CORRELATION METHOD OF HEIGHT MEASUREMENT

Ilyin O.I.
National Aviation University, Kyiv
Scientific adviser - Maloed M. M., Cand. Sc. (Technology)

In conditions of increasing intensity of air traffic, the performance of safe and regular flights of aircraft requires the use of high-precision means of measuring low altitudes. The most common are three methods of measuring height: amplitude, frequency and phase. In recent years, the J-correlation method has also been developed.

In this method, the probing signal is an oscillation that is frequency-modulated with a single-tone harmonic component:

$$
u(t)=U_{0} \cos \left[w_{c} t+\beta \sin \left(\Omega t+\varphi_{0}\right)+\varphi_{1}\right],
$$

where U_{0} - signal amplitude, w_{c} - carrier frequency, β - modulation index, $\Omega-$ frequency of the modulating oscillation, φ_{0} - the initial phase of the modulating oscillation, φ_{1} - the initial phase of the carrier oscillation.

A reference oscillation is formed from the probing signal by transferring it to the frequency $\left(w_{c}-w_{\mathrm{r}}\right)$ with a delay θ_{x}. The correlation integral is formed by convolution of the spectra of the reflected and reference signals:
$u_{1}(t)=U_{1}^{\prime} \cos \left[w_{\mathrm{r}} t+\beta^{\prime} \sin \left(\Omega t+0,5 \Omega\left(\tau+\theta_{x}\right)+\varphi_{0}\right)+\varphi^{\prime}\right]$,
where U_{1}^{\prime} - converted signal amplitude, $w_{\mathrm{r}}-$ local oscillator frequency, $\beta^{\prime}=2 \sin \left[0,5 \Omega\left(\tau-\theta_{x}\right)\right]-$ transformed modulation index, $\tau-$ spatial time delay, $\theta_{x}-$ adjustable time delay, φ^{\prime} - transformed phase of the carrier oscillation.

As a result of correlation detection of this signal, a harmonic component is formed, the amplitude of which depends on the difference $\left(\tau-\theta_{x}\right)$ and changes according to the behavior of the first-order Bessel function:

$$
u_{2}(t)=U_{2} J_{1}\left(2 \beta \sin \left[0,5 \Omega\left(\tau-\theta_{x}\right)\right]\right) \cos \left(\Omega t+\varphi_{0}\right),
$$

where $J_{1}\left(2 \beta \sin \left[0,5 \Omega\left(\tau-\theta_{x}\right)\right]\right)$ - first-order Bessel function.
The condition when $u_{2}(t)=0$ is achieved by changing the delay θ_{x}. Under this condition, the time delay θ_{x} is equal to the spatial time delay τ. Therefore, the height is equal to $R=\frac{c \theta_{x}}{2}$, where $c-$ speed of light.

The characteristic of the meter has a sawtooth shape with a pronounced extremum and when passing through an extreme point (when $=\theta_{x}$) its steepness changes its sign to the opposite, which provides high measurement accuracy.

Reference:

1. Sorochan A. G. Correlation radio rangefinder. Technology and design in electronic equipment. 2005. No. 1 P. 18-21.
2. Sorochan A. G., Dobryak D. A., Zabolotny E. V. Correlation radio rangefinder. Bulletin of the National Technical University of Ukraine «KPI». 2012. Vol. 49 P. 94-102.

Keywords: radiolocation, height measurement, J-correlation, rangefinder.

