the Single Best sub-

ensemble on all data sets when the authority method or Self Organizing Migrating

Algorithm is used for weight estimation.

Analyses also indicate that the Hybrid Ensemble yields increasingly

important classification improvements with increasingly difficult tasks. To the

best of our knowledge this study is the first to assess the added value of algorithm-

induced diversity over and above data-induced diversity in ensemble design.

While data perturbation techniques have flourished in recent years, the use

of algorithm variation has remained largely unexplored. Although several papers

recognized that combining multiple inductive biases is an effective way to create

diversity, only few scholars have used this strategy so far. Furthermore, even less

authors recognized that the integration of both schemes could be beneficial in

improving the ensemble accuracy. Summarizes the literature by including a set of

ground-breaking, pivotal papers that use data variation and algorithm variation.

Let’s describe the Hybrid Diversity Generation Strategies on table 3.1:

Depend on the output that is received from the base classifiers. While some

form of (weighted) voting has become the most frequently used method in

classifier fusion, it is not necessarily the best option. A lot of information is lost

as it only uses class label output. Confidences or posteriori probabilities contain

the highest amount of information and are able to reduce the generalization error.

Therefore, in our hybrid design we calibrate all of our models to ensure we have

measurement level output for every base classifier. As a result, we can fuse our

classifiers using weighted averaging. In this study we restrict ourselves to linear

combinations because we want to limit the number of parameters that needs to be

estimated in order to keep the analysis tractable.

To calculate the weights, one can make use of fixed rules or trained weights.

While fixed rules have a very small-time complexity and provide simplicity, their

result is expected to be worse than that of the trained ones. The easiest way to

combine the different measures is to take the simple average. The performance of

this simple method is often close to that of the weighted average but in most cases,

a weighted average is able to outperform the simple average. In performance- or

authority- based weighting the weight of each classifier is set proportional to its

performance on a validation set.

This method typically performs better albeit at the cost of more

computational effort. Weights can be trained by either a statistical method or a

general-purpose solver. The latter category has the advantage that the objective

function can be chosen freely to fit the application and that it is more likely to

find global optima for the parameters. Although not the primary focus of this

study, we tried to benchmark as many methods as possible in each category.

Characteristics of base classifiers will represent in table 3.2

Base classifier parameter tuning is performed by cross-validation using X

train, Y train, X validate, and Y validate. The combiners that are tuned use Y’

validate and Y validate.

Input:

• x = predictor variables

• y = response variable with class labels {0,1}

• combine = one of the following combination methods {GA, DEA, GSA,

MALSC, PSO, SOMA, TSA, NNBL, GINNLS, LHNNLS, AUTH, MEAN}

• member parameters=parameters of base classifiers

• combination parameters=parameters of combiners

Classifier Generation:

Randomly divide x into X train (50% of instances) and X validate (50%)

Make the same split for y: Y train and Y validate

Algorithms ← (LR, RF, AB, KF, NN, SV)

for Algorithms do

Tuned Parameters ← tune (X train, Y train, X validate, Y validate)

Classifiers ← train (X train, Y train, Tuned Parameters)

Y’ validate ← predict (Classifiers, X validate)

Calibrators ← train calibrator (Y’ validate, Y validate)

Y’ validate ← calibrate (Calibrators, Y’ validate)

Evaluations ← evaluate (Y validate, Y validate)

Classifiers ← train (X, Y, Tuned Parameters)

End.

Classifier combination:

if combine one of {GA, DEA, GSA, MALSC, PSO, SOMA, TSA, NNBL,

GONNLS, LHNNLS}

then

weights ← optimize classifier weights (Y’ validate, Y validate)

else if combine == AUTH then

weights ← evaluations/sum(evaluations)

else if combine == MEAN then

weights ← (1/6,1/6,1/6,1/6,1/6,1/6)

Result: Calibrators, Classifiers, Weights

Semi-supervised learning deals with methods for exploiting the unlabeled

data in addition to the labeled data to improve performance on the classification

task. Semi-supervised learning has been the topic of four different Neural

Information Processing Workshops. Ensemble methods such as AdaBoost work

by iteratively using a base learning mechanism to construct a classifier to improve

the ensemble classifier and then adding the classifier to the current ensemble with

an appropriate scalar multiplier (the step-size). It is well known that such

algorithms are performing gradient descent of an error function in function space.

