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1. INTRODUCTION  

Safety always remains the priority in the development of the aviation industry. From a statistical 

standpoint, world civil aviation is now the most secure means of transport. The global safety level of the 

industry lands at a figure of one disaster to ten million flights. However, according to the estimates 

conducted by the leading world civil aviation organizations, every 15-20 years the number of flights 

doubles. Such an increase in flights, thus, allows to refute the assertion that there will be no disasters and 

incidents in aviation.  

According to the definition suggested by the International Civil Aviation Organization (ICAO), aviation 

safety means the state of an aviation system or organization in which risks associated with aviation 

activities, related to or in direct support of the operation of aircraft, are reduced and controlled to an 

acceptable level. [1]. 

Safety data analysis is central to the risk management system. Analysts usually resort to a variety of 

methods because of the complexity and multiplicity associated with safety factors. Among their number, 

probabilistic approaches are deemed to be the most useful ones. 

The topicality of the article is to find the degree of uncertainty along with the existing patterns of 

distribution in the quantitative dynamics of aircraft crashes with lethal consequences in civil aviation. The 

discovery of the available "spatial memory" effects, that of the "hidden patterns" or the absence of the two 

will be fundamental for assessing the adequacy of the mathematical apparatus in safety data analysis. In 

case of their availability, the trend-stability of investigative processes may become observative, which in 

turn can be used to identify trend markers. It is during such periods that the world aviation safety system 

has the ability to implement enhanced precautionary measures. The obtained results can be applicable to 

the proactive methods of forecasting future safety indicators. In the proactive approach, the emphasis is 
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placed on the prevention of aviation accidents by identifying threats and taking countermeasures to them 

before an actual danger takes place and thus constitutes a negative impact on the state of aviation safety. 

The practical value for the industry lies in the introduction of preventive measures to aviation disasters 

determined as a result of proactive methods of forecasting and essentially strengthened, first of all, during 

the periods of revealing an increasing character of a trend change marker. 

 The obtained results can be applicable to the proactive methods of forecasting future safety indicators 

in order to implement a set of anticipatory actions against aviation disasters. 

 

2. LITERATURE ANALYSIS AND THESIS STATEMENT 

The ICAO emphasized the necessity to change the global approach to aviation safety. A new Annex 19 

to the Convention on the International Civil Aviation Organization, "Safety Management", was proposed 

[2, 3]. A consistent approach to safety management is systematically implemented at the global, regional 

and state levels. It includes necessary organizational structures, spheres of responsibilities, policies and 

procedures. At the same time, the development of aviation safety data management remains an important 

tool for increasing the level of world civil aviation safety. Data management presupposes structuring, 

controlling and decision making on the processes and procedures sustainable for the industry organization. 

Also, it guarantees that data management systems achieve aviation safety objectives through the promotion 

of integrity, availability, usability and data protectability [1]. The result of safety analysis is to provide 

people in charge with the opportunity to make the most effective managerial decisions. 

One of the major problems in safety analysis is the choice of the appropriate mathematical apparatus. 

For the world, civil aviation is an open-source system that is influenced by a large number of both related 

and unrelated factors. Keeping it in mind, the search for new methods of assessing acceptable levels of 

civil aviation safety seems relevant and important for future efficiency, the development of the industry 

and safety at large.  

As it has been mentioned above, probabilistic methods are effective for solving a number of aviation 

safety tasks. For example, a sequential probability ratio test (SPRT) based on Wald's test can be highly 

effective in solving the problems of "aviation safety space" accurate defining [4]. Determining the integral 

probability indicator is decisive in assessing aviation safety risks [5]. The probabilistic evaluation is 

important in assessing the safety of aviation operations according to their types, for example, the 

evaluation of flights of unmanned aerial systems [6]. In the air traffic service system, the integrated safety 

management system is based on the probable forecasting of risks [7]. The likelihood of determining the 

frequency of aircraft crashes is fundamental in the multiplicative approach of calculating the matrix 

decision on the admissibility of risks [8]. 

At the same time, the research issue of verification remains unresolved. Specifically, it is that of the 

application adequacy of probabilistic approaches in the statistical data analysis of integral safety indicators 

(such as the number of aviation disasters) for large time series. It is a well-known fact that there is a 

sufficiently large class of random processes for which a tool of normal distribution is not suitable. These 

are the processes of market profits, the processes which describe dissipative systems, etc. To them, the law 

of large numbers is either not applicable or does not necessarily lead to obtaining adequate results. Among 

these processes, one can single out those with so-called "thick tails". To the latter, researchers have 

succeeded to apply fractal and statistical tools for the sake of a quasi-cyclic prior foreseen analysis of 

world oil prices [9] and fractal-statistical analysis of annual water fluctuations [10]. The scientific novelty 

of this work, however, lies in applying this very analysis in the aviation safety industry, namely for the 

study of statistical data of integral safety indicators (such as the number of aviation disasters) for large time 

series. The authors have thus chosen the theory of fractal statistics as the scientific approach to the 

estimation of uncertainty, along with the existing patterns of distribution in the quantitative dynamics of 

aircraft crashes with lethal consequences. 
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3. GOALS AND RESEARCH TASKS 

With the help of fractal-statistical analysis, the research aims to evaluate the aviation safety 

management system in terms of determining the random distribution of quantitative dynamics of aircraft 

crashes with lethal consequences. 

To achieve the goal, the following tasks have been set: 

- to study the expediency of applying the theory of fractal statistics to the problems of the aviation safety 

management system; 

- to analyze the quantitative dynamics of aircraft crashes with lethal consequences in the period from 

1946 to 2017 by means of fractal statistics and evaluation of the corresponding Hurst exponent; 

- to describe the time series in question and single out its main properties based on the calculated Hurst 

exponent. 

