
4

INTRODUCTION

Gradually, there is a global shift in the paradigm of managerial thinking from

following heavy and lengthy strategies to situational and tactical behavior. It is this

type of organization and management of work that will successfully maneuver in the

modern dynamic realities of the world.

The development of a long and solid plan may not end. In the process of its

creation, there will be such a number of changes, accounting and reflection of which

will take a long period of time.

It is to overcome crises associated with a shortage of thoughts, ideas, and time

that we need to use flexible processes, the essence of which is to adapt to current

conditions, focus on working with people and perceiving change as an inevitable good,

not a terrible problem.

The managers and specialists who have studied Agile and use it in their

professional activities are certainly more competent and valuable personnel for any

organization.

The purpose of graduate work is to determine the impact and effectiveness of a

flexible management system for international trade enterprises, as exemplified by

Smart Trading Group.

To achieve this goal we must complete the following tasks:

 to consider fundamentals of the concept of flexible project management

methodologies for enterprise management;

 to analyze characteristics of the main requirements and limitations for

clustering methodologies;

 to provide analysis of the transition of the trading enterprise management to

the flexible management methodologies;

 to determine characteristics of trading enterprise management processes of

Smart Trading Group;

5

 to consider experience defining flexible management methodologies for

enterprises;

 to determine the impact of the Smart Trading Group transition on flexible

management methodologies;

 to assess ways to effectively implement flexible methodologies;

 to analyxe pilot project of forming a flexible management system in a trading

enterprise.

The object of the graduate work is flexible methodologies for managing product

creation processes in a trading enterprise.

The subject of research - the means of analysis of management processes in a

trading company.

The main research methods are analysis, synthesis, comparison, classification,

formalization and system analysis. Also used method of sociological questioning,

process modeling, method of constructing management algorithms.

The practical significance of the results obtained the results of the work

summarize the creation of the pilot project and its results for Smart Trading Group in 5

weeks. The conducted research makes it possible to effectively change management

processes at the enterprise, increasing the number of processes and accelerating their

implementation.

Support for project coordination was studied in publications of Ukrainian and

foreign scientists such as Anderson A., Biloshchytsky А., Bushuyev S., Bushuyva N.,

Cohn M., Ehlrich D., DeMarco Tom, Detchman A., Gogunskii V., Griffin Em.,

Highsmith G., Sachenko А., Milosevic D., Morozov V., Osherove M., Scanlan N.,

Sutherland J., Surowiecki H., Turner R., Twed S. and others. In particular, the field of

project management, changes, as well as the synthesis of design product configuration

in various subject areas, in particular, in distributed projects is deeply studied.

Regulatory acts, Textbooks, Smart Trading Group reporting electronic

documentation of the pilot project served as information sources for the study.

Structure of the work: the work consists of 3 sections, introduction and

conclusion. The first section is devoted to the theoretical foundations of the

6

implementation of the formation of management of flexible methodologies for

technological processes: the essence of flexible methodologies is revealed and their

main types are identified, the theoretical foundations of the implementation of

management operations are identified, the features of the organization of process

management in the enterprise are analyzed and the most effective ways to achieve

flexibility in production are highlighted.

The second section provides a general description of the enterprise under study,

an analysis of its managerial and information technology activities, as well as an

analysis of the interaction between performers.

In the third section, the main ways to improve the use of flexible methodologies

are indicated, directions for the introduction of a pilot project with agile technology for

managing enterprise processes are developed, and the effectiveness of these proposals

is evaluated.

7

PART 1. THEORETICAL BASIS OF DEFINITION OF FLEXIBLE

METHODOLOGIES OF ENTERPRISE MANAGEMENT

1.1. Fundamentals of the concept of flexible project management methodologies

for enterprise management

In Scrum, we acknowledge that we can’t get all of the requirements or the plans

right up front. In fact, we believe that trying to do so could be dangerous because we

are likely missing important knowledge, leading to the creation of a large quantity of

low-quality requirements. This figure illustrates that when using a plan-driven,

sequential process, a large number of requirements are produced early on when we

have the least cumulative knowledge about the product. This approach is risky,

because there is an illusion that we have eliminated end uncertainty. It is also

potentially very wasteful when our understanding improves or things change. Plan-

driven, sequential processes focus on using (or exploiting) what is currently known

and predicting what isn’t known. Scrum favors a more adaptive, trial-anderror

approach based on appropriate use of exploration. Exploration refers to times when we

choose to gain knowledge by doing some activity, such as building a prototype,

creating a proof of concept, performing a study, or conducting an experiment. In other

words, when faced with uncertainty, we buy information by exploring. Our tools and

technologies significantly influence the cost of exploration. Historically software

product development exploration has been expensive, a fact that favored a more

predictive, try-to-get-it-right-up-front approach (see Figure 1.1).

8

Figure 1.1. Historical cost of exploration [9]

A waterfall-style process that allowed for careful consideration of current

knowledge and prediction in the presence of uncertainty in an attempt to arrive at a

good solution just made economic sense. Fortunately, tools and technologies have

gotten better and the cost of exploring has come way down. There is no longer an

economic disincentive to explore. In fact, nowadays, it’s often cheaper to adapt to user

feedback based on building something fast than it is to invest in trying to get

everything right up front. Good thing, too, because the context (the surrounding

technologies) in which our solutions must exist is getting increasingly more complex.

In Scrum, if we have enough knowledge to make an informed, reasonable step forward

with our solution, we advance. However, when faced with uncertainty, rather than

trying to predict it away, we use low-cost exploration to buy relevant information that

we can then use to make an informed, reasonable step forward with our solution. The

feedback from our action will help us determine if and when we need further

exploration.

When using sequential development, change, as we have all learned, is

substantially more expensive late than it is early on. As an example, a change made

during analysis might cost $1; that same change made late during testing might cost

$1,000. Why is this so? If we make a mistake during analysis and find it during

9

analysis, it is an inexpensive fix [19]. If that same error is not found until design, we

have to fix not only the incorrect requirement, but potentially parts of our design based

on the wrong requirement. This compounding of the error continues through each

subsequent phase, making what might have been a small error to correct during

analysis into a much larger error to correct in testing or operations. To avoid late

changes, sequential processes seek to carefully control and minimize any changing

requirements or designs by improving the accuracy of the predictions about what the

system needs to do or how it is supposed to do it. Unfortunately, being excessively

predictive in early-activity phases often has the opposite effect. It not only fails to

eliminate change; it actually contributes to deliveries that are late and over budget as

well [25, 145p.].

Why this paradoxical truth? First, the desire to eliminate expensive change forces

us to overinvest in each phase—doing more work than is necessary and practical.

Second, we’re forced to make decisions based on important assumptions early in the

process, before we have validated these assumptions with feedback from our

stakeholders based on our working assets. As a result, we produce a large inventory of

work products based on these assumptions. Later, this inventory will likely have to be

corrected or discarded as we validate (or invalidate) our assumptions, or change

happens (for example, requirements emerge or evolve), as it always will.

In Scrum, we assume that change is the norm. We believe that we can’t predict

away the inherent uncertainty that exists during product development by working

longer and harder up front. Thus, we must be prepared to embrace change. And when

that change occurs, we want the economics to be more appealing than with traditional

development, even when the change happens later in the product development effort.

Our goal, therefore, is to keep the cost-of-change curve flat for as long as possible—

making it economically sensible to embrace even late change. Figure 1.2 illustrates

this idea. We can achieve that goal by managing the amount of work in process and

the flow of that work so that the cost of change when using Scrum is less affected by

time than it is with sequential projects. Regardless of which product development

approach we use, we want the following relationship to be true: a small change in

10

requirements should yield a proportionally small change in implementation and

therefore in cost (obviously we would expect a larger change to cost more). Another

desirable property of this relationship is that we want it to be true regardless of when

the change request is made. With Scrum, we produce many work products (such as

detailed requirements, designs, and test cases) in a just-in-time fashion, avoiding the

creation of potentially unnecessary artifacts. As a result, when a change is made, there

are typically far fewer artifacts or constraining decisions based on assumptions that

might be discarded or reworked, thus keeping the cost more proportional to the size of

the requested change[47, 69p.].

Figure 1.2 Flattening the cost-of-change curve [34]

Being tolerant of long-lived assumptions also makes plan-driven processes tolerant of

late learning, so fast feedback is not a focus. With Scrum, we strive for fast feedback,

because it is critical for helping truncate wrong paths sooner and is vital for quickly

uncovering and exploiting time-sensitive, emergent opportunities. In a plan-driven

development effort, every activity is planned to occur at an appointed time based on

the well-defined phase sequence. This approach assumes that earlier activities can be

completed without the feedback generated by later activities. As a result, there might

11

be a long period of time between doing something and getting feedback on what we

did (hence closing the learning loop). Let’s use component integration and testing as

an example. Say we are developing three components in parallel. At some time these

components have to be integrated and tested before we have a shippable product. Until

we try to do the integration, we really don’t know whether we have developed the

components correctly. Attempting the integration will provide critical feedback on the

component development work. Using sequential development, integration and testing

wouldn’t happen until the predetermined downstream phase, where many or all

components would be integrated. Unfortunately, the idea that we can develop a bunch

of components in parallel and then later, in an integration phase, smoothly bring them

together into a cohesive whole is unlikely to work out. In fact, even with well-

conceived interfaces defined before we develop the components, it’s likely that

something will go wrong when we integrate them (see Figure 1.3).

Figure 1.3 Component integration [19]

Feedback-generating activities that occur a long time after development have

unfortunate side effects, such as turning integration into a large test-and-fix phase,

because components developed disjointedly from each other frequently don’t integrate

smoothly. How long it will take and how much it will cost to fix the problem can only

be guessed at this point. In Scrum, we organize the flow of work to move through the

12

learning loop in Figure 1.3 and get to feedback as quickly as possible. In doing so, we

ensure that feedback-generating activities occur in close time proximity to the original

work. Fast feedback provides superior economic benefits because errors compound

when we delay feedback, resulting in exponentially larger failures.

Cost of delay is the financial cost associated with delaying work or delaying

achievement of a milestone. Figure 3.15 illustrates that as capacity utilization

increases, queue size and delay also increase. Therefore, by reducing the waste of idle

workers (by increasing their utilization), we simultaneously increase the waste

associated with idle work (work sitting in queues waiting to be serviced). Using cost of

delay, we can calculate which waste is more economically damaging [51].

Unfortunately, 85% of organizations don’t quantify cost of delay (Reinertsen

2009b). Combine that with the fact that most development organizations don’t realize

they have accumulated work (inventory) sitting in queues, and it is easy to see why

their default behavior is to focus on eliminating the visible waste of idle workers. Here

is a simple example to illustrate why the cost of idle work is typically much greater

than the cost of idle workers. Consider this question: Should we assign a documenter

to the team on the first day of development or at the end of development? Table 3.3

illustrates a comparison of these two options (there are other options we could use).

Assume that we assign the documenter full-time for 12 months to work on this

product, even if he is not needed 100% of the time.

Doing so costs an incremental $75K (think of this as idle worker waste) above

what it would cost if we brought him on for two months at the end once the product

reaches the state of “all but documented.” If we assign the documenter to do all of the

documentation at the end, we will need him full-time for only two months, but we will

also delay the delivery of the product by the same two months. If we delay shipping

the product by two months, the calculated cost of delay in terms of lifecycle profits is

$500K (lifecycle profits are the total profit potential of a product over its lifetime; in

this example, that potential decreases by $500K).

Table 1.1

Example Cost-of-Delay Calculation Parameter [28]

13

Parameter Value

Duration with full-time documenter 12 months

Duration with documenter assigned at the end (when we reach the state

of “all but documented”)

14 months

Cycle-time cost for doing documentation at the end 2 months

Cost of delay, per month $250K

Total cost of delay $500K

Annual fully burdened cost of documenter $90K

Monthly fully burdened cost of documenter $7.5K

Cost for full-time documenter $90K

Cost for documenter if assigned at end $15K

Incremental cost for full-time documenter $75K

Figure 1.4. How utilization affects queue size (delay) [32]

14

In this example, the cost of the idle worker is $75K and the cost of the idle work

is $500K. If we focus on optimizing the utilization of the documenter, we will

substantially suboptimize the economics of the overall product. During product

development we are presented with these types of trade-offs on a continuous basis;

cost of delay will be one of the most important variables to consider when making

economically sensible decisions.