Depending on the measure of quality of the classifier, different criteria are

produced for choosing the base classifier and assigning the step-size.

The advantages of Ensemble:

• Any weight-sensitive classification algorithm can be boosted using

labeled and unlabeled data;

• Unlabeled data can be assimilated into margin-cost based ensemble

algorithms for both two-class and multi-class problems;

• Ensemble can efficiently exploit the adaptive step-sizes used to weight

each base learner within existing supervised ensemble methods. SSMBoost is

practically limited to fixed step-sizes;

• Ensemble can exploit unlabeled data to reduce the number of classifiers

needed in the ensemble therefore speeding up learning.

• Computational results show the approach is effective on a number of test

problems, producing more accurate ensembles than AdaBoost using the same

number of base learners.

Determine unlabeled data we must come up with a mechanism for defining

the margin associated with unlabeled data points. While the strategy is in general

applicable to many different margin cost functions, we focus on the one used in

AdaBoost.

Let the base classifiers be fj (x): Rn → [1, −1] where fj is the jth classifier

in the ensemble.

Let the labeled training data, L, be the n-dimensional points x1, . . ., x` with

know labels, y1, . . ., yl.

For now, assume the problem has two classes yi = 1 or −1. A multi-class

extension is discussed in later sections. The ensemble classifier F (x) is formed

from a linear combination of the J base classifiers:

F (x) = Ʃe-yiF(xi) (3.1)

F(x) = Ʃj
i=1 wj fj (x), where wj is the weighting term for the jth classifier.

For labeled data points the margin is yiF (xi). AdaBoost performs gradient descent

in function space in order to minimize an exponential margin cost function.

U – unlabeled data.

To incorporate unlabeled data, we must define the margin of an unlabeled

data point. We do not know the class yi for unlabeled data points. Note that for

labeled data points, the margin, yiF(xi), is positive if the point is correctly

classified and negative if the point is wrongly classified. An unlabeled point is

never right or wrong.

So, we define the margin for an unlabeled data point xi to allow the same

margin to be used for both supervised and unsupervised data we can introduce the

concept of a pseudo-class. The pseudo-class of an unlabeled data point xi is

defined as yi = sign (F(xi)).

The margin then is yiF(xi) where yi is the known class label if xi is labeled

or the pseudo-class if xi is unlabeled. The introduction of the pseudo-class is the

critical difference between our approach and the independently developed

SSMBoost. By introducing pseudo-classes, we can show that our Adaptive Semi-

Supervised Ensemble method, which corresponds to the intuitive semi-supervised

ensemble algorithm, maximizes the margins of both the labeled and unlabeled

points in function space. As noted above, given that the margin for labeled points

is yiF (xi), we can define the margin for unlabeled data points as |F (xi)|. Using

these values, we can then define a margin cost function that incorporates both

labeled and unlabeled data.

The Essemble cost function for AdaBoost is:

(3.2)

In general, the Essemble cost function for any margin cost function, M, is

(3.3)

The terms αi and αj are used to weight the labeled and unlabeled data so that

we could, for example, choose to weight the margins associated with unlabeled

data points as counting only 40% as much as the margins for labeled data points.

To create a practical descent-based algorithm we build on the AnyBoost

approach. Recall the AnyBoost algorithm from:

1. Let F0(x): = 0;

2. for t: = 0 to T do;

3. Let ft+1: = L (Ft, −∇C(Ft));

4. if − < ∇C(Ft), ft+1 >≤ 0 then;

5. return Ft;

6. end if;

7. Choose wt+1

8. Let Ft+1: = Ft + wt+1ft+1

9. end for

10. return FT+1

3.2 A review of neural network ensemble combining-based

approaches

The boosting algorithm within the generic margin cost functional

framework for boosting. Boosting is treated as a greedy yet stage-wise functional

minimization procedure where each stage seeks a function from a given subspace

so that combining it with those functions already found in the same way can lead

to the greatest reduction in terms of a cost functional defined based on training

examples. Since our algorithm is within the generic margin cost functional

framework developed for generic yet abstract boosting algorithms, it allows a

range of various margin cost functions to be applied.