 

4. THEORETICAL BASIS OF THE HURST APPROACH TO THE ANALYSIS OF AVIATION 

SAFETY MANAGEMENT SYSTEM 

The authors have studied the annual data on the number of aircraft crashes with lethal consequences for 

the time period from 1946 to 2017. Systematic scientific analysis of such processes allows not only to 

make effective managerial decisions, but also obtain and gather experiences helpful in improving accuracy 

and reliability of analytical models, methods and algorithms for further decision-making. The methods of 

analysis that underlie preventive management can reveal the general prospects and trends of the processes 

in question, while ensuring the balance of short-term and long-term action programs. A very important 

stage in the analysis is to establish the whole set of factors capable of affecting the development of such 

processes. The current characteristics of these factors are variability, instability, conceptual inconsistency 

and incompleteness, which significantly influences the adoption of adequate managerial decisions in new 

areas of human activity, including the aviation safety management system. While choosing the 

methodology for study and research of the existing time series, the authors noticed the latter's short actual 

part (SAP) in the description of the production, economic and socioeconomic processes. Besides, lots of 

new processes in the social and industrial spheres are also represented by physically short time series. The 

reason for that is evident; namely, such processes never became a subject of statistical accounting. The 

main difficulties encountered in the analysis and the forecast of the dynamics of processes with a short 

actual part is a high degree of their unsteadiness depicted by the time series (TS). In other words, it was 

crucial to see if there is a need to develop new alternative approaches to the problem of analysing TS with 

SAP, given that no unified scientific view on the volume of statistics and the classification of time series 

has been developed yet. As a rule, n≤50 is considered a short hour series, while n≥50 - a long one [11]. 

According to the above mentioned classification, the investigated time-series, the authors refer neither 

to a short time series, nor to a time series with a short actual part. Having previously analysed various time 

series, they have concluded that actual time series describing the technical, social and socio-economic 

systems with possible external similarities may sometimes have quite different interpretations and 

perceptions. This is explained, in particular, by the fact that for technical systems one or a finite number of 

sources that generate the corresponding "signal" of the system's behaviour can be defined, which is not the 

case for the analysis of socio-economic phenomena to which the authors also refer the aviation safety. 

Consider a partial case of a discrete random process, the time series X(t), t ∈ 𝑍 , where X(t) can be 

interpreted as the number of annual air crashes in at year (Fig. 1) [12]. 

Initially, the hypothesis about the normal distribution of the general population (time series X(t)) has 

been tested. For its verification, the χ2-criterion of Pearson's consent has been used. For this, the plurality 

of data on the number of fatal accidents has been divided into 7 intervals (Tab.1). 
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Fig. 1. The quantitative dynamics of aircraft crashes with lethal consequences in the period from 1946 to 2017. 

 

Table 1. Calculations of Q
2
 statistics 

Quartiles ni ni/n φ(х) Pi mi (ni-mi) (ni-mi)2 ((ni-mi)2)/mi 

10-20 5 0.069444 0.425 0.425 30.6 -25.6 655.36 21.41699346 

21-30 9 0.125 0.456 0.031 2.232 6.768 45.80582 20.52232258 

31-40 13 0.180556 0.488 0.032 2.304 10.696 114.4044 49.65469444 

41-50 22 0.305556 0.52 0.032 2.304 19.696 387.9324 168.3734444 

51-60 15 0.208333 0.552 0.032 2.304 12.696 161.1884 69.96025 

61-70 6 0.083333 0.583 0.031 2.232 3.768 14.19782 6.361032258 

71-80 2 0.027778 0.614 0.031 2.232 -0.232 0.053824 0.024114695 

The H0 hypothesis presupposed the normal distribution of the studied general variety. The following 

statistics have been used to test the hypothesis H0: 

 

 
(1) 

where: 

mi - theoretical frequencies, mi = ni * pi 

ni - empirical frequencies 

 

The random variable Q
2
 has χ

2
 - the distribution with the number of degrees of freedom (k-r-1)  

 

where:  

k - the number of intervals (in our case, it is 7)  

r - the number of parameters of the theoretical distribution (in our case, r=2): Xsr = 43,82 the dispersion σ2 

= 218.2.  

 

By setting the level of significance α = 0.01, we got the next boundary of the critical region:  

Xα = 7.779 

It is known that the more Q
2
, the worse agreement of the theoretical (normal) distribution with the 

empirical one. With a sufficiently large Q
2
, the H0 hypothesis is rejected, so only the right-sided critical 

region is used. Having received Q
2
 at 336.313, the authors have came to the conclusion that the found 

value belongs to the critical region and thus refutes the hypothesis about the normal distribution of the 

general variety. 

Having studied the structure of this time series, an autocorrelation analysis of its levels has been carried 

out using the classical formula of the autocorrelation coefficient: 
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(2) 

where:  

k - the number of periods according to which the autocorrelation coefficients have been calculated. 

 

The autocorrelation coefficient has two main properties: 

- firstly, it is determined by analogy with the linear correlation coefficient and, therefore, characterizes 

the density of an exclusively linear relationship between the current and the previous levels of a series. 

Briefly, the autocorrelation coefficient can detect only the presence of a linear (or close to linear) 

tendency; 

- secondly, the autocorrelation coefficient is not sufficient to conclude whether the trend is increasing or 

decreasing in the levels of time series. 

 

The correlogram of the time series in Figure 2 shows that the autocorrelation coefficient of the first order 

has proved to be the highest. Such a result allows to accept the hypothesis that the studied time series is 

tendentious and does not contain explicit cyclic oscillations. 

 

Fig. 2. Correlogram of the studied time series of crashes with lethal consequences in the period from 1946 to 2017 

 
Table 2. Autocorrelation coefficients of the time series of crashes with lethal consequences in the period from 1946 

to 2017 

i ρi 

1 0.824316 

2 0.794177 

3 0.744269 

4 0.686522 

5 0.624615 

6 0.582267 

7 0.587575 

8 0.481821 

9 0.538899 

10 0.537706 

11 0.501316 

12 0.472212 

13 0.415393 

14 0.394818 

15 0.387381 

16 0.358142 

17 0.395507 
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18 0.355772 

19 0.532619 

20 0.501497 

 

Based on the received correlogram, the authors have also adopted the hypothesis of the possible 

existence of a quasi cycle with a period of 19 years (19= 0.532619). 

The analysis of the time series in terms of the number of aircraft crashes with lethal consequences in the 

period from 1946 to 2017 can be carried out in accordance with the two currently existing paradigms, 

namely a linear and nonlinear one. The ratio of these paradigms can be represented in the following            

table 3: 

The authors of the article are firm in delineation of the study fields, such as fractal analysis, fractal 

geometry and fractal statistics; in particular, fractal analysis refers to a field of study that solves fractal 

functions. Specifically, there are continuous non-differentiated functions and their properties, Cantor’s 

projectors, their constructions and properties, singular functions, etc. [17]. 