Frequently the Scrum focus on minimally sufficient ceremony is misinterpreted

to mean things like “Scrum is anti-documentation.” Scrum isn’t anti-documentation.

Rather, when using Scrum, we adopt an economic perspective and carefully review

which documents we create. If we write a document that is shelfware and adds no

value, we have wasted our time and money creating a dead document. However, not

all documents are dead [45].

It is a deliverable as part of the product (for example, installation instructions,

user’s guide, and so on). Our goal is to capture an important discussion, decision, or

agreement so that in the future we will have a clear recollection of what was discussed,

decided, or agreed to

It is the high-value way of helping new team members come up to speed quickly.

There is a regulatory requirement that a certain document be written (a cost of doing

business in a regulated industry)

What we are trying to avoid is work that adds no short-term or long-term

economic value. In Scrum, we believe that time and money are better spent delivering

customer value.

Table 1.2

Comparison Summary of Plan-Driven and Agile Principles [17]

Topic Plan-Driven Principle Agile Principle

Similarity between

development and

manufacturing

Both follow a defined process. Development isn’t

manufacturing; development

creates the recipe for the

product.

Process structure

Development is phase-based and

sequential.

Development should be

iterative and incremental.

Degree of process and

product variability

Try to eliminate process and

product variability.

Leverage variability through

inspection, adaptation, and

15

transparency.

Uncertainty management

Eliminate end uncertainty first,

and then means uncertainty.

Reduce uncertainties

simultaneously

Decision making

Make each decision in its proper

phase.

Keep options open

Getting it right the first

time

Assumes we have all of the

correct information up front to

create the requirements and plans.

We can’t get it right up front.

Exploration versus

exploitation

Exploit what is currently known

and predict what isn’t known.

Favor an adaptive,

exploratory approach

Change/emergence

Change is disruptive to plans and

expensive, so it should be

avoided.

Embrace change in an

economically sensible way.

Predictive versus

adaptive

The process is highly predictive.

Balance predictive up-front

work with adaptive just-in-

time work.

Assumptions

(unvalidated knowledge)

The process is tolerant of long-

lived assumptions

Validate important

assumptions fast.

Feedback

Critical learning occurs on one

major analyze-design-codetest

loop.

Leverage multiple concurrent

learning loops.

Fast feedback

The process is tolerant of late

learning.

Organize workflow for fast

feedback.

Batch size (how much

work is completed before

the next activity can

start)

Batches are large, frequently

100%—all before any. Economies

of scale should apply.

Use smaller, economically

sensible batch sizes.

Inventory/work in

process (WIP)

Inventory isn’t part of the belief

system so is not a focus.

Recognize inventory and

manage it to achieve good

flow.

People versus work

waste

Allocate people to achieve high

levels of utilization.

Focus on idle work, not idle

workers.

Cost of delay

Cost of delay is rarely considered. Always consider cost of

delay.

Conformance to plan

Conformance is considered a

primary means of achieving a

good result.

Adapt and replan rather than

conform to a plan

Progress. Demonstrate progress by

progressing through stages or

phases

Measure progress by

validating working assets

Centricity. Process-centric—follow the

process

Value-centric—deliver the

value

Speed

Follow the process; do things

right the first time and go fast.

Go fast but never hurry.

When we get high

quality

Quality comes at the end, after an

extensive test-and-fix phase

Build quality in from the

beginning

Formality (ceremony) Formality (well-defined

procedures and checkpoints) is

Employ minimally sufficient

ceremony

16

important to effective execution.

1.2. Characteristics of the main requirements and limitations for clustering

methodologies

Scrum is an agile approach for developing innovative products and services.

Figure 1.1 shows a simple, generic, agile development approach. With an agile

approach, you begin by creating a product backlog—a prioritized list of the features

and other capabilities needed to develop a successful product. Guided by the product

backlog, you always work on the most important or highestpriority items first. When

you run out of resources (such as time), any work that didn’t get completed will be of

lower priority than the completed work [23,27].

The work itself is performed in short, timeboxed iterations, which usually range

from a week to a calendar month in length. During each iteration, a self-organizing,

cross-functional team does all of the work—such as designing, building, and testing—

required to produce completed, working features that could be put into production.

Typically the amount of work in the product backlog is much greater than can be

completed by a team in one short-duration iteration. So, at the start of each iteration,

the team plans which high-priority subset of the product backlog to create in the

upcoming iteration. In Figure 1.1, for example, the team has agreed that it can create

features A, B, and C. At the end of the iteration, the team reviews the completed

features with the stakeholders to get their feedback. Based on the feedback, the

product owner and team can alter both what they plan to work on next and how the

team plans to do the work. For example, if the stakeholders see a completed feature

and then realize that another feature that they never considered must also be included

in the product, the product owner can simply create a new item representing that

feature and insert it into the product backlog in the correct order to be worked on in a

future iteration. At the end of each iteration, the team should have a potentially

17

shippable product (or increment of the product), one that can be released if

appropriate. If releasing after each iteration isn’t appropriate, a set of features from

multiple iterations can be released together.

As each iteration ends, the whole process is begun anew with the planning of the

next iteration.

Scrum Origins Scrum’s rich history can be traced back to a 1986 Harvard

Business Review article, “The New New Product Development Game” (Takeuchi and

Nonaka 1986). This article describes how companies such as Honda, Canon, and Fuji-

Xerox produced world-class results using a scalable, team-based approach to all-at-

once product development. It also emphasizes the importance of empowered, self-

organizing teams and outlines management’s role in the development process. The

1986 article was influential in weaving together many of the concepts that gave rise to

what today we call Scrum. Scrum is not an acronym, but rather a term borrowed from

the sport of rugby, where it refers to a way of restarting a game after an accidental

infringement or when the ball has gone out of play. Even if you are not a rugby

aficionado, you have probably seen a scrum where the two sets of forwards mass

together around the ball with locked arms and, with their heads down, struggle to gain

possession of the ball.

In 1993, Jeff Sutherland and his team at Easel Corporation created the Scrum

process for use on a software development effort by combining concepts from the

1986 article with concepts from object-oriented development, empirical process

control, iterative and incremental development, software process and productivity

research, and complex adaptive systems. In 1995, Ken Schwaber published the first

paper on Scrum at OOPSLA 1995 [39]. Since then, Schwaber and Sutherland, together

and separately, have produced several Scrum-specific publications, including Agile

Software Development with Scrum [41], Agile Project Management with Scrum

(Schwaber 2004), and “The Scrum Guide” [39]. Though Scrum is most commonly

used to develop software products, the core values and principles of Scrum can and are

being used to develop different types of products or to organize the flow of various

types of work. For example, I have worked with organizations that have successfully

18

used Scrum for organizing and managing the work associated with hardware

development, marketing programs, and sales initiatives.

Why Scrum? That was the bad news; the good news was that most everyone

agreed. Genomica operated in a complex domain where more was unknown than

known. We built products that had never been built before. Our focus was on

bleeding-edge, continuously evolving, state-of-the-art, discovery informatics platforms

that research scientists would use to help discover the next blockbuster molecule. We

needed a way of developing that would allow us to quickly explore new ideas and

approaches and learn fast which solutions were viable and which were not. We had a

strategic corporate partner to whom we needed to show working results every few

weeks or so to get feedback, because our product had to integrate with its core line of

DNA sequencers.

This need for rapid exploration and feedback did not mesh well with the detailed,

upfront planning we had been doing. We also wanted to avoid big up-front

architecture design. A previous attempt to create a next generation of Genomica’s core

product had seen the organization spend almost one year doing architecture-only work

to create a grand, unified bioinformatics platform. When the first real scientist-facing

application was put on top of that architecture, and we finally validated design

decisions made many months earlier, it took 42 seconds to tab from one field on the

screen to the next field.

 If you think a typical user is impatient, imagine a molecular biologist with a

Ph.D. having to wait 42 seconds! It was a disaster. We needed a different, more

balanced approach to design, which included some design up front combined with a

healthy dose of emergent, justin-time design. We also wanted our teams to be more

cross-functional. Historically Genomica operated like most organizations.

Development would hand off work to the test teams only after it was fully completed.

We now had a desire for all team members to synchronize frequently—daily was the

goal. In the past, errors were compounded because important issues were being

discussed too late in the development effort. People in different areas weren’t

19

communicating frequently enough. For these reasons, and others, we determined that

Scrum would be a good fit for Genomica [28].

The Genomica pre-Scrum experience of building features that nobody wanted

and delivering those features late and with poor quality is not uncommon. Genomica,

like many other organizations, had survived by being no worse than its competitors. I

saw the same problems when I first started working in commercial software

development in the mid-1980s. And for many, after nearly 30 years, the situation

hasn’t improved. Today, if you gathered together your business people and developers

and asked them, “Are you happy with the results of our software development

efforts?” or “Do you think we deliver good customer value in a timely, economical,

and quality manner?” what would they say? More often than not, the people I meet

during my worldwide training and coaching answer both questions with a resounding

“No.” This is followed by a chorus of “Project failure rate is unacceptably high”;

“Deliverables are late”; “Return on investment frequently falls short of expectations”;

“Software quality is poor”; “Productivity is embarrassing”; “No one is accountable for

outcomes”; “Employee morale is low”; “Employee turnover is too high.” Then there’s

the under-the-breath snicker that accompanies the tongue-in-cheek “There must be a

better way.” Yet even with all this discontent, most people seem resigned to the fact

that dissatisfaction is just part of the reality of software development. It doesn’t have

to be. Organizations that have diligently applied Scrum are experiencing a different

reality (see Figure 1.5).

Delighted customers

Improved return on investment

Reduced costs

Fast results

Confidence to succeed in a complex world

Scrum benefits

20

Figure 1.5. Scrum benefits [78]

These organizations are repeatedly delighting their customers by giving them

what they really want, not just the features they might have specified on the first day

when they knew the least about their true needs. They are also seeing an improved

return on investment by delivering smaller, more frequent releases [19]. And, by

relentlessly exposing organizational dysfunction and waste, these organizations are

able to reduce costs. Scrum’s focus on delivering working, integrated, tested, business-

valuable features each iteration leads to results being delivered fast. Scrum is also well

suited to help organizations succeed in a complex world where they must quickly

adapt based on the interconnected actions of competitors, customers, users, regulatory

bodies, and other stakeholders. And Scrum provides more joy for all participants. Not

only are customers delighted, but also the people doing the work actually enjoy it!

They enjoy frequent and meaningful collaboration, leading to improved interpersonal

relationships and greater mutual trust among team members. Don’t get me wrong.

Though Scrum is an excellent solution for many situations, it is not the proper solution

in all circumstances. The Cynefin framework (Snowden and Boone 2007) is a sense-

making framework that helps us understand the situation in which we have to operate

and decide on a situation-appropriate approach. It defines and compares the

characteristics of five different domains: simple, complicated, chaotic, complex, and a

fifth domain, disorder, which occurs when you don’t know which other domain you

are in (see Figure 1.6). We will use the Cynefin framework to discuss situations in

which Scrum is and is not a good fit. First, it is important to realize that the many

facets of software development and support will not fit nicely into just one Cynefin

domain. Software development is a rich endeavor, with aspects that overlap and

activities that fall into all of the different domains (Pelrine 2011). So, while most

software development work falls in the domains of complicated or complex, to boldly

More joy

21

claim that software development is a complex domain would be naive, especially if we

define software development to include the spectrum of work ranging from innovative

new-product development, ongoing software product maintenance, and operations and

support.

Figure 1.6. Cynefin framework [49]

Complex Domain. When dealing with complex problems, things are more

unpredictable than they are predictable. If there is a right answer, we will know it only

with hindsight. This is the domain of emergence. We need to explore to learn about the

problem, then inspect and adapt based on our learning. Working in complex domains

requires creative and innovative approaches. Routine, cookie-cutter solutions simply

don’t apply. We need to create a safe-fail environment for experimentation so that we

can discover important information. In this environment high levels of interaction and

communication are essential. Innovative new-product development falls into this

category as does enhancing existing products with innovative new features. Scrum is

particularly well suited for operating in a complex domain. In such situations our

ability to probe (explore), sense (inspect), and respond (adapt) is critical.