To facilitate our boosting learning, we also come up with an initialization

setting based on clustering analysis. It is worth stating that our algorithm is

developed for binary classification tasks but easily extended to cope with

multiclass classification tasks via the one-against-rest scheme although this

treatment might be less efficient than those methods developed very recently for

multi-class boosting without the use of binary decomposition. Extensive

experiments demonstrate that algorithm yields favorite results for benchmark and

real-world classification tasks in comparison to many state-of-the-art SSL

algorithms including semi-supervised boosting algorithms.

The generic form of an ensemble learner constructed by boosting is the

voted combination of base learners, sign [F(x)]. F(x) is the linear combination of

base learners as follows:

F(x) = ∑t Wt ft(x) (3.4)

For binary classification, ft: X → {+1, −1} are base classifiers and wt ∈ R,

are weights for linear combination.

Given a training set of |L| labeled examples, L = {(x1, y1), …, (x,y|L|)},

generated according to a distribution, boosting finds out F(x) so that P(F(x) ≠ y)

on this distribution is minimized. In reality, the distribution is unknown and a

training set L is available only. Thus, boosting would find F(x) by minimizing a

margin cost functional defined on the training set L:

C(F) =
1

|L|
 Ʃ C[yi F(xi)], (3.5)

where C: R → R is a non-negative and monotonically decreasing cost

function. In yiF(xi) is the margin of an example, i ∈ L, with respect to F (x).

3.3. Synthesis of algorithm in the construction of an ensemble of neural

networks with partial teacher involvement based on boosting

1. Let wo(i) = l/l, i = 1, ..., l;

2. Let go(x) = 0;

3. For t = 1 ... T (gradient descent);

4. Learn a gradient direction ht+1 ∈ H with a high value of:

Jt
s = Ʃi∈s wt(i)yyht+1(xi) (3.6)

5. Apply the stopping rule: if Jt
s ≤ Ʃi∈s wt(i)yigt(xi) then return gt else go on;

6. Choose a step-length for the obtained direction by a line-search or by

fixing it as a constant ∈;

7. Add the new direction to obtain: gt+1 =
|at|𝑔𝑡+𝑎𝑡−1ℎ𝑡+1

|at+1|
 (3.7)

8. Fix the weight distribution: Wt+1 =
𝑐′(𝑝(𝑔𝑡+1(𝑥𝑖),𝑦𝑖))

Ʃi∈s c′(p(gt+1(xj),yi))
 (3.8)

So, in that way we can synthesis one of the needed boosting algorithms.

3.4 Research results

 Taking a dataset with text, we can visualize the value: build a graph (heat

map) that shows the correction sign between themselves and with the target

variable (markups). Coding structures will be in next chapter.

 Figure 3.1 Heat map with correction sign

 Constructing histograms of the distribution of the label boxplot-and the

attribute and the target variable:

Figure 3.2 Boxplot with the target variables

From that we can build prediction change graphs with the 0 and 1 values:

Figure 3.3 Boxplot with prediction value for ‘a’ case

Figure 3.4 Boxplot with prediction value for ‘the’ case

After normalizing the data, we can obtain a training test split, in our case

this dataset has 5172 rows x 3000 columns. That we have length in 5172 values.

Figure 3.5 Normalized data structure

 Our task of this work is to train classifiers and use ensemble with different

algorithms, first result with confusion matrix will be for kNN method:

Figure 3.6 kNN method results and confusion matrix

Taken a decision tree classifier with X and Y training fit we testing dataset

to obtain precision and accuracy for the statistical purpose.

Figure 3.7 Decision tree classifier results

Let’s get an image throw the plot function by a programming way. Here we

can see the graph of decision tree:

Figure 3.8 Decision tree graph image plot

For the SVM algorithm we can take Linear Kernel, Polynomial Kernel,

RBF Kernel and Sigmoid Kernel methods. From this we obtain classificational

report with accuracy, weighted and macro avg parameters.