Considering everything above mentioned, the authors have decided to attempt at applying nonlinear 

approaches and in accordance with them, the elements of fractal statistics to the study of the time series of 

the number of air crashes with lethal consequences in the period from 1946 to 2017. 

A number of Ukrainian scientists have worked on the issue of applying fractal analysis to the study of 

time series. In particular, Antonova and Chikina investigated time series that characterize the spread of 

various skin diseases in Ukraine. Based on a specialized fractal procedure for the analysis of time series, 

Skalozub and Klymenko studied the railway processes of Ukraine. Kramarenko, Nechai and Skalozub 

researched the possibilities of applying the methods of chaotic dynamics to the problems of analysing and 

forecasting economic and technological properties of carriages. Kyrychenko and Radyvylova investigated 

the long-term dependence of network traffic with the help of a R/S analysis. Kyrychenko, Radyvylova and 

Synelnykova studied the method of calculating the Hurst exponent for a modeled self-similar network 

traffic along with the method of estimating the Hurst parameter of self-similar processes. Kyrychenko and 

Chala constructed a comprehensive approach to the analysis of fractal properties of self-similar random 

processes by time series of small length. Among the foreign authors, Liubyshyna studied fractal analysis of 

time series and its application in geological exploration activities. Kuzenkov and Lohinov used the method 

of scaling in the analysis of linguistic pathologies of neurological genesis. Finally, Shelukhin, Teniakshev 

and Osyn investigated fractal processes in telecommunications [13-15]. 
 

Table 3. Linear and nonlinear paradigms 

Linear paradigm Nonlinear paradigm  

Each influence on the initial conditions of the 
process causes a proportional reaction of the result 
obtained. 
The value distribution of all-time series describing 
the processes is subject to a normal or almost 
normal law. 

Insignificant disturbances of the initial conditions cause 
bifurcations, that is, exponential super reactions of the 
process results. 
The value distribution of many time series describing the 
actual processes does not obey to the normal or almost 
normal law. 

 

Table 4. In accordance with these paradigms, one can compare classical statistics and a separate study field of fractal 

statistics in the following way 

The main tasks of classical and fractal statistics 

Classic statistics Fractal statistics 

Investigation of the distribution centre of the statistical 
aggregate (mean, mode, median, etc.), the study of 
variation variables (variance, deviation), density and 
communication directions studies (correlation ratio, 
correlation coefficient and autocorrelation, covariance, 
determination, etc.). 

Trend-stability research, numerical estimates of 
memory depth (research on persistence to anti-
persistence), fractal dimension of statistical aggregate, 
cyclicity characteristics, etc.). 
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Table 5. In its turn, the origin of linear and nonlinear paradigms can be presented as follows 

Origin of linear and nonlinear paradigms 

Linear paradigm Nonlinear paradigm 

𝑅 ≈ 𝑇0.5 
In the process of Brownian motion, the random particle 
passes the distance R which increases proportionally to 

the square root of the time T observing this particle. 
(Einstein, 1908) 

 
 

the built-in bracket template is necessary to use 
C - a constant 
 
n - the number of observations 
(R / S)n- normalized swing 
H - the Hurst exponent 
It is used in time series which describe the actual 
evolutionary processes and phenomena. 

 

Figure 3 illustrates the analysis of the time series of data on the number of aircraft crashes with lethal 

consequences in the period from 1946 to 2017 fragmentally and as a whole 

 

 
 
Figure 3. Fragments of the time series of crashes with lethal consequences in the period from 1946 to 2017 

 

The authors emphasize the possibility of its self-similarity. 

It is known that for finite-dimensional distributions, a real-valued process  

 ( ),X t t R
 

has stationary increments if 

 

 
(3) 

 

Denote the sequence of increments for  

 ( ),X t t R
 

at a discrete time 

𝑌𝑘 = 𝑋(𝑘 + 1) − 𝑋(𝑘), 𝑘 ∈ 𝑍. 
The process X(t) is broadly called stationary if the covariance function  

 1 2 1 2( , ) ( ( ) )( ( ) )R t t M X t m X t m  
 

is invariant to the displacement, presupposing 

1 2 1 2( , ) ( , )R t t R t k t k  
 

 

for any 
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1 2, ,t t k Z
. 

Assume that the first two moments 

  2 2

1 2 1( ) , ( )m M X t m M X t m        
exist and are finite for arbitrary 

t Z . 

M can be taken as the mean; m1 as the first moment (mathematical expectation);  

m2=
2  

as the second moment (dispersion of the random process X(t)). For convenience, assume  that m1=0. Then 

in case of stationarity 

1 2 2 1( , ) ( ,0)R t t R t t 
, 

denote covariance as R(k) and a correlation coefficient as 
2( ) ( ) / (0) ( ) /r k R k R R k   . 

The real-valued random process  

 ( ),X t t R
  

possesses the property of self-similarity [7] with an exponent  

H>0 

(H-Self-Similar hereinafter called H – ses) if for arbitrary real numbers 

0a  
finite-dimensional distributions for 

 ( ),X at t R
 

are identical to finite-dimensional distributions 

 ( ),Ha X t t R
 

simply, if for arbitrary  

1 21, , ,... kk t t t R 
 

and   

0a  , 

the equation is the following:  

 

 

(4) 

 

{𝑋(𝑎𝑡), 𝑡 ∈ 𝑅} = {𝑎𝐻𝑋(𝑡), 𝑡 ∈ 𝑅} (5) 

 

Based on the formula (5), we can conclude that changes in the time scale are equivalent to those in the 

spatial scale. Therefore, typical realizations of a self-similar process are visually similar regardless of the 

time scale at which they are studied. At the same time, it does not necessarily presuppose that the random 

process is exactly repeated, but rather has a similarity of statistical properties due to the fact that the 

statistical characteristics remain stable on a scale [16]. Parameter H is called the Hurst exponent and is 

used in the theory of self-similar processes owing to its perceptibility as a self-similar indicator of a 

random process, characterizing the property of long-term dependence. 