Complex Probe,
Sense, Respond

Complicated Sense,
Analyze, Respond

Chaotic Act, Sense,
Respond

Simple Sense,
Categorize, Respond

Disorder

22

Complicated problems are the domain of good practices dominated by experts.

There might be multiple right answers, but expert diagnosis is required to figure them

out. Although Scrum can certainly work with these problems, it might not be the best

solution. For example, a performance optimization effort that calls for adjusting

parameters to find the best overall system performance would be better served by

assembling experts and letting them assess the situation, investigate several options,

and base their response on good practice. Much of day-to-day software maintenance

(dealing with a flow of product support or defect issues) falls into this category. This is

also where many of the tactical, quantitative approaches like Six Sigma are

particularly well suited, although these tactical approaches can also apply with simple

domains.

Simple Domain When dealing with simple problems, everyone can see cause and

effect. Often the right answer is obvious and undisputed. This is the domain of

legitimate best practices. There are known solutions. Once we assess the facts of our

situation, we can determine the proper predefined solution to use. Scrum can be used

for simple problems, but it may not be the most efficient tool for this type of problem.

Using a process with a well-defined, repeatable set of steps that are known to solve the

problem would be a better fit. For example, if we want to reproduce the same product

over and over again, a well-defined assembly-line process would be a better fit than

Scrum. Or deploying the same commercial-off-the-shelf (COTS) product into the

100th customer environment might best be completed by repeating a well-defined and

proven set of steps for installing and configuring the product [61].

Chaotic Domain Chaotic problems require a rapid response. We are in a crisis

and need to act immediately to prevent further harm and reestablish at least some

order. For example, suppose a university published an article stating that our product

has a flawed algorithm that is producing erroneous results. Our customers have made

substantial business investments based on the results from our product, and they are

filing lawsuits against us for large damages. Our lead algorithm designer is on holiday

in the jungles of Borneo and can’t be reached for two more weeks. Scrum is not the

best solution here. We are not interested in prioritizing a backlog of work and

23

determining what work to perform in the next iteration. We need the ability to act

immediately and decisively to stem the bleeding. With chaotic problems, someone

needs to take charge of the situation and act.

Disorder You are in the disorder domain when you don’t know which of the

other domains you are in. This is a dangerous place to be because you don’t know how

to make sense of your situation. In such cases, people tend to interpret and act

according to their personal preference for action. In software development, many

people are familiar with and therefore have a personal preference for phase-based,

sequential approaches that work well in simple domains. Unfortunately, these tend to

be a rather poor fit for much of software development. When you are in the disorder

domain, the way out is to break down the situation into constituent parts and assign

each to one of the other four domains. You are not trying to apply Scrum in the

disorder domain; you are trying to get out of this domain [37].

Interrupt-Driven Work Scrum is not well suited to highly interrupt-driven work.

Say you run a customer support organization and you want to use Scrum to organize

and manage your support activities. Your product backlog is populated on a

continuous basis as you receive support requests via phone or email. At no point in

time do you have a product backlog that extends very far into the future, and the

content and order of your backlog could change frequently (perhaps hourly or every

few minutes). In this situation, you will not be able to reliably plan iterations of a week

or more because you won’t know what the work will be that far into the future. And,

even if you think you know the work, there is a very good likelihood that a high-

priority support request will arrive and preempt any such forward-looking plans. In

interrupt-driven environments you would be better off considering an alternative agile

approach called Kanban. Kanban is not a stand-alone process solution, but instead an

approach that is overlaid on an existing process. In particular, Kanban advocates that

you.

Visualize how the work flows through the system (for example, the steps that the

support organization takes to resolve a support request) Limit the work in process

(WIP) at each step to ensure that you are not doing more work than you have the

24

capacity to do Measure and optimize the flow of the work through the system to make

continuous improvements [9].

The sweet spots for Kanban are the software maintenance and support areas.

Some Kanban practitioners point out that Kanban’s focus on eliminating overburden

(by aligning WIP with capacity) and reducing variability in flow while encouraging an

evolutionary approach to change makes it appropriate to use in complex domains as

well. Scrum and Kanban are both agile approaches to development, and each has

strengths and weaknesses that should be considered once you make sense of the

domain in which you are operating. In some organizations both Scrum and Kanban

can be used to address the different system needs that coexist. For example, Scrum can

be used for new-product development and Kanban for interrupt-driven support and

maintenance.

Closing Scrum is not a silver bullet or a magic cure. Scrum can, however, enable

you to embrace the changes that accompany all complex product development efforts.

And it can, and has, worked for Genomica and many other companies that decided to

employ an approach to software development that better matched their circumstances.

Although the Scrum framework is simple, it would be a mistake to assume that Scrum

is easy and painless to apply [7].

1.3. Flexible metodology’s tranfomation and pilot project’s management

The cost of migrating. What will you say when the executives ask about cost? In

the model proposed, your main expense will be obtaining a knowledgeable agile coach

or consulting company to come in and train and mentor your team. This usually

involves 2 to 10 days of training, with several phone calls and one-off consulting

sessions post training. These services can run from US$2,000 to $50,000, depending

on the length of the engagement and the level of agile expertise already present in your

company. The other expenses are less tangible. They’re frequently labeled soft

expenses because they don’t add to company outlay but reallocate existing employees.

This will be true of your core team. Over a 3-month period, the core team may spend

25

10 percent of their time working on the new agile methodology. Other costs are

relatively minor, such as printing out materials to support training. The last expense of

note is slower delivery. You can expect the first few projects to be slower as the team

gets comfortable with the new processes and each other. After an acclimation period,

the team will gel around the process and you will start to deliver high-priority features

sooner than before; but patience is required during the first few projects.

An analogy that comes to mind is automobile reviews. We subscribe to

magazines

such as Motor Trend, and we frequently read the road-test reviews for new vehicles.

Almost every auto review laments the position of the shifter, the strange angle of the

seats, or the lack of cup holders. The test driver may not feel comfortable in the car

and may even prefer the previous model. If you buy the same magazine six months

later, it will contain the long-term roadtest results for the same vehicle. Frequently, the

extended review will say something like, “Although initially quirky, the position of the

shifter becomes intuitive with longterm use and simplifies the shifting process. We

also found the seating position to be excellent for long-distance road trips.” Your

migration to agile will be similar. After you get comfortable with how agile works,

you’ll find it “becomes intuitive with longterm use and simplifies the development

process.”

While we’re discussing the cost of migrating to agile, we should also consider the

cost of not migrating. Reflect on the reasons for pursuing agile listed in the previous

section, and imagine what will happen if you don’t address those issues:

■ Declining customer satisfaction

■ Loss of key employees

■ Missed deadlines for compliance-related projects

■ Lost sales

 Lost product opportunities Dr. Phil frequently asks his guests a question that

relates to migrating to agile: “How is your current process working for you?” This is

Dr. Phil’s subtle way of saying that if what you’re doing today isn’t working for you,

you need to make a change.

26

The risks in migrating. If you migrate to agile correctly, we believe the risks are

minimal. But we’ll list some that can occur with poor management of the migration

process:

■ You can fail on a critical project if you use it to pilot your agile methodology.

The first few agile projects shouldn’t be mission critical. Begin with projects

that have medium priority, and work your way up to critical ones.

■ The migration can fail if it’s executive driven and there is disregard for

pursuing employee buy-in.

■ Projects may be affected if employees hear about the work the core team is

doing and decide to experiment without guidance. We’ve seen teams take one agile

practice and try it with disregard for how it needs to dovetail into the upstream and

downstream processes.

■ The migration can lead to cowboy coding and insufficient documentation with

improper training and coaching.

■ The migration can fail if you obtain too much coaching. You can end up rolling

out a process that the consultant likes versus one that provides value in your

environment.

■ The migration can fail if you obtain too little coaching. Many teams have

labeled their lifecycle as agile after adding one or two agile practices. In these

instances, the improvements are marginal, and a true migration doesn’t occur. You can

also comfort your executives and mitigate risk by following the process outlined

■ Completing an assessment to see your potential for adding agility

■ Identifying people within your organization who are passionate about

improving your process and involving them in the migration

■ Reviewing your existing process to identify logical places to add agility

■ Performing a pilot on a non-mission-critical project to identify potential issues

before attempting to scale agile across the entire company

It’s fair to ask “What will agile do for me?” on a personal level.

The answer to this question is usually unique. More than likely, the executives

will never tell you the answer to this question directly. You must deduce the best way

27

to make them look good. Here are a few ways we’ve seen an agile migration satisfy

the personal needs of executives:

■ Agile allows executives to acquire new skills and knowledge that enhance their

value to the company and increase their chances for promotion.

■ The move to agile provides an opportunity to demonstrate leadership skills by

leading a major organizational change. The executive sponsor reaps this reward.

 ■ The migration to agile leads to more wealth. Like most of us, executives care

about their compensation. Migrating to agile lowers costs and increases revenues,

which should also lead to an increase in stock value or, if you’re a small company,

survival.

 ■ All managers dislike dealing with people issues. The agile work environment

is more satisfying, and the executives will find themselves dealing with fewer

employee issues. They will also be pleased to see employee retention rates increase.

■ As we mentioned earlier, customer satisfaction increases with agile. A happier

customer leads to more pleasant discussions with the executives.

Many companies try to “shotgun” agile into their organization. They think, “Let’s

get through the migration pain quickly and start obtaining the benefits as soon as

possible.” We’ve seen a few cases where this approach makes sense: for example, a

project team that has become so dysfunctional that they’re delivering practically no

functionality or business value. This approach also works well for a start-up company

that hasn’t yet established its development process. But for most companies, you

should allow time for the process to “bake.”

This is why we suggest an iterative approach for bringing agile into an

organization. An iterative approach allows you to see how well your employees are

adapting to the change. It also lets you learn what works and what doesn’t in your

environment. In effect, it allows you to reach the right level of agility for your

organization.

Part of your iterative approach will include a process for maintaining the

methodology. We suggest establishing a core team to support this maintenance. A core

team is composed of employees from all aspects of the development process. They

28

play a huge part in establishing your custom methodology and then settle into a

maintenance mode with the goal of constantly adapting to your environment. Next,

you need to choose the best way to iteratively create a methodology at your company.

Should you select a packaged method, such as Scrum or XP? Or should you create a

custom or hybrid process?

In order to be successful, you should customize your agile process. For many

years, consultants and others have said that you must embrace agile completely or not

at all. In 2006, we witnessed a shift in this attitude. Highly respected folks such as

Kent Beck (the founder of XP) and Steve McConnell (the writer of Code Complete)

now endorse customization. Kent Beck noted the following in an interview with InfoQ

(InfoQ.com is an independent online community focused on change and innovation in

enterprise software development) in 2006:

Failure at an organizational level seems to come from the inability to customize

processes and make them their own. Trying to apply someone else’s template to your

organization directly doesn’t work well. It leaves out too many important details of the

previous successes and ignores your company’s specific situation. Rubber-stamping

agile processes isn’t agile. The value of having a principle-based process is that you

can apply the principles for an individualized process for your situation and, as an

extra bonus, one that has been designed to adapt from your learning as you adopt

changes into your organization. It’s always “custom.” Kent’s quote is comforting to us

because it supports our personal experiences. Custom means picking and choosing the

agile practices that best support your environment. Custom means you shouldn’t use a

pure packaged methodology off the shelf, such as Scrum or XP. You can start with one

of these methods as a basis for your process, but you should modify it to obtain the

best results for your company.

To be specific, here are the steps we’ll walk:

1 Assess your organization to determine where you should begin adding agility.

2 Obtain executive support for the move to a more agile process. You can use the

readiness assessment to quantify the value of bringing in agile and identify the risks

you must manage during migration.

29

3 Get the development team involved in the migration process to ensure buy-in.

You do this by establishing a core team.

4 Identify a coach or consultant to help you with your migration. They will train

the core team on agile and help you with other adoption aspects.