Linear Kernel:

Figure 3.9 Linear Kernel results

Polynomial Kernel:

Figure 3.10 Polynomial Kernel results

RBF Kernel:

Figure 3.11 RBF Kernel results

Sigmoid Kernel:

 Figure 3.12 Sigmoid Kernel results

 Including last 4 data from Kernel methods, we can produce SVM

Gridsearch for prediction results:

 Figure 3.13 Start and end of the grid prediction iterations

Final confusion matrix with accuracy for SVM algorithm:

Figure 3.14 SVM methods confusion matrix results

Futhermore, Random Forest method include almost the same result:

Figure 3.15 Random Forest results

With the value of depth = 16, and estimations number = 256 we can do a

Random Forest Gridsearch:

Figure 3.16 Random Forest Gridsearch results

Taken the last algorithm, Ada Boost:

Figure 3.17 Ada Boost confusion matrix results

Ada Boost Gridsearch with 200 numbers of estimators and 1 value of

learning rate:

Figure 3.18 Ada Boost Gridsearch results

 To see the results on a graph we need to construct fully connected feed-

forward network:

Figure 3.19 Sequential model of fully connected feed-forward network and

parameters

So, this way we take results with 15 epochs and all needed values:

Figure 3.20 Epoch representation with losses and accuracy

Final accuracy after 15 epochs with graph:

 Figure 3.21 Final accuracy and graph for AdaBoost ensemble

In addition, evaluate results from RNN and CNN:

Figure 3.22 CNN parameter results with 15 epochs

Figure 3.23 Graphical representation of CNN parameters results

At the ending, we can obtain embedded model, to achieve better results in

accuracy:

Figure 3.24 Embedded model with parameters

From the sequential fitting we can obtain best accuracy value:

Figure 3.25 Accuracy results after last 10 epochs

We can represent the 1 and 0 values from all neural dataset:

Figure 3.26 Prediction points representation

Let’s find distributed stochastic neighbor embedding using TSNE-1 and

TSNE-2 dataset columns:

Figure 3.27 TSNE results from two sets

The EM expectation maximization graph:

Figure 3.28 EM representation

Obtaining latest accuracy from classification confusion matrix:

Figure 3.29

So, after a set of epochs and ensembles of different algorithms: AdaBoost,

SVM, Kernel Factory we can sort results and know that accuracy = 0,98.

Additionally find LDA accuracy arrays from all methods:

Figure 3.30 Accuracy array results with LDA module

In next chapter we describe the user interface and coding structures from

this work. All results will get using Python 3.0, tensor flow, NumPy and additional

libraries. Best accuracy was 0.98.

ACIC DEPARTMENT

Page

NAU 22 07 05 000 EN

 Performed Bogdan PLODISTYI
 Supervisor Victor SINEGLAZOV

S. controller Mykola FILYASHKIN

 Dep. head Victor SINEGLAZOV

Ensemble Classifier

Based

 On Boosting

N. Pages

225 151

CHAPTER 4. PYTHON BASED SOFTWARE DEVELOPMENT

4.1 Implementation of the program’s lock scheme

The scheme was implemented using the built-in modules of Pandas, NumPy,

MatPlotlib, Seaborn, PIL, and sklearn libraries. By reading the SQL database,

opening the CSV file, the database with the set of occurring phrases was

processed.

The paper also used graphs to display the metrics and data collection of the

required methods and algorithmic approaches of ensemble boosting.

Using programming packages:

Figure 4.1 First part of needed program libraries and modules for solving the

problem

Also, we have second part with better graphical representation in other .py

file:

Figure 4.2 Graphical representation of second part of needed modules

Programming interface include taskbars, debugger, consoles, error point measure

line, progress bar, program window and selected files with databases. Other

frames represent representative work of tensor flow libraries.

4.2 User interface with selection of the desired algorithmisation

ACIC DEPARTMENT

Page

NAU 22 07 05 000 EN

 Performed B. O. Plodistyi

Supervisor V.M.Sineglasov

Consultant A.A. Lavniuk

S. controller M.K. Filyashkin

 Dep. head V.M.Sineglazov

Ensemble Classifier

Based

 On Boosting

N. Pages

225 151

CHAPTER 5. ENVIRONMENTAL PROTECTION.

5.1 Recommendations for the use of computing power for

environmental protection.

Addressing today's global challenges such as biodiversity loss, global

change and increasing demand for ecosystem services requires better

environmental forecasting. The increasing availability and computational power

of data is facilitating the development of quantitative methods in ecology.