From the theory of self-similar random processes, it is known that a non-degenerate self-similar H-ses 

process does not possess the stationary property. There is rather a significant connection between self-

similar and stationary processes, which establishes the following theorem: 
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 Theorem 1.  [16] If {𝑋(𝑡), 0 < 𝑡 < ∞} equals H-ses, then 

 𝑌(𝑡) = 𝑒−𝑡𝐻𝑋(𝑒𝑡), −∞ (6) 

 

is stationary, and if 𝑌(𝑡), −∞𝑌(𝑡), −∞ < 𝑡 < ∞ is a stationary process indeed, the process 

 (𝑡) = 𝑡𝐻𝑌(𝑙𝑛𝑡), 0 (7) 

  

is then self-similar to H-sеs. 

 

Theorem No. 1 nearly confirms the existence of various self-similar processes. Practically, however, the 

processes with stationary increments draw more attention as they lead to stationary sequences with special 

properties. 

The processes H-sеs with stationary increments [12] are marked as H-sssi (self-similar process with 

self-similarity parameter H and stationary increments). 

Definition. The process {𝑋(𝑡), 𝑡 ∈ 𝑅}{𝑋(𝑡), 0 < 𝑡 < ∞} is called H-sssi if it is self-similar with the 

parameter H and has stationary increments. 

The following statement is well-known[6]; namely, if to suppose that{𝑋(𝑡), 𝑡 ∈ 𝑅} {𝑋(𝑡), 𝑡 ∈ 𝑅}is a 

non-degenerate process of H-sssi with infinite dispersion, then 0 < 𝐻 ≤ 1, 𝑋(0) = 0and covariance 

satisfies the equation: 

𝑅(𝑡1, 𝑡2) =
1

2
{[|𝑡1|2𝐻 + |𝑡2|2𝐻 − |𝑡1 − 𝑡2|2𝐻]𝜎𝑋

2} (8) 

 

Applying the theory of fractal statistics, the most commonly used is the range of 0.5 <H <10.5 <H <1 

since the H-sssi process of X(t) with H <0H <0 is immaterial and represent a pathological case. In the case 

of H> 1H> 1, autocorrelation of the increment process does not exist. In the range of 0 <H <0.5, the 

increments process is a short range dependent process (SRD). Well-known SRD processes include that of 

Poisson, Markov and autoregressive processes. 

In the range of 0.5 <H <10.5 <H <1, the normalized correlation function (correlation coefficient) for the 

increments process of X (t) 

𝑌𝑘 = 𝑋(𝑘) − 𝑋(𝑘 − 1), 𝑘 ∈ 𝑍 (9) 

 

is the following:                       

 

                                                                     𝑟(𝑘) =
1

2
                                                                           (10) 

 

The theory of fractal statistics is also applicable to aggregated random processes. Let Y = Yi, iZY = Yi, 

iZ  be a stationary process with the correlation function R(k). The m-aggregated time series 𝑌(𝑚)𝑌(𝑚) is 

obtained by the mean of a given time series in non-overlapping time intervals (blocks of the m-length 

parameters).  If to replace each parameters' block of the time series with their mean, that is, 

 

𝑌𝑖
(𝑚)

=
1

𝑚
(𝑌(𝐼−𝑚+1) + 𝑌(𝐼−𝑚+2) + ⋯ . +𝑌𝐼), 

𝑚 = 1,2, .. 
 

or shortly present as 
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                                                             𝑌𝑘
(𝑚)

=
1

𝑚𝐻
∑ 𝑌𝑖 , 𝑘 ∈ 𝑍, 0 < 𝐻 < 1 𝑘𝑚

𝑖=(𝑘−12)𝑚+1                                    (11)        

                              

 

and denote the corresponding correlation function as 𝑅(𝑚)(𝑘), the study of the m-aggregated time series 

𝑌(𝑚)𝑌(𝑚) may then be more constructive by reducing the amount of data. 

 

Definition. The discrete random process {𝑌𝑘 , 𝑘 ∈ 𝑍} is exact second-order self-similar [16] in the broad 

sense with the self-similarity parameter H (12 <H <1) H if 

𝑅(𝑘) =
𝜎2 

2
, (12) 

 

for arbitrary 𝑘 ≥ 1 𝑘 ≥ 1.X(t) is second-order asymptotical self-similar –H-sssa in the broad sense if 

  𝑙𝑖𝑚𝑚→∞ 𝑅(𝑚) (𝑘) =
𝜎2

2
, (13) 

 

where 𝑅(𝑘) = 𝑅(𝑚)(𝑘)𝑅(𝑘) = 𝑅(𝑚)(𝑘) for arbitrary 𝑚 ≥ 1. Therefore, self-similarity in the broad 

sense presupposes the covariance structure perseverance in aggregation of the time series. 

The equation 

𝑅(𝑘) = 𝑅(𝑘) = [(𝑘 + 1)2𝐻 − 2𝑘2𝐻 + (𝑘 − 1)2𝐻]
𝜎2

2
 

means the availability of an additional structure, namely long range dependence. 

The connection between the exact second-order self-similar process in the broad sense and the self-

similar one in the narrow sense can be defined as follows; the process X is called strict self-similar in the 

narrow sense with the parameter  

𝑅 = 1 −
𝛽

2
, 0 < 𝛽 < 1, 𝐻 = 1 −

𝛽

2
, 0 < 𝛽 < 1     if 𝑚1−𝐻𝑋(𝑚) =, 𝑚 ∈ 𝑁,  

where the sign «=» means the equality of  the finite-dimensional distributions; 

𝑋(𝑚) = (𝑋1
(𝑚)

, 𝑋2
(𝑚)

, . . . ) 𝑋(𝑚) = (𝑋1
(𝑚)

, 𝑋2
(𝑚)

, … ) 

- is the process X averaged by the blocks of the m-length, the 𝑋(𝑚)components of which are determined by 

the equation below:  

 𝑋𝑘
(𝑚)

=
1

𝑚
(𝑋(𝑘𝑚−𝑚+1)+. . . +𝑋𝑘𝑚), 𝑚, 𝑘 ∈ 𝑁, (14) 

 

The connection between the exact second-order self-similar process in the broad sense and that of strict 

self-similarity in the narrow sense can be perceived by analogy with the connection between stationary 

processes in the broad and narrow sense. 

In addition to the usage of statistical similarity analysis while scaling self-similar processes, the latter 

can be detected by the following equivalent features. 