5 Develop a clear understanding of your current processes by documenting them.

6 Review your current process, and look for areas that can be shifted to more

agile methods. Focus on areas with the most potential for improvement and the most

value to the customer and your organization. The readiness assessment will also help

with this task.

7 Outline a custom process based on the findings in step 6.

8 Try the new process on a pilot project.

9 Review the findings after the pilot, make changes, and continue to scale out

your new methodology.

A large project requires training many people—and possible several third

parties—on the new methodology. This will delay your ability to gather feedback

about the new process and adjust it, which is the ultimate objective of the pilot.

Let us give you an example of a project that we consider large. We were

upgrading a company’s intranet platform, and the project was scheduled to run for 8

months.

The project went through several gateways to obtain funding. It required high

involvement from the software provider, and consultants were needed to train the team

on the new software. Because the application affected the enterprise, we engaged

several internal teams to help us with training, communication, and security. A project

of this length and scope doesn’t allow time for testing a new process.

You also don’t want to work on a project that is too small. Such a project limits

the areas and phases in which you can test the new process.

The question you need to ask is, “What do you do during a project that can be

completed within 8 weeks?” You need to identify a group of features to serve as a

mini-project within the larger project. For example, if you’re building a website

similar to eBay, the project may take 6 months to a year. To test your new

30

methodology, you can grab a few features and test the new process on them. For

example, you could do a mini-pilot project around seller feedback and its related

features.

If you go the subset route you may have limitations on how far you can test the

new process. Your subset of features may need to rejoin the other features and go

through the legacy testing and deployment processes. If you experience this issue, you

can try to pull the features completely out of the project in subsequent tests, running

them all the way through to deployment.

pilot project needs to have some level of urgency to test the new process under

pressure; but if the project is deemed critical, failure isn’t a viable option. You may

panic, abort, and revert to methods you’re more comfortable with to complete the

project. As we mentioned in section 9.1, the pilot project is a marketing effort as well

as a test of the new methodology—you don’t want to send a message to your company

that the pilot was aborted.

A project is usually critical if your company or the customer can’t survive

without it. Here are some example projects that a business would consider critical:

■ A project to ensure a revenue stream

■ A project that supports meeting a regulatory or compliance deadline ■ A

project with expiring funds (budget tied to a time frame)

■ A project that delivers functionality that is a foundation for the organization

(such as service-oriented architecture [SOA]) From a customer perspective, these

projects could be considered critical:

■ A project tied to a fixed bid

■ A project that the customer depends on for a marketing campaign

■ A project that relates to a regulatory or compliance issue on the customer end

Your objective should be to find a medium-priority project. Such a project allows

some flexibility as you feel out your new process and also provides a level of urgency.

You’re moving to agile to better support urgent projects, so you need to simulate this

with your pilot.

Here are some examples of medium-priority projects:

31

■ Adding the ability to book hotels on an existing travel site

■ Delivering a maintenance release onto an existing platform

■ Adding customizable stock quotes to a portal page

■ Modifying your HR application to let employees view their vacation balance

■ Adding advanced search capabilities to your existing simple search

Now that you understand the pilot’s desired size and priority, let’s look at the

breadth of the project.

Your pilot project needs to touch all major areas related to projects at your

company. You don’t need to go deep, but you should go wide. It may be difficult to

select a test project that utilizes all possible processes and departments, but you should

select one that hits the majority of them. Although your pilot will go wide, you don’t

want to test outside of your company.

The reason is that you’ll be busy watching the process within your company.

Adding a third party into the mix may diminish your ability to record feedback and

learn from the pilot. You can involve third parties in subsequent projects, when you

have more bandwidth for their feedback.

It’s tempting to try to test agile area by area, but doing so usually leads to poor

results. Your new agile process will be designed to have practices integrate with each

other. This integration is where a good portion of the value comes from. A segmented

test may mask these benefits and also minimize your ability to identify issues with the

process. Here’s an example. A few years ago, a prominent company implemented an

agile development process. The company had created a core team to create the custom

methodology. The core team was composed of employees from various departments

such as Program Management, Development, QA, User Interface, Implementation,

and Analytics. On occasion, core-team members demonstrated a proposed process on a

live project. In one such instance, a program manager decided to test the agile feature-

card process on a live project. The project was already following a traditional

lifecycle.

The value of the feature-card meeting is that it lets you gather enough

information to plan the project: it’s a precursor to gathering detailed requirements. The

32

project that was already in flight had complete functional specifications and a robust

project plan. To perform the feature-card meeting, the program manager had to

pretend that all the information in the functional specifications didn’t exist. She also

had to determine what to do with the output from the feature-card meeting.

In an agile process, the output feeds an iteration or sprint plan. The project in

progress already had a detailed development plan, so no value was gained from the

feature-card exercise. This demo had a negative effect on the company’s agile

deployment. Because the feature-card meeting was used at the wrong time, it added no

value. The employees who tested the process quickly spread their experience

throughout the company, and other employees who were already against an agile

methodology now had the ammo they needed to try to stop it: they had proof that agile

didn’t add any value to the development process.

In summary, you can use agile and traditional processes together, but you have to

design interface points so the process flows logically.

Every company has a different way of populating their request/potential projects

backlog (a.k.a. project backlog). Sometimes backlog evaluation is driven by an

executive review process, sometimes it’s driven by product marketing, and sometimes

it’s driven by a customer.

33

PART 2. ANALYSIS OF THE TRANSITION OF THE TRADING

ENTERPRISE MANAGEMENT TO THE FLEXIBLE MANAGEMENT

METHODOLOGIES

2.1. Characteristics of trading enterprise management processes of Smart

Trading Group

Scrum doesn’t prescriptively answer Smart Trading Group process questions;

instead, it empowers teams to ask and answer their own great questions. Scrum doesn’t

give individuals a cookbook solution to all of their organizational maladies; instead,

Scrum makes visible the dysfunctions and waste that prevent organizations from

reaching their true potential. These realizations can be painful for many organizations.

However, if they move past the initial discomfort and work to solve the problems

Scrum unearths, organizations can take great strides in terms of both their software

development process and products and their levels of employee and customer

satisfaction. We will begin with a description of the entire Scrum framework,

including its roles, activities, artifacts, and rules [54].

Scrum development efforts consist of one or more Scrum teams, each made up of

three Scrum roles: product owner, ScrumMaster, and the development team (see

Figure 2.1). There can be other roles when using Scrum, but the Scrum framework

requires only the three listed here.

34

Figure 2.1. Scrum roles of Smart Trading Group [74]

The product owner is responsible for what will be developed and in what order.

The ScrumMaster is responsible for guiding the team in creating and following its own

process based on the broader Scrum framework. The development team is responsible

for determining how to deliver what the product owner has asked for. If you are a

manager, don’t be concerned that “manager” doesn’t appear as a role in Figure 2.1;

managers still have an important role in organizations that use Scrum Smart Trading

Group. The Scrum framework defines just the roles that are specific to Scrum, not all

of the roles that can and should exist within an organization that uses Scrum [41].

Product Owner The product owner is the empowered central point of product

leadership. He1 is the single authority responsible for deciding which features and

functionality to build and the order in which to build them. The product owner

maintains and communicates to all other participants a clear vision of what the Scrum

team is trying to achieve. As such, the product owner is responsible for the overall

success of the solution being developed or maintained. It doesn’t matter if the focus is

on an external product or an internal application; the product owner still has the

obligation to make sure that the most valuable work possible, which can include

technically focused work, is always performed. To ensure that the team rapidly builds

what the product owner wants, the product owner actively collaborates with the

ScrumMaster and development team and must be available to answer questions soon

after they are posed.

The ScrumMaster helps everyone involved understand and embrace the Scrum

values, principles, and practices. She acts as a coach, providing process leadership and

helping the Scrum team and the rest of the organization develop their own

highperformance, organization-specific Scrum approach. At the same time, the

ScrumMaster helps the organization through the challenging change management

process that can occur during a Scrum adoption. As a facilitator, the ScrumMaster

helps the team resolve issues and make improvements to its use of Scrum. She is also

responsible for protecting the team from outside interference and takes a leadership

35

role in removing impediments that inhibit team productivity (when the individuals

themselves cannot reasonably resolve them). The ScrumMaster has no authority to

exert control over the team, so this role is not the same as the traditional role of project

manager or development manager. The ScrumMaster functions as a leader, not a

manager [53].

Development Team Traditional software development approaches discuss various

job types, such as architect, programmer, tester, database administrator, UI designer,

and so on. Scrum defines the role of a development team, which is simply a diverse,

cross-functional collection of these types of people who are responsible for designing,

building, and testing the desired product. The development team self-organizes to

determine the best way to accomplish the goal set out by the product owner. The

development team is typically five to nine people in size; its members must

collectively have all of the skills needed to produce goodquality, working software. Of

course, Scrum can be used on development efforts that require much larger teams.

However, rather than having one Scrum team with 35 people, there would more likely

be four or more Scrum teams, each with a development team of nine or fewer people.

An alternative approach would be for the product owner and team to select all of

the target product backlog items at one time. The development team alone does the

task breakdowns to confirm that it really can deliver all of the selected product

backlog items.

Sprint Execution in Smart Trading Group. Once the Scrum team finishes sprint

planning and agrees on the content of the next sprint, the development team, guided by

the ScrumMaster’s coaching, performs all of the task-level work necessary to get the

features done (see Figure 2.10), where “done” means there is a high degree of

confidence that all of the work necessary for producing good-quality features has been

completed. Exactly what tasks the team performs depends of course on the nature of

the work (for example, are we building software and what type of software, or are we

building hardware, or is this marketing work?). Nobody tells the development team in

what order or how to do the task-level work in the sprint backlog. Instead, team

36

members define their own task-level work and then self-organize in any manner they

feel is best for achieving the sprint goal.

Daily Scrum Smart Trading Group. Each day of the sprint, ideally at the same

time, the development team members hold a timeboxed (15 minutes or less) daily

scrum (see Figure 2.2). This inspect-andadapt activity is sometimes referred to as the

daily stand-up because of the common practice of everyone standing up during the

meeting to help promote brevity.

Figure 2.2 Sprint execution Smart Trading Group [41]

A common approach to performing the daily scrum has the ScrumMaster Smart

Trading Group facilitating and each team member taking turns answering three

questions for the benefit of the other team members:

What did manager accomplish since the last daily scrum? What does manager

plan to work on by the next daily scrum? What are the obstacles or impediments that

are preventing me from making progress? [38]

By answering these questions, everyone understands the big picture of what is

occurring, how they are progressing toward the sprint goal, any modifications they

want to make to their plans for the upcoming day’s work, and what issues need to be

37

addressed. The daily scrum is essential for helping the development team manage the

fast, flexible flow of work within a sprint. The daily scrum is not a problem-solving

activity. Rather, many teams decide to talk about problems after the daily scrum and

do so with a small group of interested people. The daily scrum also is not a traditional

status meeting, especially the kind historically called by project managers so that they

can get an update on the project’s status. A daily scrum, however, can be useful to

communicate the status of sprint backlog items among the development team

members. Mainly, the daily scrum is an inspection, synchronization, and adaptive

daily planning activity that helps a selforganizing team do its job better.

Although Smart Trading Group use has fallen out of favor, Scrum has used the

terms “pigs” and “chickens” to distinguish who should participate during the daily

scrum versus who simply observes. The farm animals were borrowed from an old joke

(which has several variants): “In a ham-and-eggs breakfast, the chicken is involved,

but the pig is committed.” Obviously the intent of using these terms in Scrum is to

distinguish between those who are involved (the chickens) and those who are

committed to meeting the sprint goal (the pigs). At the daily scrum, only the pigs

should talk; the chickens, if any, should attend as observers. I have found it most

useful to consider everyone on the Scrum team a pig and anyone who isn’t, a chicken.

Not everyone agrees. For example, the product owner is not required to be at the daily

scrum, so some consider him to be a chicken (the logic being, how can you be

“committed” if you aren’t required to attend?). This seems wrong to me, because I

can’t imagine how the product owner, as a member of the Scrum team, is any less

committed to the outcome of a sprint than the development team. The metaphor of

pigs and chickens breaks down if you try to apply it within a Scrum team.