However, a flexible methodological framework is needed to apply these advances

to environmental forecasting. Deep Learning (DL) is a branch of Machine

Learning (ML) that is rapidly gaining popularity but has not yet been widely

applied in ecology. It involves training Deep Neural Networks (DNNs), which are

artificial neural networks composed of multiple layers and a large number of

neurons. This paper presents an example (with code and data) of designing,

training and using DNNs for environmental prediction. Using the example of bark

beetle occurrence in coniferous forests, the authors show that DNNs can very well

predict both short-term and local risk of infestation and long-term dynamics at

larger scales. The paper also shows that DNNs are superior to standard methods

in predicting bark beetle dynamics and have great potential for developing a

comprehensive forecasting system in this area.

Machine learning is a family of computer algorithms designed to identify

patterns in complex, often nonlinear, data and build accurate predictive models

from that data. Compared to classical statistical approaches, such as regression,

machine learning focuses on identifying and describing complex relationships and

has predictive capabilities in parameter estimation and confidence intervals.

Machine learning, at the intersection of computer science and statistics and the

core of artificial intelligence and data science, is a rapidly growing field.

Deep learning is a relatively new area of ML. The main DL tool is the deep

neural network (DNN). It is based on artificial neural networks (ANNs) invented

in the middle of the last century. Essentially, DL is a set of methods by which

large (more neurons) and deeper (more layers) neural networks can be trained.

These networks are made possible by the development of improved algorithms

for optimizing the weights that connect neurons (e.g., stochastic gradient descent),

more available processing power, and more training data. Although these

improvements may seem minor, today's DNNs not only outperform their simpler

predecessors, but often outperform other ML approaches in standard tests of

prediction accuracy.

Until a decade ago, ML was hardly used in ecology, but in recent years its

popularity has skyrocketed. However, the potential of ML is far from being fully

exploited, and there are currently very few applications of deep learning in

ecology (Figure S1). The aim of this work is to contribute to the wider

dissemination of deep learning in ecology by demonstrating its potential in

prediction. As an example, the authors of this paper chose the task of predicting

bark beetle outbreaks in conifer-dominated forests.

Convolutional neural network (CNN) is a type of neural network often used

for pattern recognition in image or time series data. In addition to the full link

layers, the CNN includes convolution and fusion layers. In the convolutional

processing layer, filters are applied sequentially to all parts of the input data, using

the same weights. Subsequent design layers combine the output data from the

coalescing layers, making them less sensitive to small shifts and distortions in the

data. A series of such convolution and aggregation layers allows for the extraction

of fairly high-quality properties from the data.

During DNN training, the weights are iteratively updated to minimize the

prediction error. To measure the prediction accuracy on new input data, the data

is divided into a training set and a test set. The details of the network architecture,

such as the size of the network, the choice of specific layer types, and the

parameters of the training process, largely determine the prediction accuracy and

are generally task-specific. Section S2 of the Appendix provides guidance on

DNN design and training, as well as practical considerations for DNN

applications.

5.2 Using neural networks to track diseases and their factors

Deep learning is well suited for generalizing beyond experimental data,

which is essential for making predictions about applied ecological problems. A

particular strength of DL is its ability to achieve a high level of abstraction using

raw data. Furthermore, deep learning can help improve traditional environmental

modelling methods for forecasting tasks. Another promising approach is

combining deep learning with process-based models to achieve a better

understanding of environmental processes.

Machine learning in general, and DNNs in particular, are often criticized

for their "black box" nature - it is difficult to intuitively interpret a trained model

and its weights. As a result, more traditional models continue to be an important

tool for improving understanding, especially of causal relationships in nature. It

should be noted, however, that these classical approaches make a priori

assumptions about the pattern of the data that may not reflect the actual

relationship between cause and effect. Although traditional models provide more

understandable results and have a more rigorous basis for hypothesis testing, they

often do not reflect reality as accurately. Machine learning can more accurately

describe cause and effect relationships without making a priori assumptions.

DNNs work particularly well with environmental data because they can

effectively combine different types of data (e.g., images, numeric and categorical

variables). Furthermore, their hierarchical multi-layered structure reflects the fact

that ecosystems are often governed by multiple processes in hierarchical

relationships. In this study, DNNs outperformed all other methods for modeling

the dynamics of the bark beetle epidemic (with the exception of the random forest

algorithm).