 

1. In an availability case of hyperbolically decaying covariance function of the following type: 

𝑅(𝑘) ≈ 𝑘(2𝐻−2)𝐿(𝑡) при 𝑘 → ∞, (15) 

 

where:  

L(t) - the function of slow variation at infinity, namely for all 

𝑥 > 0
𝑙𝑖𝑚
𝑡→∞

𝐿(𝑡𝑥)

𝐿(𝑡)
= 1. 𝑥 > 0

𝐿(𝑡𝑥)

𝐿(𝑡)
= 1 

From the above mentioned, it follows that the covariance function in this very case is not summable, 

and the series formed by the successive values of the covariance function runs out: 
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(16) 

 

The last infinite sum is another definition of long range dependence (LRD). Therefore, almost all self-

similar processes are long range dependent. The consequences of such a phenomenon are significant 

enough, as the cumulative effect in a wide range of delays may differ significantly from that observed in 

the short range dependent processes such as the Poisson, Markov and autoregressive processes. 

 

2. The sample variance of aggregated self-similar processes decays more slowly as compared to 

the magnitude inverse to the sample size. If to introduce a new time sequence 

 {𝑋𝑖
(𝑚)

; 𝑖 = 1,2, . . . }, {𝑋𝑖
(𝑚)

; 𝑖 = 1,2, … },  

being obtained by the mean of the original sequence for non-overlapping successive blocks of 

the m-length, then a slower decay of dispersion turns out to be characteristic for the self-

similar processes by law. 

3.  

𝜎2(𝑋(𝑚)) ≈ 𝑚2𝐻−2 при 𝑚 → ∑∞ (17) 

At that time, for common (non-self-similar) stationary random processes 

 𝜎2 ({𝑋𝑖
(𝑚)

; 𝑖 = 1,2, . . . }) = 𝜎2𝑚−1, 𝜎2 ({𝑋𝑖
(𝑚)

; 𝑖 = 1,2, … }) = 𝜎2𝑚−1  

that is, declays inversely proportional to the length of the sample. This indicates that the statistical 

characteristics of the sample, in particular the mean and the variance, will coincide very slowly, especially 

at 𝐻 → 1𝐻 → 1. This property is displayed on all measures of self-similar processes. 

 

4. If to consider self-similar processes in the frequency domain, the phenomenon of long range 

dependence then leads to a power-law nature of the spectral density near zero: 

  (𝜔) ≈ 𝜔−𝛾𝐿2(𝜔)𝑆(𝜔)𝜔−𝛾𝐿2(𝜔),  

при  𝜔 → 0𝜔 → 0 
(18) 

 

where:  

𝑜 < 𝛾 > 1, 0 < 𝛾 < 1;L2 - the function that is slowly changing at a point 0 

 𝑆(𝜔) = ∑ 𝑅(𝑘)𝑒ik𝜔
𝑘    - the spectral density  

 

From the position of spectral analysis, the long range dependence thus implies that 

𝑆(0) = ∑ 𝑅(𝑘)

𝑘

= ∞  

the spectral density tends to ∞∞when the frequency 𝜔𝜔approaches 0 (a similar phenomenon is called 1/f-

noise). Short range dependent processes are characterized by spectral density which has a positive and 

finite value for 𝜔 = 0𝜔 = 0. 

Recent ratios associated with the H parameter are called the Hurst exponent. The Hurst exponent of a 

self-similar process is in the range of 0.5 to 1. At approximation of H to unity, the time series becomes 

"more visibly self-similar", revealing itself in a slower vanishing covariance. 

Long Range and Short Range Dependencies 

Self-similarity as a certain property of the time series affects not only the stationaryness of the second 

order, but also the value and property of the H exponent, in particular, the boundary properties. 
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Among the set of LRD processes in probability theory as well as in the simulation of time series, 

self-similar processes are interesting and important in connection to the subordination of their 

boundary theorems at a rather simple structure. 

Definition [16] {𝒗𝒊, 𝒊 ∈ 𝒁}{𝒗𝒊, 𝒊 ∈ 𝒁} is called a stationary process with LRD if there is a constant 

𝑐𝑟 > 0 𝑐𝑟 > 0and such a real number 𝛼 ∈ (0; 1), 𝛼 = 2 − 2𝐻𝛼 ∈ (0; 1), 𝛼 = 2 − 2𝐻that 

 

  lim
𝑘→∞

𝑟(𝑘)

𝑐𝑟𝑘−𝛼 = 1       (19) 

 

The process {𝑌𝑖, 𝑖 ∈ 𝑍}{𝑌𝑖, 𝑖 ∈ 𝑍}is called stationary with SRD if there is such a constant 0 < 𝑐0 < 1that 
𝑙𝑖𝑚𝑘→∞ 𝑟(𝑘)

𝑐0
𝑘 = 1. 

The given definition of long range dependence has an asymptotic interpretation and indicates only some 

limiting behaviour of the correlation coefficients and approaching of the delay  to infinity. Here, only the 

degree of convergence is determined and not the absolute value. Defining the latter, the cr constant, in fact, 

only complicates the identification of LRD [16]. 

The asymptotic behaviour of the coefficient r(k) can be studied using a Taylor series:   

𝑟(𝑘) = 𝐻(2𝐻 − 1)𝑘2𝐻−2 + 𝑘2𝐻−2при 𝑘 → ∞ (20) 

According to the last definition, the process {𝑌𝑖 , 𝑖 ∈ 𝑍}with 0.5 < 𝐻 < 1s thus LRD with the parameter 

𝛼 = 2 − 2𝐻𝛼 = 2 − 2𝐻. This also means that the correlations are not summed yet: 

 

∑ 𝑟(𝑘)

𝑘=−∞

= ∞ 

 

(21) 

In the case of the cord r(k) decaying hyperbolically, the corresponding process{𝑌𝑖, 𝑖 ∈ 𝑍} is thus LRD.  

Several partial cases for the values of H and its influence on r(k) can be drawn. If H = 1/2, r(k) = 0, the 

time series X(t) is a process with SRD which is explained by its complete non-correlation.  