Done In Scrum, we refer to the sprint results as a potentially shippable product

increment (see Figure 2.3), meaning that whatever the Scrum team agreed to do is

really done according to its agreed-upon definition of done. This definition specifies

the degree of confidence that the work completed is of good quality and is potentially

shippable. For example, when developing software, a bare-minimum definition of

done should yield a complete slice of product functionality that is designed, built,

38

integrated, tested, and documented. An aggressive definition of done enables the

business to decide each sprint if it wants to ship (or deploy or release) what got built to

internal or external customers. To be clear, “potentially shippable” does not mean that

what got built must actually be shipped. Shipping is a business decision, which is

frequently influenced by things such as “Do we have enough features or enough of a

customer workflow to justify a customer deployment?” or “Can our customers absorb

another change given that we just gave them a release two weeks ago?” Potentially

shippable is better thought of as a state of confidence that what got built in the sprint is

actually done, meaning that there isn’t materially important undone work (such as

important testing or integration and so on) that needs to be completed before we can

ship the results from the sprint, if shipping is our business desire [45]. As a practical

matter, over time some teams may vary the definition of done. For example, in the

early stages of game development, having features that are potentially shippable might

not be economically feasible or desirable (given the exploratory nature of early game

development). In these situations, an appropriate definition of done might be a slice of

product functionality that is sufficiently functional and usable to generate feedback

that enables the team to decide what work should be done next or how to do it.

39

Figure 2.3. Work automation Smart Trading Group [32]

Artificial intelligence, automation, industrial robotics and the similar emerging

technologies are growing at an alarming speed, but there has been inconsiderable

concentration to their effect on employment and other organizational

practices. Despite the fact that these technologies can upgrade the speed, cost, and

quality of the products and services, the fact is they may also expel a huge numbers of

employees. A recent user survey revealed that around 85% of respondents believe that

AI and automation will transform their job in the coming three years. 83% of those

inspected said they were excited, but 84% also stated feeling suspicious.The purpose

of this post is to explore today’s fast evolving world of AI and automation and its

impact on the field of project management.What is Automation?From transportation to

manufacturing, and utilities to defense, automation can be found in almost every

industry. With innumerable projects being labor-intensive, the production of

automated machinery has revamped performance and also augmented better

quality control [39].

FMS — Flexible Manufacturing Systems integrate numerous industrial

automation tools like robotics, control systems and the like to develop one practical

system CAM — CAM makes use of computer software to run machinery. This type is

40

usually used to mechanize the manufacturing procedures and scheduling

tasksNumerical Control (NC) — It is basically a type of programmable automation, in

which the entire system is managed by the numbers, signs or symbols. These tools are

primarily responsible for carrying out recurring tasks such as 3D printing, drills, etc.I

ndustrial Robotics — Industrial robots can be mechanized as well as programmed in

two or more axesUse of Automation in Real Life and at WorkThe automation of work

was an outcome of economic theories that surrounds around output optimization.

2.2. Experience defining flexible management methodologies for enterprises

The goal of comparing agile principles Smart Trading Group with traditional

development principles Smart Trading Group is not to make the case that plan-driven,

sequential development is bad and that Scrum is good. Both are tools in the

professional developer’s toolkit; there is no such thing as a bad tool, rather just

inappropriate times to use that tool. Scrum and traditional, plan-driven, sequential

development are appropriate to use on different classes of problems. In making the

comparison between the two approaches, we are using the pure or “textbook”

description of plan-driven, sequential development. By taking this perspective when

describing traditional development, I am better able to draw out the distinctions and

more clearly illustrate the principles that underlie Scrum-based development. One pure

form of traditional, plan-driven development frequently goes by the term waterfall (see

Figure 2.4).

However, that is just one example of a broader class of plan-driven processes

(also known as traditional, sequential, anticipatory, predictive, or prescriptive

development processes). Plan-driven processes are so named because they attempt to

plan for and anticipate up front all of the features a user might want in the end product,

and to determine how best to build those features. The idea here is that the better the

planning, the better the understanding, and therefore the better the execution. Plan-

driven processes are often called sequential processes because practitioners perform, in

41

sequence, a complete requirements analysis followed by a complete design followed in

turn by coding/building and then testing [24].

Plan-driven development works well if you are applying it to problems that are

well defined, predictable, and unlikely to undergo any significant change. The problem

is that most product development efforts are anything but predictable, especially at the

beginning. So, while a plan-driven process gives the impression of an orderly,

accountable, and measurable approach, that impression can lead to a false sense of

security. After all, developing a product rarely goes as planned. For many, a plan-

driven, sequential process just makes sense, understand it, design it, code it, test it, and

deploy it, all according to a well-defined, prescribed plan. There is a belief that it

should work. If applying a plan-driven approach doesn’t work, the prevailing attitude

is that we must have done something wrong. Even if a plan-driven process repeatedly

produces disappointing results, many organizations continue to apply the same

approach, sure that if they just do it better, their results will improve.

The problem, however, is not with the execution. It’s that plan-driven approaches

are based on a set of beliefs that do not match the uncertainty inherent in most product

development efforts. Scrum, on the other hand, is based on a different set of beliefs—

ones that do map well to problems with enough uncertainty to make high levels of

predictability difficult. The principles are drawn from a number of sources, including

the Agile Manifesto [40], lean product development (Reinertsten 2009b; Poppendieck

and Poppendieck 2003), and “The Scrum Guide” [60].

Variability and Uncertainty Scrum leverages the variability and uncertainty in

product development to create innovative solutions. I describe four principles related

to this topic:

Embrace helpful variability. Employ iterative and incremental development.

Leverage variability through inspection, adaptation, and transparency. Reduce all

forms of uncertainty simultaneously.

Embrace Helpful Variability Plan-driven processes treat product development

like manufacturing—they shun variability and encourage conformance to a defined

process. The problem is that product development is not at all like product

42

manufacturing. In manufacturing our goal is to take a fixed set of requirements and

follow a sequential set of well-understood steps to manufacture a finished product that

is the same (within a defined variance range) every time.

 In product development the goal is to create the unique single instance of the

product, not to manufacture the product. This single instance is analogous to a unique

recipe. We don’t want to create the same recipe twice; if we do, we have wasted our

money. Instead, we want to create a unique recipe for a new product. Some amount of

variability is necessary to produce a different product each time. In fact, every feature

we build within a product is different from every other feature within that product, so

we need variability even at this level. Only once we have the recipe do we

manufacture the product—in the case of software products, as easily as copying bits.

That being said, some manufacturing concepts do apply to product development and

can and should be leveraged. For example, recognizing and managing inventory (or

work in process), which is essential to manufacturing, is also essential in product

development. By the very nature of the work involved, however, product development

and product manufacturing are not at all the same thing and as such require very

different processes [56].

Employ Iterative and Incremental Development Plan-driven, sequential

development assumes that we will get things right up front and that most or all of the

product pieces will come together late in the effort. Scrum, on the other hand, is based

on iterative and incremental development. Although these two terms are frequently

used as if they were a single concept, iterative development is actually distinct from

incremental development. Iterative development acknowledges that we will probably

get things wrong before we get them right and that we will do things poorly before we

do them well [23]. As such, iterative development is a planned rework strategy. We

use multiple passes to improve what we are building so that we can converge on a

good solution. For example, we might start by creating a prototype to acquire

important knowledge about a poorly known piece of the product. Then we might

create a revised version that is somewhat better, which might in turn be followed by a

pretty good version. Iterative development is an excellent way to improve the product

43

as it is being developed. The biggest downside to iterative development is that in the

presence of uncertainty it can be difficult up front to determine (plan) how many

improvement passes will be necessary. Incremental development is based on the age-

old principle of “Build some of it before you build all of it.” We avoid having one

large, big-bang-style event at the end of development where all the pieces come

together and the entire product is delivered. Instead, we break the product into smaller

pieces so that we can build some of it, learn how each piece is to survive in the

environment in which it must exist, adapt based on what we learn, and then build more

of it.

The biggest drawback to incremental development is that by building in pieces,

we risk missing the big picture (we see the trees but not the forest). Scrum leverages

the benefits of both iterative and incremental development, while negating the

disadvantages of using them individually. Scrum does this by using both ideas in an

adaptive series of timeboxed iterations called sprints (see Figure 2.4).

Figure 2.4 Scrum uses iterative and incremental development in Smart Trading

Group [81]

During each sprint we perform all of the activities necessary to create a working

product increment (some of the product, not all of it). This is illustrated in Figure 2.4

by showing that some analysis, design, build, integration, and test work is completed

in each sprint. This all-at-once approach has the benefit of quickly validating the

assumptions that are made when developing product features. For example, we make

some design decisions, create some code based on those decisions, and then test the

44

design and code—all in the same sprint. By doing all of the related work within one

sprint, we are able to quickly rework features, thus achieving the benefits of iterative

development, without having to specifically plan for additional iterations.

A misuse of the sprint concept is to focus each sprint on just one type of work—

for example, sprint 1 (analysis), sprint 2 (design), sprint 3 (coding), and sprint 4

(testing). Such an approach attempts to overlay Scrum with a waterfall-style work

breakdown structure. I often refer to this misguided approach as WaterScrum, and I

have heard others refer to it as Scrummerfall [46].

In Scrum, Smart Trading Group doesn’t work on a phase at a time; we work on a

feature at a time. So, by the end of a sprint we have created a valuable product

increment (some but not all of the product features). That increment includes or is

integrated and tested with any previously developed features; otherwise, it is not

considered done. For example, increment 2 in Figure 2.4 includes the features of

increment 1. At the end of the sprint, we can get feedback on the newly completed

features within the context of already completed features. This helps us view the

product from more of a big-picture perspective than we might otherwise have. We

receive feedback on the sprint results, which allows us to adapt. We can choose

different features to work on in the next sprint or alter the process we will use to build

the next set of features. In some cases, we might learn that the increment, though it

technically fits the bill, isn’t as good as it could be. When that happens, we can

schedule rework for a future sprint as part of our commitment to iterative development

and continuous improvement.

This helps overcome the issue of not knowing up front exactly how many

improvement passes we will need. Scrum does not require that we predetermine a set

number of iterations. The continuous stream of feedback will guide us to do the

appropriate and economically sensible number of iterations while developing the

product incrementally.

Leverage Variability through Inspection, Adaptation, and Transparency Plan-

driven processes and Scrum are fundamentally different along several dimensions (see

Table 3.1, based on dimensions suggested by Reinertsen 2009a). A plan-driven,

45

sequential development process assumes little or no output variability. It follows a

well-defined set of steps and uses only small amounts of feedback late in the process.

In contrast, Scrum embraces the fact that in product development, some level of

variability is required in order to build something new. Scrum also assumes that the

process necessary to create the product is complex and therefore would defy a

complete up-front definition. Furthermore, it generates early and frequent feedback to

ensure that the right product is built and that the product is built right. At the heart of

Scrum are the principles of inspection, adaptation, and transparency (referred to

collectively by Schwaber and Beedle 2001 as empirical process control). In Scrum, we

inspect and adapt not only what we are building but also how we are building it (see

Figure 3.5). To do this well, we rely on transparency: all of the information that is

important to producing a product must be available to the people involved in creating

the product. Transparency makes inspection possible, which is needed for adaptation.

Transparency also allows everyone concerned to observe and understand what is

happening. It leads to more communication and it establishes trust (both in the process

and among team members).

Table 2.1

Comparison of Plan-Driven and Scrum Processes [31]

Dimension Plan-Driven Scrum

Degree of process

definition

Well-defined set of

sequential steps

Complex process that would defy

a complete up-front definition

Randomness of

output

Little or no output

variability

Expect variability because we are

not trying to build the same thing

over and over

Amount of

feedback used

Little and late Frequent and early

46

Figure 2.5 Scrum process model in Smart Trading Group [14]

Developing new products is a complex endeavor with a high degree of

uncertainty. That uncertainty can be divided into two broad categories (Laufer 1996):

End uncertainty (what uncertainty)—uncertainty surrounding the features of the

final product Means uncertainty (how uncertainty)—uncertainty surrounding the

process and technologies used to develop a product

In particular environments or with particular products there might also be

customer uncertainty (who uncertainty). For example, start-up organizations

(including large organizations that focus on novel products) may only have

assumptions as to who the actual customers of their products will be. This uncertainty

must be addressed or they might build brilliant products for the wrong markets.