Methods based on logical rules make it possible to take into account

different aspects (semantic, structural, punctuation) of individual words and the

language itself, but their application encounters a number of problems:

- A particular collection of various linguistic rules that must take into

account very different constructive linguistic properties. This aspect requires a

team of linguists.

- The narrow scope of the set of rules is due to the following.

The format of writing various messages on the Internet differs slightly from

the accepted norms of the Russian language in literary form. Messages posted on

social networks are characterized by the presence of punctuation and spelling

errors, the presence of various types of verbal errors and jargon, strange

punctuation marks, and the use of special symbols and graphics to strengthen the

emotional distance of the text.

- Attachment to the language of the analyzed text is always related to unique

linguistic structures are unique and cannot be transferred and applied to other

languages. The use of a rule-based approach can only be effective if the text being

analyzed is grammatically correct and if the various constructions used in the

language being analyzed are covered by a corpus of rules.

5.3 Using self-learning systems to compute statistics of environmental

damage

Creating a fully-fledged artificial intelligence, similar to the human brain,

is an incredibly difficult task for scientists. They have not yet achieved it, but there

is already a lot of development and research in this area.

A lot of energy is required to train an artificial intelligence. And it will grow

over time. However, researchers say that even at the current level, the process of

creating artificial intelligence causes a lot of damage to the environment.

To verify this, the scientists ran four different machine learning programs

on a single graphics processor. They then measured the amount of energy

consumed by each program. The researchers knew how much energy was

consumed and also calculated how much carbon dioxide was produced.

The more complex the programs were, the more power they required and

the more energy they consumed. At the same time, the amount of harmful

emissions increased. It was found, for example, that the machine learning process

emitted five times more carbon dioxide equivalents than the lifetime of a car.

Environmental engineers develop methods to solve environmental

problems. They participate in local and global environmental efforts, such as air

and water pollution control, recycling and waste management.

Depending on the focus of their work, their duties may include collecting

soil or groundwater samples and analyzing them for contamination, designing

municipal wastewater and industrial waste treatment systems, analyzing scientific

data, investigating controversial projects, and conducting quality control studies.

They may provide legal or financial advice on procedures, equipment or

environmental problems. They can study the effects of large-scale problems such

as acid rain, global warming and ozone depletion and try to minimise them.

They will work with other engineers and scientists to solve large-scale

problems. Teamwork is almost always part of any engineer's daily routine, but it

is particularly important for environmental engineers, who often work alongside

civil, mechanical and other engineers.

ACIC DEPARTMENT

Page

NAU 22 07 05 000 EN

 Performed B. O. Plodistyi

Supervisor V.M.Sineglasov

Consultant O.O. Kozlitin

S. controller M.K. Filyashkin

 Dep. head V.M.Sineglazov

Ensemble Classifier

Based

 On Boosting

N. Pages

225 151

CHAPTER 6. LABOR PROTECTION

6.1 Analysis of the use of software in the workplace

 The engineers created a convolutional neural network and taught it to

recognize people in streaming video, identify details of equipment - helmets,

vests, cables - and types of production spaces. In the trial version, the system

records and responds to the three most common worker behavior scenarios:

Whether the worker is wearing a helmet on his or her head - the workplace

norm;

Whether the worker is wearing the hood of the work coat over his or her

helmet - this is strictly prohibited;

Whether the worker is tied up with a rope - mandatory when working at

high altitudes.

A common problem in industrial machine learning projects is that, due to

the novelty of the subject and the sporadic nature of implementations, there are

no initial sets of templates for training neural networks. We had to develop and

mark from scratch a reference dataset containing 45 sequences of positive and

negative scenarios of production personnel behavior.

The video stream is processed in three steps. First, we filter the frames in

which no people are present. Then, the parts of the video in which the system

recognizes people are passed to a convolutional neural network. The network

identifies the person by the markings, and identifies the elements of holding: a

helmet on the head or a rope on the torso. The algorithm, which uses the reference

vector method, then compares the subject's image to the patterns in the database.

If the frame contains violations, the system sends a notification according to

regulations.

The mask RNN was used for image segmentation. This frame can recognize

all defined classes of objects and select the objects in the frame. The neural

network was trained using a mapping script, which is optimal when working with

a limited dataset and we were not burdened with collecting statistics about the

work: how many employees are on site, which departments, which locations do

they spend more time.