If 0 < 𝐻 <
1

2
, ∑ 𝑟(𝑘) = 0∞

𝑘=−∞ , 

0 < 𝐻 <
1

2
, ∑ 𝑟(𝑘) = 0∞

𝑘=−∞ , 

it is theoretically possible, but now hardly encountered in real world applications. In fractal statistics, such 

a series is called anti-persistent. The H=1 case leads to a degenerate situation of r(k)=1 for arbitrary k1. 

The value H>1 is forbidden by the stationary condition which is superimposed on the investigated process 
{𝑌𝑖 , 𝑖 ∈ 𝑍}{𝑌𝑖, 𝑖 ∈ 𝑍}. 

The process {𝑌𝑖, 𝑖 ∈ 𝑍}{𝑌𝑖, 𝑖 ∈ 𝑍} is thus SRD if the normalized correlation function can be represented 

as a finite sum  In the frequency domain, there is an equivalent definition of long range dependence where 

the necessary condition is to meet the spectral density of the process 𝑆(𝜔) = to the next definition.  

Definition {𝑌𝑖 , 𝑖 ∈ 𝑍} is called a stationary process with LRD [16] if there is a real number 𝛽 ∈
(0; 1)and such a constant 𝑐𝑓 > 0 that 

 
𝑙𝑖𝑚
𝜆→0

𝑠(𝜔)

𝑐𝑓|𝜔|−𝛽
= 1 

 

(22) 

In such a way, the process {𝑌𝑖 , 𝑖 ∈ 𝑍}with 0.5 < 𝐻 < 10,5 < 𝐻 < 1 is long range dependent with the 

parameter 𝛽 = 2𝐻 − 1. 𝛽 = 2𝐻 − 1 

Behaviour 𝑆(𝜔)in the neighborhood of the origin of coordinates is well-described by the behavior of 

the function at zero. 
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𝑆(𝜔) = 𝑐𝑓|𝜔|1−2𝐻 + |𝜔|min(3−2𝐻) 

 

(23) 

 

𝑐𝑓 =
1

2𝜋
𝑠𝑖𝑛(𝜋𝐻)𝐿(2𝐻 + 1)𝜎2; 𝐿(𝑧) = ∫ 𝑥𝑧−1𝑒−𝑥𝑑𝑥, 𝑧 > 0.

+∞

0

 
 

Approximation 

𝑆(𝜔) ≈ 𝑐𝑓|𝜔|−𝛽, 𝜔 → 0,0 < 𝛽 = 2𝐻 − 1 < 1 is sufficiently acceptable even for relatively large 

frequencies. Thus, the last equation is handy for the estimation of H in the frequency domain. 

For a self-similar process, the variance of the sample mean decreases slower than the value inverse to 

sample’s size: 

 

𝜎2 [𝑋𝑡
(𝑚)

] ≈ 𝑚−𝛽 , 0 < 𝛽 = 2𝐻 − 1 < 1, 

 

(24) 

where:  

m – is quite big  

For SRD processes, the parameter 𝛽 = 1𝛽 = 1. 

 

Therefore, the properties of a slowly decaying variance are usually clarified by plotting the function 

𝜎2 [𝑋𝑦
(𝑚)

] from the m on to the log-log coordinate system (the graph of variance variation). A straight line 

with a negative inclination of less than 1 in a wide range of m visually shows a slowly decaying variance. 

This property is also defined by the index of dispersion for counts (IDC). 

 

𝜎2
(𝑋𝑡

(𝑚)
)

𝑀
(𝑋𝑡

(𝑚)
) (25) 

 

The estimation of the self-similarity parameter (in our case, that of the Hurst exponent) is possible 

based on one of the properties characteristic for the self-similar process, in particular the analysis in the 

time domain which includes the R/S analysis. The latter is a classic method of finding the H parameter 

proposed by Hurst himself. 

For a given set of observations 𝑋 = {𝑋𝑛, 𝑛 ∈ 𝑁} with the selective mean 𝑋 =
1

𝑛
∑ 𝑋𝑗

𝑛
𝑗=1 , the scope is 

defined as the difference between the maximum and the minimum deviation: 

 

𝑅(𝑛) = 𝑚𝑎𝑥
1≤𝑗≤𝑛

𝛥𝑗 − 𝑚𝑖𝑛
1≤𝑗≤𝑛

𝛥𝑗, (26) 

 

де 𝛥𝑘 = ∑ 𝑋𝑖 − 𝑘𝑋𝑘
𝑖=1  ∀𝑘 = 1, 𝑛.  (27) 

 

The specified definition of the scope differs from that of the time sequence of the random variable 𝑋𝑗 

which equals: 

 

𝑚𝑎𝑥
1≤𝑗≤𝑛

𝑋𝑗 − 𝑚𝑖𝑛
1≤𝑗≤𝑛

𝑋𝑗 (28) 

 



Analysis of the Aviation Safety Management System … Logistics and Transport No 4(44)/2019 

 

 
 

54 

In the Hurst’s definition, the scope takes into account the cumulative 𝛥𝑗 which characterizes the 

variation of the X dimension relative to the mean value. 

 

𝑅(𝑛)

𝑆(𝑛)
=

𝑚𝑎𝑥
1≤𝑗≤𝑛

𝛥𝑗− 𝑚𝑖𝑛
1≤𝑗≤𝑛

𝛥𝑗

1

𝑛−1
∑ [𝑥𝑗−𝑋]

2
=

𝑚𝑎𝑥(0,𝛥1,𝛥2,...𝛥𝑛)

𝑆(𝑛)
𝑛
𝑗=1

 (29) 

 

It is known that for many natural phenomena such an empirical relation is applicable:  

 

by 

𝑛 → ∞𝑀 [
𝑅(𝑛)

𝑆(𝑛)
] ≈ 𝑐𝑛𝑛 (30) 

where:  

c – the positive finite constant independent of n. 

 

After logarithm of both parts of the last relation, the following relation can be gained: 

by 

 

𝑛 → ∞𝑙𝑛 {𝑀 [
𝑅(𝑛)

𝑆(𝑛)
]} ≈ 𝐻𝑙𝑛𝑛 + 𝑙𝑛𝑐 

(31) 

 

The H parameter can be estimated using the graph of the function 𝑙𝑛 from lnn lnn by means of 

correlation-regression analysis. 

 

Using the tools of R/S analysis, their approximate nature should be considered, in particular, because of 

their capability to estimate only the level of self-similarity in the time series. The proposed in the article 

method is only used to verify the self-similarity of a given time series and, in case of a positive answer to a 

stated question, obtain the rough estimate of H. 