Traditional, sequential development processes focus first on eliminating all end

uncertainty by fully defining up front what is to be built, and only then addressing

means uncertainty. This simplistic, linear approach to uncertainty reduction is ill suited

to the complex domain of product development, where our actions and the

environment in which we operate mutually constrain one another. For example:

Smart Trading Group decides to build a feature (our action). We then show that

feature to a customer, who, once he sees it, changes his mind about what he really

wants, or realizes that he did not adequately convey the details of the feature (our

action elicits a response from the environment).

47

We make design changes based on the feedback (the environment’s reaction

influences us to take another unforeseen action).

In Scrum, Smart Trading Group does not constrain ourselves by fully addressing

one type of uncertainty before we address the next type. Instead, we take a more

holistic approach and focus on simultaneously reducing all uncertainties (end, means,

customer, and so on). Of course, at any point in time we might focus more on one type

of uncertainty than another. Simultaneously addressing multiple types of uncertainty is

facilitated by iterative and incremental development and guided by constant

inspection, adaptation, and transparency. Such an approach allows us to

opportunistically probe and explore our environment to identify and learn about the

unknown unknowns (the things that we don’t yet know that we don’t know) as they

emerge.

Prediction and Adaptation When using Scrum, we are constantly balancing the

desire for prediction with the need for adaptation [49].

Keep options open. Accept that you can’t get it right up front. Favor an adaptive,

exploratory approach. Embrace change in an economically sensible way. Balance

predictive up-front work with adaptive just-in-time work.

Scrum contends that we should never make a premature decision just because a

generic process would dictate that now is the appointed time to make one. Instead,

when using Scrum, we favor a strategy of keeping our options open. Often this

principle is referred to as the last responsible moment (LRM) (Poppendieck and

Poppendieck 2003), meaning that we delay commitment and do not make important

and irreversible decisions until the last responsible moment. And when is that? When

the cost of not making a decision becomes greater than the cost of making a decision

(see Figure 3.6). At that moment, we make the decision. To appreciate this principle,

consider this. On the first day of a product development effort we have the least

information about what we are doing.

On each subsequent day of the development effort, we learn a little more. Why,

then, would we ever choose to make all of the most critical, and perhaps irreversible,

decisions on the first day or very early on? Most of us would prefer to wait until we

48

have more information so that we can make a more informed decision. When dealing

with important or irreversible decisions, if we decide too early and are wrong, we will

be on the exponential part of the cost-of-deciding curve in Figure 2.6.

As we acquire a better understanding regarding the decision, the cost of deciding

declines (the likelihood of making a bad decision declines because of increasing

market or technical certainty). That’s why we should wait until we have better

information before committing to a decision.

Figure 2.6 Make decisions at the last responsible moment

2.3. Determining the impact of the Smart Trading Group transition on flexible

management methodologies

Smart Trading Group is a media company that engages in television broadcasting

andinteractive media operations. The interactive media operations consist of three

product websites. Our case study is tied to the interactive Smart Trading Group and its

following three sites:

■ The first website focuses on delivering the news. If the television station is

covering a breaking story, the news site needs to have the story online during the TV

49

coverage or a few minutes afterward. The news website also provides enriched

coverage about news articles, such as blogs, opinion surveys, and deeper analysis.

■ The second website is focused on classified advertising for the local

metropolitan area. The classifieds are for real estate, autos, and merchandise. The case

study’s pilot project will deliver an application for the classifieds site.

■ The third website is responsible for travel and outdoors. This site contains

content related to tourism, hiking, getaways, and lodging.

All three websites sell online advertising space to national and local businesses.

The three sites are supported by a group of 20 people. The skill sets in this group

include product management, development, design, database analysis, business

analysis, architecture, implementation, support, testing, and project management.

Several team members wear various hats depending on the state of the project. For

example, developers may do their own DBA work, or a product manager may end up

doing the requirements documentation. The development group is also the

maintenance and support group for the production environment [7].

The Smart Trading Group websites have always been a secondary priority for the

company. They don’t make much money and exist only as a supplementary presence

to the television station. Until about a year ago, working in the web group was laid-

back and easy; there was rarely any pressure, and projects were completed on a loose

schedule. All of that has changed now. With the popularity of online advertising on the

rise, Smart Trading Group’s web division found itself overwhelmed with advertising

requests and a significant increase in site traffic. In addition, advertisers were asking

Smart Trading Groupto publish more television content on the websites to attract a

younger crowd. Suddenly, web projects had urgency, and revenue was on the line. The

heat was on the three product teams. The lack of reliable schedules and the teams’

frequent need to push out promise dates were motivating advertisers and readers to go

to competitive websites. Projects needed to be delivered on time to retain the

customers.

Smart Trading Group started down its road to more agility when the company’s

project manager began investigating ways to deliver products sooner. PM conducted

50

research and discussed her issue with a number of friends and colleagues. One friend

Wendy spoke with, Jim Moore, happened to be an agile coach. Jim told Wendy about

several companies he had helped move to agile and the benefits these companies had

achieved. After Wendy was convinced, she set about selling Smart Trading Group’s

CIO on the idea that Smart Trading Group’s development team needed to give agile a

try. Wendy will get approval from the executive team to pilot agile.

Smart Trading Group will create two teams as the company completes its pilot

project and evaluates how agile it can become. First, the company will create a core

team. The core team will be trained and mentored by the agile coach, Jim Moore. The

core team will be in charge of reviewing the existing development process at Smart

Trading GroupMedia to see where agile practices can be injected. This team will

consist of actual project team members [5].

After the core team outlines a new process to test, a pilot project team will be

selected to actually complete the pilot project. The pilot project team will include a

few core team members, but most of the pilot team members selected will be getting

their first look at the new process. The pilot team will receive training on agile

principles and basic practices, and then they will perform the pilot and provide

feedback to the core team. The core team will use the feedback to refine the process

and then continue to scale the new process throughout the company.

Smart Trading Group’s development team has various experiences, backgrounds,

and opinions about how software development should be completed (see figure 2.7).

Some team members have experience in formal, plan-driven environments; many team

members have worked in environments where the development process was

homegrown; and a few team members have experience in agile environments. As

Smart Trading Group pursues its new process, some team members will be energetic,

some will be neutral, and some will be skeptics. In our experience, a variety of

responses is common in most companies. Smart Trading Group will use all three

perspectives to help roll out the best possible new process.

Some of the energetic team members will help in documenting the existing

process. The team members on the fence will be part of the core team and the pilot

51

team. Skeptics will also be included on both teams, and their input will be welcome as

the new process is created and critiqued.

When people think of becoming agile, they often envision the practices and not

the goals of an agile process.

A traditional process has the customer involved mainly at the beginning and the

end of the project. In agile, you seek customer feedback and input throughout the

project. The customer or product owner is involved in planning, tradeoff decisions,

prioritization, and demonstrations. Increased customer involvement leads to several

benefits such as quicker feedback, accurate delivery, increased customer satisfaction,

and rapid decisions. A great indirect benefit of customer involvement is the customer’s

newfound appreciation for the work needed to deliver on requests [11].

Agile processes improve prioritization and deliver higher-value features first.

This is accomplished by creating feature cards or user stories and evaluating features

before requirements are detailed. You’ll evaluate features for their customer value,

level of risk, frequency of use, and dependencies. This allows you to do the following:

■ Estimate work and evaluate risks early in the process.

■ Prioritize features in terms of customer value early in the process.

■ Deliver features in usable subsets.

In effect, the agile prioritization process lets your team run leaner and create deep

requirements only for work that passes the prioritization test.

The majority of people on an agile project team are involved in planning,

estimating, and sequencing. The team is also involved in adapting to discoveries

between iterations. Over time, the team begins suggesting features for the product or

platform. Increasing team involvement ensures that everyone understands the value of

the project before work begins and also increases team satisfaction.

A more agile and iterative methodology provides an opportunity to reassess and

redirect the project while it’s in motion. You perform development in iterations and

offer demonstrations at the end of each. The customer has an opportunity to request

changes based on the demonstrations, even though this may affect other features or

potentially the project timeline. Team members learn to expect and embrace change

52

any companies try to plan all of a project’s details at the start. The planning may be at

a detailed level even though the amount of uncertainty at this point is extremely high.

An agile team performs a level of planning that correlates to the current level of

uncertainty in the project.

As you learn more about desired features you’ll do more detailed planning, but

you won’t waste time trying to guess intricate details early in the project. Figure 3.1

illustrates this point.

A secondary definition of agile could be continuous risk management. The

processes are all intended to make the team alert and responsive to new information

and changes as the project progresses. The following are a few examples of how agile

manages risk:

■ Features are evaluated for requirements uncertainty and technical uncertainty.

These attributes help determine whether a feature goes into an iteration and what

iteration it should go into, to mitigate risk. For example, a feature with high business

value and high technical risk, such as an interface, would go into an early iteration to

allow more time for uncertainty. On the other hand, a feature with low business value

and high technical uncertainty might be moved to the last iteration or removed from

the project all together.

■ Risk is managed via demonstrations throughout the project. The customer gets

a feel for how requirements are translated into an application before the project is

complete. This provides a window for adapting and hitting the final target.

■ Risk is managed on a daily basis by building and integrating the latest code.

This process allows the team and the customer to validate the status of the latest build.

■ Deployment risk is also managed by gathering maintenance and deployment

concerns as early as possible. This starts early in the planning phase and continues

throughout development.

■ Risk is managed via team review of potential features. During the feature-card

exercise, representatives from all areas can raise risks and concerns with proposed

features. These concerns are noted with the feature information and sometimes can

lead to a feature not being pursued.

53

The agile process described in this work approaches the issue differently. We

suggest a standardized methodology, but the required processes are minimal and are of

value to every project. Your team chooses the majority of the processes to use at the

start of the project. The team also revisits their process and documentation options as

the project proceeds, to see if they need to add or remove a process or document. To

illustrate this idea, let’s look at an example from Smart Trading GroupMedia after the

company has outlined a new, more agile process (see table 2.2). Smart Trading

GroupMedia has projects that last from 1 week to 6 months. The company doesn’t

require the teams for one-week projects to create iteration plans or to do a cost-benefit

analysis every time.

Table 2.2

Required and optional processes and documentation [61]

Required for all projects Optional processes and documents

Project worksheet Elevator statement

Operational worksheet Documented answers to feasibility

discussion guide questions

Feature-card exercise (cards optional) Feature-card document (possibly created

using only index cards)

Retrospective discussion

User scenarios

Prototypes and/or mockup

Iteration plan

Maintenance plan

Evolutionary requirements

Additional documentation as required by

the team/project

Test plan

Detailed schedule

Launch plan

Action items from project retrospective

Test Driven Development (TDD)

Agile estimating

Daily stand-up meeting

Demonstrations

These one-week projects are frequently driven by a need to increase readership or

to provide support in the aftermath of a major news event such as an election.

54

Executive approval is almost immediate, and the projects use team members already

assigned to the website. These teams only need the processes and documents outlined

in the first column of table 2.2.

Conversely, Smart Trading Group pursues some major projects that require

funding, synchronization with third parties, and identification of milestones. In these

instances, the project teams review the items in the second column of table 3.1 and

decide which ones to use in addition to the required ones in the first column.

In this way, agile provides the correct amount of structure for the project. Time

isn’t wasted on processes that don’t add value, and teams can scale their processes

mid-project if needed. Now that you understand the goals of an agile process, you

need to know the best way to obtain them. You can do this by selecting a prepackaged

agile process, creating a process from scratch, or a combination of the two agile

principles can be applied in any environment, but some environmental characteristics

influence how easy the principles are to adopt. Let’s look at these characteristics.

Urgency to deliver in Smart Trading Group. Agile works best in an urgent

environment. It provides tools to prioritize features quickly and determine how much

scope to pursue within the constraints of a critical timeline. If you have urgency due to

a competitive market, compliance deadlines, or a large backlog of project requests,

agile provides methods for quicker delivery.