The final version was built with robust video stream analysis, object

recognition and behavior-based classification. The accuracy is 82-95 percent. Our

pilot project produced excellent results in the testing phase and now the customer

is continuing the testing. We will keep an eye on further developments as the road

from pilot project to industrial solution is very long.

 Here is an example from our practice: the manager of a wood processing

company is concerned about a manufacturing defect - a deformation of a wooden

beam, the quality of which has been checked by a special employee. We propose

to solve this problem by introducing machine learning and computer vision

algorithms to automatically detect such defects.

We place a special device with an optical sensor at a certain point in the

manufacturing process that films the process, and a special software algorithm

analyzes the video and automatically identifies the beam profile. If the sample is

curved, the device sends a signal to the inversion and classification mechanism.

The new project inversion mechanism will result in an entry in the database

or CRM: how many problems were detected during the working day, at which

location and at what time. The customer can now improve their financial

performance and calculate the financial benefits of automation.

 6.2 Electrostatics, electronic components and safety when working

with computer technology

Сomputer should be ergonomically designed and equipped so that the

information displayed can be read safely and comfortably under the conditions of

use:

- Сomputer shall be designed so that the computer housing, when fixed in

a particular position, can be rotated horizontally and vertically so that the screen

is visible from the front;

- Сomputer should be designed with soft, muted colours and diffused light,

i.e. light scattered in all directions;

- Сomputer housing shall have an opaque surface with a coefficient of

reflection of (0,4-0,6) and no shiny reflective parts;

- Сomputer shall be designed so that brightness and contrast are adjustable.

Documentation shall be available on the operation of new (improved)

computers.

Workstations shall be positioned so that the computer screen faces sideways

towards the light apertures (except for peripheral workstations), so that natural

light is mainly from the left.

Artificial lighting in computer rooms shall be provided by a general,

uniform lighting system. In production, administration and public areas where

documents are primarily handled, a combined lighting system shall be used (in

addition to general lighting, local luminaires shall be installed to illuminate the

document area).

The lighting shall not cause glare on the screen surface. Glare from direct

light sources and from light sources reflecting from work surfaces (screens, desks,

keyboards, etc.) shall be reduced by appropriate selection of the type of luminaires

and by the arrangement of workstations in relation to natural and artificial light

sources.

Luminaires used for local lighting shall be fitted with an anti-glare reflector

with an angle of at least 40°.

LB fluorescent tubes and compact fluorescent tubes shall be used as light

sources for artificial lighting. Metal halide lamps may be used for indirect lighting

in industrial, administrative and public buildings. Incandescent lamps, including

halogen lamps, may be used in local luminaires.

Electronic ballast luminaires with parabolic reflector optics (hereinafter

referred to as EBG) are used for lighting computer rooms. Multi-lamp luminaires

may be used with EBGs having the same number of front and rear branches.

6.3 Failure systematics and hazards in neural network operation

Today's fourth industrial revolution is generally focused on automation

through technology and intelligent systems, with applications in many areas,

including smart healthcare, business intelligence, smart cities, and smart

cybersecurity.

The power of deep learning approaches has increased dramatically across a

wide range of applications, particularly in security technology as an excellent

solution for exploring complex architectures using high-dimensional data. Thus,

deep-learning techniques can play a key role in creating data-driven intelligent

systems that meet today's needs due to their excellent capabilities to learn from

previous data. Consequently, DL can transform the world and people's daily lives

through the power of automation and experiential learning.

Consequently, DL technology is relevant to artificial intelligence, machine

learning, and data science with advanced analytics, which are well-known areas

of computer science, especially in modern smart computing. In what follows, we

first review the place of deep learning in artificial intelligence and how DL

technology relates to this area of computer technology.

6.4 Use of machine learning for occupational safety prevention

Machine learning systems packaged as predictive analytics systems are

available on the market that use data from past events and various variables to

predict future trends. Maximizing the use of predictive analytics systems in your

organization requires careful input of historical incident data, as well as a variety

of other sources of safety analytics data, such as safety audits, surveys, and

integrated personnel data related to the context of the situation and environment.