If observations are related to the SRD process [16], then 

 

 (32) 

 

where:  

d – the positive finite constant independent of n. This case characterizes the process devoid of self-

similarity 

 

5. RESULTS DISCUSSION: FRACTAL-STATISTICAL ANALYSIS IN THE AVIATION 

SAFETY MANAGEMENT SYSTEM 

Studying statistical data on the quantity of aircraft crashes with lethal consequences in the period from 

1946 to 2017, the equation of the trend line has been obtained by common means of correlation-regression 

analysis and looks as Ni=- 

0,5789*t+65,473. Having filtered the trend, its graphic representation obtains the following shape: 
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Fig. 4. Graphical representation of statistical data on the quantity of aircraft crashes with lethal consequences in the 

period from 1946 to 2017 

 

 

Using the Hurst classical theory of R/S analysis [18] for estimating the absolute values of the studied 

time series, the empirical relationship between the normalized R/S magnitude and the length of the 

τinterval is analytically represented as follows: 

 

 

(33) 

 

 
(34) 

 

 
(35) 

 

 (36) 

 

 
(37) 

 

 
(38) 

 

 
(39) 
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In the process of R/S analysis, which is adapted for the application to natural evolutionary time series, 

we calculate. 

 

 
(40) 

 

 
(41) 

 

 
(42) 

 

 
(43) 

 

 The Hurst exponent is equal to the tangent of the angle of inclination of the line regression in the  

field where each point has its coordinates  and can be found by applying the linear least squares fitting  

technique (LSFT). It follows that the Hurst exponent is actually the coefficient of this linear regression. In 

practice, a certain number of points for sufficiently small values ofτis rejected. To reduce the variance of 

the H parameter, a certain number of points at large τ is discarded. Among the advantages of this method is 

the stability of the estimator relative to the distribution form, including asymmetric distributions and those 

with "long tails." Some of the disadvantages include the absence of a reliability analysis and error 

tolerance. In addition, for the Gaussian models, the R/S method loses its advantages in comparison with the 

maximum likelihood estimation in White's approximation or in the case of non-stationary series. 

For the time-series filtered from the trend (NII(t)=N(t)-NI(t)) of the quantity of aircraft crashes with 

lethal consequences in the period from 1946 to 2017, such results of calculating the Hurst exponent have 

been obtained and summarized in Table 6.: 

 
Table 6. Results of fractal-statistical analysis  of the filtered time series of the first differences in the absolute 

values of aircraft crashes 

No.  The initial length of 

the time interval 

(number of years)  

The end length of 

the time interval 

(number of years)  

The value of the step change 

in the length of the time 

interval (number of years)  

The number of 

breakdowns  

The Hurst 

exponent  

1  8  36  1  29  0.971  

2  8  36  2  15  0.972  

3  9  36  1  28  0.959  

4  9  36  2  14  0.969  

5  10  36  1  27  0.963  

6  10  36  2  14  0.947  

7  11  36  1  26  0.967  

8  11  36  2  13  0.983  

9  12  36  1  25  0.928  

10  12  36  2  13  0.948  

 

The Hurst exponent in the ten numerical experiments does not fall below the value of 0.928. Such a result allows 

to preserve the hypothesis of the time series being a "black noise" (0,6≤H≤1). The specified time series are called 

persistent. They are also trend-resistant, account for the effect of long memory as well as possess periodic cycles and 

quasi cycles. Scientists believe that the enumerated properties are also characteristic for sufficiently long time series. 

In the formula, the use of quotation marks (“”) presupposes that the dimensions of the left and right parts do not 

match and for the appliance of the exact equation, a special dimensional coefficient K needs to be introduced. 
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The statistical value of the Hurst exponent as the coefficient of the corresponding pairwise linear 

regression was verified using the t-criterion, at a significance level of α=0,01. The obtained Hurst exponent 

has proved to be significant with such trusted intervals as (0.93-0.98). 

As the regression coefficient, the Hurst exponent can be characterized as follows. The  the regression 

equation as non-bias, substantiated, effective and invariant.  

Fractal dimension is another of the characteristics of the time series and it corresponds to the empirical 

Hurst exponent estimated by the formula: D = 2-H. 

In our case, the value of D is within (1,02-1,07). The undertaken study allows to conclude that, at first 

glance, the allegedly unrelated data of the number of crashes with lethal consequences for the period from 

1946 to 2017 has the effect of "spatial memory", presupposing "hidden regularities".estimates obtained by 

means of the least squares fitting technique (LSFT) define the parameters of  

The fact that the investigated time series has a complicated local structure is confirmed by studies of the 

time series of the first differences, the geometric image of which has the following form (Figure 6): 
 

 

Fig. 6. Schedule of the first time-series differences in the quantity of aircraft crashes with lethal consequences in the 

period from 1946 to 2017 

 

By filtering the trend of the time series of the first differences, the equation of which is ΔN = -0,0213x 

+ 0,0624, we can obtain a new time series. The latter's results drawn on the basis of the common Hurst 

analysis have been summarized in Table 7. 
 

Table 7. Results of fractal-statistical analysis of the filtered time series of the first differences in the absolute values of 

aircraft crashes 

No. 

The initial 

length of the 

time interval 

(number of 

years) 

The end length 

of the time 

interval (number 

of years) 

The value of the 

step change in 

the length of the 

time interval 

(number of 

years) 

The number of 

breakdowns 

The Hurst 

exponent 

1 8 35 1 28 0.38 

2 8 35 2 14 0.392 

3 9 35 1 27 0.343 

4 9 35 2 14 0.36 

5 10 35 1 26 0.334 

6 10 35 2 13 0.322 

7 11 35 1 25 0.34 

8 11 35 2 13 0.34 

9 12 35 1 24 0.361 

10 12 35 2 12 0.34 
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The Hurst exponent in the ten numerical experiments does not exceed the value of 0.392. Such a result 

indicates that this time series refers to the so-called "pink noise"  (0,6 ≤ 𝐻 ≤ 1). The time series with the 

specified characteristic are called anti-persistent and are subject to a very  frequent return to their mean 

value. The studied time series of the quantity of aircraft crashes with the lethal consequences in the period 

from 1946 to 2017 can be characterized by the following hypothetical property of the first increments. 