Evolving or volatile requirements in Smart Trading Group. One descriptor of

agile could be just enough. “Give me just enough requirements to start a design.”

“Give me just enough design to start my code.” “Give me just enough code to

demonstrate some level of value to the customer.” If you don’t have all the

requirements, you can still get started with an agile project. If you complete an

iteration and the customer wants to change the requirements, you can adapt and still

meet the objectives. Managing changing requirements still takes effort in an agile

environment, but you don’t have to fight the project framework. The framework is

designed to support uncertainty.

Customer availability in Smart Trading Group. One Agile Manifesto principle

states, “Business people and developers must work together daily throughout the

55

project.” In our experience, these groups don’t have to work together every day

throughout a project cycle, but there are definite times when the customer must be

available. In theory, a project must not be urgent if the customer can’t make time to

clarify requirements or review functionality. The customer can have a proxy, such as a

product manager; but someone needs to be available every day to represent the

customer’s vision.

CONSISTENT RESOURCES in Smart Trading Group. Part of the power of agile

is a level of familiarity within the team and a consistent understanding of the processes

they use. Agile teams and processes get better over time. If project team members are

new to each other, they must learn processes together while at the same time trying to

complete the project. Agile works best with a core group of people who work together

on continuous projects. Agile isn’t a good methodology to use with a team that has

never worked together before, unless you have long-term plans to keep them together

[13].

CO-LOCATED RESOURCES in Smart Trading Group. Agile promotes face-to-

face communication and common understanding. One of the best ways to support this

principle is to put your team members face to face. Co-location is an amazing tool.

Team can get out of email hell, and their mutual understanding of the project will

increase.

One of the best setups we have seen is at a Fortune 500 company we visited. All

10 of the project team members are in an area approximately 25 feet by 25 feet. The

cubicles have half-walls that provided a level of privacy when people are sitting but let

them easily see the rest of the team and communicate when they stand up. This setup

provides the privacy the developers enjoy when they’re deep into a coding session but

also lets team members stand up to converse with each other at any time without

having to go to each others’ cubicles. Team members can also walk a few feet and

reach common areas where they can whiteboard a design or have a quick caucus.

In larger companies than Smart Trading Group, a project team may be

constructed of team members from a shared resource pool. For example, the QA

(Quality Assurance) lead for a project may be from the QA shared resources pool. If

56

such team members view themselves as resources on loan, and not as team members

dedicated to the project, the result can be functional silos.

When silos exist, team members are more concerned about the welfare of their

team or area than they are with the livelihood of the project. This mentality doesn’t

bode well for agile development and leads to customer neglect. The team needs to

bond as a unified group toward the goals of the project. Roles are assigned, but one of

the objectives of agile is for the team to working collectively.

Working collectively can also be applied to team member roles. A tester can

point out a possible code improvement. A developer can suggest a feature

enhancement. In general, team members speak out—they don’t limit their roles to their

titles. Management should ensure that individual goals include how well employees

support the common good of the project [19].

Now that you know the characteristics that make agile easier to implement, let’s

look at a few that make agile more difficult to move to.

LACK OF AGILE KNOWLEDGE in Smart Trading Group. First challenge will

be finding expertise to help you with your migration. If you’re fortunate, you’ll have

some level of agile experience within your company; but this probably won’t be true

to the point that you can coach yourself through an agile migration. We’ll help you

with this issue by showing you how often Smart Trading GroupMedia requested

assistance, from initial training to issues encountered along the way.

LARGE PROJECT TEAMS in Smart Trading Group. Agile is compromised as

team size increases. Major principles such as face-to-face communication and

common understanding require additional effort to maintain their effectiveness as a

team grows.

Larger teams require additional overhead to ensure that information is shared

consistently across all groups. Scrum teams frequently use the term scrum of scrums,

meaning a representative from each team Scrum attends a master Scrum meeting to

share information with other groups. Jeff Bezos of Amazon.com believes that the most

productive and innovative teams can be “fed with two pizzas.” Jeff shared this thought

with his senior managers at an offsite retreat. He envisioned a company culture of

57

small teams that could work independently, which would lead to more innovative

products. Since that time, the Amazon “pizza teams” have created some of the most

popular features on the site (Fast Company, 2004).

If your team has an average appetite, you can convert Jeff’s concept into a team

of five to seven people. This is a nice-size group for communication and agility. If five

to seven is perfect, then what is the maximum size for a team to remain agile? On the

high side, we believe you can have a team of 15 people without major impact on your

agility. When you have more than 15, communication needs to become more formal,

which slows the team.

There are ways to make agile work with larger or distributed teams, but you’ll

sacrifice some level of agility.

Related to large teams, many companies use distributed development. Frequently,

the distributed development is performed by offshore resources. Distributed

development implies that the team is large in size and that communication methods

must be scaled to get information to all involved. In addition, you may have issues

with time zone differences, language, and code integration into a common

environment. Some offshore companies support and advertise the use of agile

methodologies, but their location may make it challenging to support the core

principles.

We’ve seen agile teams successfully use offshore resources for commodity or

repeatable-type work, such as regression testing, smoke testing, and cookie-cutter

development (for example, providing an offshore group with standardized tools to

create automated workflows) [40].

FIXED-BID CONTRACT WORK in Smart Trading Group. Fixed-bid contract

work goes against most of the agile principles. The customer isn’t a partner, evolving

requirements are a no-no, and adapting is usually called scope creep.

We used to believe that fixed-bid work couldn’t be performed using an agile

process, but recently we’ve met several managers who have customized their process

to allow the inner workings to be agile while customer interaction remained contract

oriented.

58

AN IMMATURE OR ONE-TIME TEAM in Smart Trading Group. If you have a

team that will work together for only one project, they’re usually better served by

using a plan-driven methodology unless they have previous exposure to agile.

If the team will work through multiple projects or releases, you can introduce

agile techniques, and the team can migrate to a full agile methodology as their

knowledge matures.

It’s agile. We don’t need to do any planning to convert to it, just start thinking

agile! A lot of folks take this approach when migrating to agile. But if you go too fast,

you don’t give your company enough time to digest the concepts. When this happens,

you may experience issues with common understanding and terminology.

Don’t let this happen to you. You need to plan before migrating to agile, and this

project will show you how to do it with an awareness, buy-in, ownership approach. If

you take your time, the methodology will stick, and you’ll minimize the risk of failure.

TEAM WITH SPECIALIZED SKILL SETS An organization’s structure can

create artificial barriers between teams, and so can skill sets. If your team has

specialized skill sets, it’s hard to be agile when the work mix doesn’t correlate well to

the available resource types. Some tasks always have to be done by certain individuals,

which doesn’t help the team bond or unite when pursuing the completion of a feature.

Specialized skill sets also place an additional constraint on team capacity.

Imagine that your team has only one person who can perform user-interface design,

and the work assigned to an iteration is 80 percent user-interface work. Other team

members can look for work to do outside of the iteration, but delivery will be slow due

to the one-person constraint [62].

Teams that are just becoming agile usually have members with specialized roles.

You can overcome this constraint by cross training over time and rewarding

employees for obtaining and using additional skills.

AVOIDING CUSTOMIZATION in Smart Trading Group. Many people get hung

up on the questions, “Are we doing it right? Are we doing it in an agile fashion? Are

we following a pure agile process?” When teams ask us these questions, we tell them

59

the answers aren’t important. All we want to know is this: Have you created a

development process that provides the most benefit to your company?

This same mentality has managers trying to find a perfect agile methodology and

insert it directly into their company. As we discussed earlier, you can start with a

packaged agile process, but you need to look at the realities of your company and

adjust accordingly. Smart Trading GroupMedia will look at a generic agile process and

see how it applies to their realities; then, they’ll modify the process to fit their

environment.

60

PART 3. FORMATION OF A FLEXIBLE MANAGEMENT SYSTEM FOR

INTERNATIONAL TRADE ENTERPRISES

3.1. Agile adoption using assessments in Smart Trading Group

Many managers hesitate to begin major change initiatives like becoming agile

because they must objectively identify the risks involved with the transition. By

conducting a comprehensive readiness assessment, you can prove to management that

the organization possesses the necessary characteristics for a successful transition to

agile.

Conducting readiness assessments can help identify and reduce the risks

associated with the adoption process, because you have better insight into whether

adopting the practice will succeed or fail before you begin the transition phase.

For example, collaborative planning is a commonly adopted agile practice. It

calls for all stakeholders to be involved with the planning process, not only the project

manager. This seems like a pretty simple practice, so it’s common for organizations to

mandate it without any readiness assessment. But in reality, successfully adopting this

practice relies on four organizational characteristics:

■ Management style —Before you begin using collaborative planning, you need

to find out whether a collaborative or a command-control relationship exists between

managers and the employees. The management style is an indication of whether

management trusts the developers and vice versa. If management doesn’t trust the

employees’ opinions, then collaborative planning may result in many arguments.

Manager buy-in —It’s great to know whether management supports collaborative

planning. Many managers prefer to maintain control over the planning process and

hence are apprehensive during collaborative planning sessions.

■ Power distance —Power distance is a characteristic related to organizational

and national cultures. By measuring power distance, you can find out whether people

are intimidated by their managers and afraid to participate and be honest in their

61

presence. If a big power distance exists between managers and employees, then having

everyone sit around a table to plan together may not be as effective as you’d wish.

■ Developer buy-in —To reap the benefits of collaborative planning, the entire

team (including the developers) should be willing to be part of a collaborative

planning environment. As obvious as this may seem, many developers don’t see any

benefit in being part of the planning process, and therefore even if collaborative

planning is mandated, they won’t be active participants.

These are some of the organizational characteristics that you should assess before

you attempt to adopt an agile practice like collaborative planning. The absence of

some or all of these characteristics may result in a failed attempt to adopt the practice.

The problem is that when a change initiative fails for any reason, a number of

dangerous, negative consequences may result:

■ Decreased team productivity

■ Unmotivated team

■ Increased team resistance to future change initiatives

■ Jeopardizing of management’s credibility (if the change was mandated from

management)

Table 2.4

The results of a sample agile-readiness assessment in Smart Trading Group.

The results show the suitability of each of the characteristics needed to

successfully adopt collaborative planning [36]

Characteristic

Suitability result

Management style Whether a collaborative or a

command-control relation exists between managers and

subordinates. The management style indicates whether

management trusts the developers and vice versa.

Partially suitable

(30.5%)

Manager buy-in Whether management supports or

resists having a collaborative environment

Largely suitable (72.5%)

Power distance Whether people are intimidated by / Largely suitable (60.5%)

62

afraid to participate and be honest in the presence of

their managers

Developer buy-in Whether the developers are willing to

plan in a collaborative environment

Fully suitable (92.5%)

Let’s dissect the readiness-assessment table and understand its layout. The

assessment uses two main components: organizational characteristics and assessment

indicators. Organizational characteristics are the various attributes you need to assess

to determine whether a team or organization is ready to adopt a certain agile practice.

These characteristics may be related to a number of different aspects of the

organization,

most commonly the following:

■ Customers—The project’s customers and clients

■ Builders—The technical staff involved with the development of the project

■ Managers—The managers or executives overseeing the project and involved

with decision making

63

Figure 2.7 The readiness-assessment table for the agile practice of

collaborative planning [8]

■ Tools—The software tools used within the organization or for a certain project

■ Culture—The overall culture of the people within an organization or the project

team

■ Project management—The procedures and practices related to managing

projects in the organization

■ Software process—The activities and artifacts related to the software-

development process in the organization

■ Physical environment—The physical layout of the organization and the

geographical and spatial distribution of its employees

Indicators are the questions you use to assess each organizational characteristic.

Indicators can be targeted at four different groups in the organizations:

■ Developers—Team members who are involved in building the actual system.

They usually include developers/coders, architects, and testers.

■ Managers—Any team members involved with management of the project. This

role is suitable for project managers, team leaders, and any other management

positions in direct relation with the project.

Product owners—Team members who are involved with the product’s business

direction. This role is suitable for any team member who is in direct contact with the

customer. Some of the common positions that fall under this role are business analyst,

product manager, product leader, engagement manager, and project manager (if

they’re in contact with the client).