The data is then analyzed and used to predict future behavior and alert

management before an accident occurs. Your organization's predictive analytics

system should use data based on a variety of factors.

In addition, occupational safety affects your company's reputation and,

therefore, its ability to attract the best employees, contracts and investors.

6.5 Computer room fire safety

From a financial perspective alone, it's easy to see why finding new

technologies to reduce workplace accidents and increase productivity is essential,

and why leveraging machine learning with predictive data analytics is the next big

step in developing a proactive safety culture. The safety professionals of the future

can rely on machine learning and predictive analytics as a key part of their

profession to provide up-to-date information for preventive maintenance,

reducing injuries and developing new safety practices and policies.

If your organization has a safety-focused culture with a focus on continuous

process improvement, you are ready to take the next step and consider

implementing machine learning and predictive data analytics as part of your

organization's operations.

CONCLUTIONS

1. The necessity of using machine learning with the partial involvement of teacher

ssl, to create an intelligent classifier is substantiated.

2. Proposed mathematical model of neural network on the basis of boosting,

which makes it possible to increase the accuracy of solving the problem of

classification.

3. Developed an algorithm for machine learning with partial teacher involvement

based on boosting.

4. Computer program for building a neural network based on booming is

developed. Learning algorithms for neural networks with SSL were supplied.

5. Synthesis of an algorithm for building an ensemble of neural networks with

SSL on boosting stage was performed.

6. The new algorithm is developed by means of the software and the block

diagram of the program with the additional user interface is introduced.

REFERENCE

1. N. Avinash, Neural Network Models in R, 2019. [Online]. Available:

www.datacamp.com/community/tutorials/neural-network-models-r

2. D. Luke, What Is an Artificial Neural Network? Here’s Everything You

Need to Know, 2019. [Online]. Available: www.digitaltrends.com/cool-tech/

what-is-an-artificial-neural-network/

3. D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representations

by back-propagating errors,” nature, vol. 323, no. 6088, pp. 533–536, 1986.

4. B. Jason, A Gentle Introduction to Computer Vision, 2019. [Online]. Available:

www.machinelearningmastery.com/what-is-computer-vision/

5. Technopedia, What Is Computer Vision? - Definition from Techopedia, 2019.

[Online]. Available: www.techopedia.com/definition/32309/computer-vision

6. S. J. Prince, Computer vision: models, learning, and inference. Cambridge

University Press, 2012.

7. T. Celik and H. Kusetogullari, “Solar-powered automated road surveillance

system for speed violation detection,” IEEE Transactions on Industrial Electronics,

vol. 57, no. 9, pp. 3216–3227, 2009

8. Z. Deng, H. Sun, S. Zhou, J. Zhao, L. Lei, and H. Zou, “Multi-scale object

detection in remote sensing imagery with convolutional neural networks,” ISPRS

journal of photogrammetry and remote sensing, vol. 145, pp. 3–22, 2018.

9. D. Xiao, F. Shan, Z. Li, B. T. Le, X. Liu, and X. Li, “A target detection model

based on improved tiny-yolov3 under the environment of mining truck,” IEEE

Access, vol. 7, pp. 123 757–123 764, 2019.

10. S. Smriti, Computer Vision Makes Autonomous Vehicles Intelli1gent and

Reliable, 2019. [Online]. Available: www.analyticsinsight.net/computer-vision-

makes-autonomous-vehicles-intelligent-and-reliable/

11. G. Lewis, “Object detection for autonomous vehicles,” 2014.

12. V. Marco, What Is Machine Learning? A Definition, 2017. [Online]. Available:

www.expertsystem.com/machine-learning-definition/

13. I. Goodfellow, Y. Bengio, and A. Courville, Deep learning. Book in

preparation for MIT Press, 2016. [Online]. Available:

http://www.deeplearningbook.org

 14. B. Volodymyr, Machine Learning Algorithms: 4 Types You Should

Know,2018. [Online].Available:www.theappsolutions.com/blog/development/

 machine-learning-algorithm-types/

 15. S. Ray, Essentials of machine learning algorithms (with python and r

codes), 2017. [Online]. Available: http://www.analyticsvidhya.com/blog/2015/

 08/common-machine-learning-algorithms

16. C. M. Bishop, Pattern recognition and machine learning. springer, 2006.