After a further decrease in the number of aircraft crashes, there is a certain increase with a general 

downward trend. 

During the research, the software product HerstCalc (developed by Levchenko) has been used after the 

special preparation of the time series for its application. 

This at the beginning of the research unexpected outcome inspires to further study the connections 

between the data, in particular, with the help of quasi cyclic and fractal-graph analysis. 

 

6. CONCLUSIONS 

 

1. The authors did not find any arguments that would deny the possibility of using the theory of fractal 

statistics, namely the Hurst analysis, for studying the dynamics of the quantity of aircraft crashes with 

lethal consequences in the period from 1946 to 2017. The dynamics has proven to possess a complex 

local structure. 

2. In the process of calculating the Hurst exponent, a set of values has been considered.  

These are the initial and end lengths of the time interval, the value of its step change and the number 

of breakdowns. Together, they have helped to find the range of the Hurst exponent      for the 

calculation method used. Ranging from 0.992 to 0.983, such a result has allowed to refer the studies 

time series to "black noise"  (0,6≤H≤1). 
3. The minimum obtained value of the Hurst exponent confirms the referential validity of the time series 

of the dynamics of the quantity of aircraft crashes with lethal consequences to the class of persistent 

time series. Its main characteristics include trend-stability, long-term memory as well as periodic and 

quasi periodic cycles. The obtained results indicate that due to the impossibility of entering the studied 

time series to the group of common random Gaussian processes, they are to be studied by the 

theoretical foundations of systems with chaotic behaviour. 

 

REFERENCES 

[1] Safety Management System, Handbook Doc 9859, Fourth Edition, ICAO, Montreal 2018. 

[2] The Convention on International Civil Aviation Doc 7300, signed in Chicago on December 7, 1944, ICAO, 

Montreal 2006. 

[3] Annex 19 to the Convention on the International Civil Aviation Organization, Safety Management System, 

ICAO, Montreal 2016. 

[4] Kharchenko V., Paweska M., Bugayko D., Antonova A., Grigorak M., Theoretical Approaches for Safety Levels 

Measurements – Sequential Probability Ratio Test (SPRT), “Logistics and Transport”, 34 (2017)/2, pp. 25–31. 

[5]  Kharchenko V., Bugayko D., Modern Trends of Aviation Logistics Development – Effectiveness, Safety and 

Security Aspects, “Logistics and Transport”, 18 (2013)/2, pp. 17–23. 

[6] Hak-Tae L., Meyn L. A., Kim S. Y., Probabilistic Safety Assessment of Unmanned Aerial System Operations, 

“Journal of Guidance, Control and Dynamics”, 36 (2013)/2, pp. 610-617. 

[7] Kharchenko V., Chynchenko Y., Integrated safety management system in air traffic services, „Proceedings of 

the National Aviation University”, 58 (2014)/1, pp. 6–10. 

[8] Borsuk S., Reva O., Kharchenko V., Multiplication of Air Accidents Frequency and Hazard Desirability 

Coefficients for ICAO Safety Risk Tolerability Matrix Solution, “Logistics and Transport”, 25 (2015)/1, pp.  63-

70. 

[9] Aref'eva O. V., Oleshko T. I., Marusich O. V., Leshchynsky O. L., Quasicyclical pre-forecast analysis of world 

oil prices, [in:] Scientific proceedings: a collection of scientific articles, NAU, Kiev 2011, pp. 25-31. 

[10] Borisenko Y. G., Groza V. A., Leschinsky O. L., Fractal-statistical analysis of fluctuations of Trubiz river water 

levels, “Knowledge Technology”, (2014), pp. 21-25. 

[11] Demidova L. A., Pyilkin A. N., Skvortsov S. V., SkvortsovaT. S., Gibridnyie modeli prognozirovaniya korotkih 

vremennyih ryadov, Goryachaya liniya, Telekom, 2015. 

[12] Aviation Safety Network (ASN) - https://aviation-safety.net/statistics 



TRANSPORT Analysis of the Aviation Safety Management System … 

 

 
 

59 

[13] Kalush Yu. A., Pokazatel Hersta i ego skryityie svoystva, “Sib. zhurn. industr. Matem.”, 5 (2002)/4, pp. 29–37. 

[14] Feder E., Fraktaly, M. Mir, s. l. 1991. 

[15] Kirichenko L. O., Sravnitelnyiy analiz metodov otsenki parametra Hersta samopodobnyih protsessov, „Sistemi 

obrobki Informatsyi”, 48 (2005)/8, pp. 113-117. 

[16] Beran J., Statistics for long-memory process, Chapman&Hall, New York 1994. 

[17] Pratsevity M. V., A fractal approach in singular distribution studies, NPU MP Drahomanov, Kiev 1998. 

[18] Hurst H. E., Long-term storage capacity of reservoirs, “Transactions of the American Society of Civil 

Engineers”, 116 (1951)/5,  pp. 770-808. 

[19] Byistray G. P., Korshunov L. A., Nikulin N. L., Lyikov I. A., Diagnostika i prognozirovanie sotsialno-

ekonomicheskogo razvitiya regionov v ramkah nelineynoy dinamiki, “Vestnik Tyumenskogo Gosudarstvennogo 

Universiteta”, (2010)/4, pp. 164-170. 

[20] Nagornov O. V., Nikitaev V. G., Veyvlet-analiz v primerah: ucheb.posobie, M.: Izd-vo NIYaU MIFI, 2010. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

______________________________________ 

 

Dmytro Bugayko 

National Aviation University Kiev, Ukraine 

bugaiko@nau.edu.ua  

 

Volodymyr Isaienko 

National Aviation University Kiev, Ukraine 

volodymyr.isaienko@gmail.com  

 

Nataliya Sokolova  

National Aviation University Kiev, Ukraine 

NataSokolova@bigmir.net    

 

Oleg Leschinskij 

National Aviation University Kiev, Ukraine 

dimka_92@ukr.net  

 

Zenon Zamiar 

The International University of Logistics and Transport  

in Wroclaw, Poland 

zzamiar@msl.com.pl 

 



Analysis of the Aviation Safety Management System … Logistics and Transport No 4(44)/2019 

 

 
 

60 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