■ Assessors—People outside the team. Their main role is to observe whether

certain process activities and artifacts exist. Common positions that fall under this role

are agile coaches, quality-assurance personnel, process-improvement personnel, and

independent observers outside the team.

64

Smart Trading Group needs to complete four calculations assessment from

employers to determine the final results.

STEP 1: COMPUTE A WEIGHT FOR EACH INDICATOR The first step is to

assign a weight to each indicator. A weight is a fractional value between 0 and 1 that

expresses the indicator’s level of influence on the characteristic being assessed. The

weights of all the indicators belonging to the same characteristic must sum to 1 At this

point, it doesn’t care which indicators are answered by whom—all he is interested in is

the total number of indicators required to assess the team’s management style. Jay

computes the weights as follows (assuming all indicators have an equal influence on

the parent factor):

1 (sum of all weights) / 4 (number of indicators, including developers and

managers) = 0.25 (weight per indicator)

STEP 2: COMPUTE WEIGHED INTERVALS After Jay computes the weight

for each indicator, the next step is to compute the weighted intervals for each of the

indicators. To achieve more accurate assessment results, each answer represents a

range of values, not a fixed number. Table 2.3 shows the lists of ranges assigned to

each answer in the readiness assessment

Table 2.5

The range of values assigned to each answer option in the

readinessassessment survey [41]

Answer Value range

Strongly Disagree 0–15%

Tend to Disagree 15–40%

Neither Agree nor Disagree 40–60%

Tend to Agree 60–85%

Strongly Agree 85–100%

These ranges can change, depending on the threshold and the answer values the

assessor uses. Table 2.6 shows another set of answers with different value ranges

65

Table 2.6

A set of numeric values assigned to different answer options in the

readinessassessment survey [68]

Answer Value range

Never 0–20%

Rare 20–50%

Seldom 50–80%

Frequently / Usually 80–100%

Always 85–100%

What’s important is to ensure that you have a suitable range for each of the

answer values in the assessment. Jay starts to compute the weighted intervals for

management style. Table 2.7 shows the answers given to the sample indicators.

Table 2.7

Answers provided during the readiness assessment for the Management style

characteristic [29]

 Strongly

Disagree

Tend to

Disagree

Neither

Agree

nor

Disagree

Tend to

Agree

Strongly

Agree

Indicator

0-15% 15%-40%

40%-60%

60%-85%

85%-100%

COP_M1

 1

COP_M2 1

COP_D1 1 1

COP_D2

1 1

Once you have the answers from the sample indicators, the next step is to

multiply the weight of the indicator by the high and low end of the interval range

selected for the indicator.

Table 2.5

66

All the answers provided during the readiness assessment are converted into

number ranges and then multiplied by the weight of each assessment indicator

Reference

number

Computed

weight

Interval

low end

Interval

high end

Interval low

end ×

weight

Interval low

end ×

weight

COP_M1

0.25 15 40 15 x 0.25 =

3.75

40 x 0.25 =

10

COP_M2 0.25 15 40 15 x 0.25 =

3.75

40 x 0.25 =

10

COP_D1 0.25 (15 + 60)/2

= 37.5

(40 + 85)/2

= 62.5

15 x 0.25 =

3.75

62.5 x 0.25

= 15.6

COP_D2

0.25 (0 + 15)/2 =

7.5

(15 + 40)/2

= 27.5

7.25 x 0.25

= 1.8

27.5 x 0.25

= 6.8

STEP 3: CALCULATE THE RESULT RANGE

The next step is to compute the result range by calculating the optimistic and

pessimistic range for each characteristic. You do this by summing up all the weighed

intervals you obtained from the previous step. The following shows some of

calculations:

Pessimistic result = Sum of all the weighted low-end results from step 2

Pessimistic result: 3.7 + 3.7 + 9.4 + 1.8 = 18.6

Optimistic result = Sum of all the weighted high-end results from step 2

Optimistic result: 10 + 10 + 15.6 + 6.8 = 42.4 Result in terms of an interval =

18.6–42.4 Result as a single number = (18.6 + 42.4) / 2 = 30.5

STEP 4: TRANSLATE TO A NOMINAL SCORE

Table 2.9 shows a list of the nominal values used for Smart Trading Group’s

readiness assessment. Although this step is optional, people will be able to read your

report more easily if the results are translated to a nominal value. These nominal

67

values are used to evaluate the suitability of the characteristic to support the successful

adoption of the agile practice. If the result range from step 3 fits within one of these

nominal value intervals, then that suffices; if it doesn’t, then you need to obtain an

average and see where that number lies in the nominal-value intervals.

Manager’s calculated result for management style falls between the Not suitable

and Partially suitable values. So he uses the single-number result and finds that

management style barely makes it into the Partially suitable range.

If you want your migration to agile to last beyond a few projects, you need the

change to be driven from within by key players throughout the company. You need to

establish a team based on the people who build and deliver your software today.

The role of this group, which we call the core team, is to learn as much as they

can about agile and to use this knowledge to add agility to your existing process with

the help of an agile coach. The team collaborates and reaches consensus on new

processes; then they mentor project teams as they use agile techniques. This core team

is powerful and influential for three reasons:

■ They aren’t a part of line management. A few members may come from the

management ranks, but the majority of the team are doers: people who design, build,

create, and test code. This adds to the team’s credibility as you roll out the

methodology to the company. Agile isn’t a management initiative being forced on

everyone; it’s coming from real people who will be a part of the project teams.

■ Because the team is composed of doers, they know the ins and outs of

developing in your environment. This is different than when consultants come in,

suggest standard practices, and disregard the realities of a specific company. The core

team has experience with your company, and as they develop a methodology they

know what to keep and what to discard from existing practices.

■ Having team members from all areas initializes awareness across the company.

Imagine a tester going back to the testing team and excitedly telling them what is

going on with the new methodology, or a developer doing the same with the

development team.

68

Many companies use outside consulting to get their methodology going. We’ve

seen several companies choose to go with agile methods such as Scrum and then have

a third party come in to train employees and design and deploy the methodology. In

our opinion, this approach isn’t as effective as growing the methodology from within.

Creating it from within the organization addresses all the issues with ownership.

It’s hard to get a team to buy into a process that was forced on them. (Note that in rare

cases, an organization is so dysfunctional that it needs to have a methodology forced

on it—but this should be the exception, not the norm.)

We support using an agile coach along the way, but we prefer coaches who use a

Socratic approach. This type of coach asks you questions that lead you to your own

answers.

The managers will probably want you to provide a time estimate. You can take

two approaches to the work the core team performs:

■ Get the work done as quickly as possible. This is the preferred approach. You

make process work the number-one priority for the group for 1 to 3 weeks.

■ Have team members work part-time on the core team. Many teams can’t pull

several team members away from their daily work for a solid 1 to 3 weeks. Greg

experienced this constraint at the Seattle Times. To compensate, Greg’s team worked

on the new process three times a week for 2 hours at a time. Using this process, the

duration for establishing a new process was 6 weeks. Greg’s team enjoyed the slower

process, though, because it gave them more time to think about what they were

designing.

Table 2.8

Smart Trading GroupMedia’s core team. Core teams are composed of cross-

functional team members withvarious levels of agile knowledge. The diversity of

the team works well for scrutinizing the new process [18]

Functional area/Role

Background

Development

Familiar with Extreme Programming (XP)

development tech niques but comfortable with the

waterfall/homegrown pro cess that Smart Trading

69

GroupMedia has used for the last few years

Quality assurance

Concerned that agile will bypass or minimize the

need for testing. Experience working in an ISO 9000

environment. Frequently says “document what you

do, do what you document

Operations

Exists in a stressful world of managing production

issues and deploying new functionality. Worried that

he won’t have enough time to work with the core

team.

Requirements

An agile zealot. Has been looking forward to this day

for a long time. Dedicated to making agile work at

Smart Trading Group. Works with Product

Management to refine feature design for customers.

Architecture

Wants to make sure that an agile methodology

doesn’t

bypass good architectural practices and that there is

enough time to build the infrastructure needed for

projects.

Architecture

Unfamiliar with agile but excited about the promise

to

embrace the customer and changing requirements.

Identifies target markets and strategic needs for

Acme

Media’s products.

Smart Trading Group need to get manager approval for the employees you select

for your team. The managers will probably want you to provide a time estimate. You

can take two approaches to the work the core team performs:

■ Get the work done as quickly as possible. This is the preferred approach. You

make process work the number-one priority for the group for 1 to 3 weeks.

■ Have team members work part-time on the core team. Many teams can’t pull

several team members away from their daily work for a solid 1 to 3 weeks. Greg

experienced this constraint at the Seattle Times. To compensate, team worked on the

70

new process three times a week for 2 hours at a time. Using this process, the duration

for establishing a new process was 6 weeks. Greg’s team enjoyed the slower process,

though, because it gave them more time to think about what they were designing.

After you select your team, you need to meet with the core-team members and set

expectations.

An agile team comes across as poised and ready for wherever the project may

lead them. Agile team members don’t fear uncertainty; they look forward to the

challenge and know they will succeed. Where does this air of self assurance come

from? Does this attitude reflect the type of people who were hired? Or does it reflect

the processes that are being used? Is the attitude a byproduct of executive support?

Does confidence come from a history of successful deliveries?

The answer to all of these questions is Yes. Each of these items supports the

effectiveness and self-reliance that is inherent in an agile team. In some ways, creating

an agile team is like baking a cake. You can obtain the ingredients exactly as the

recipe requests, bake at the suggested temperature, and let the cake cool the specified

time before applying the icing. But what happens if you’re at high altitude and you

forget to make the necessary adjustments? The cake rises too quickly and then turns

out too dry. Or what if someone jumps up and down in the kitchen while the cake is

baking? The cake collapses and never rises. In this section, we’ll give you the

ingredients for creating your agile team. We’ll walk you through “high-altitude

baking” and how you should adjust your recipe accordingly

3.2. Ways to effectively implement flexible methodologies

Smart Trading Group has three product groups: the news site, the classifieds site,

and a travel/outdoors site. Each group has its own processes for development. To

minimize complexity and expedite the migration, the core team has decided to

document only the classified’s development process for now. The focus of this site is

advertisements for real estate, autos, and merchandise. Smart Trading Grouphas

71

assigned core-team members to various areas to document the phases. The

assignments are based on experience.

The Smart Trading Groupteam members have chosen to use butcher paper and

index cards to document their methodology. They find this approach useful because

they can see the progress that each mini-research team is making as they document

their respective areas. It also lends itself to questions when the team meets daily to

review progress on the documentation exercise. Smart Trading Grouphas time-boxed

its reverse engineering work to ensure the process doesn’t go on for months. One week

is allotted for documenting the existing methodology. Most of the work will be

performed offline from the core team meeting; then, the group will meet to review the

findings gathered by subteams and individuals.

Our case study, Smart Trading Group, will represent your company. We’ll take

Smart Trading Groupthrough these nine steps and show you how the company

iteratively creates and tests a custom process. We’ll also show you how Smart Trading

GroupMedia takes its own constraints into account with the new methodology. Before

we jump into the case study, let’s spend a moment looking at the characteristics that

make it easier to adopt agile and the characteristics that make agile adoption more

challenging.

Characteristics that make agile easier to adopt in Smart Trading Group Fgile

principles can be applied in any environment, but some environmental characteristics

influence how easy the principles are to adopt. Let’s look at these characteristics.

Urgency to deliver in Smart Trading Group. Agile works best in an urgent

environment. It provides tools to prioritize features quickly and determine how much

scope to pursue within the constraints of a critical timeline. If you have urgency due to

a competitive market, compliance deadlines, or a large backlog of project requests,

agile provides methods for quicker delivery.

EVOLVING OR VOLATILE REQUIREMENTS in Smart Trading Group. One

descriptor of agile could be just enough. “Give me just enough requirements to start a

design.” “Give me just enough design to start my code.” “Give me just enough code to

demonstrate some level of value to the customer.” If you don’t have all the

72

requirements, you can still get started with an agile project. If you complete an

iteration and the customer wants to change the requirements, you can adapt and still

meet the objectives. Managing changing requirements still takes effort in an agile

environment, but you don’t have to fight the project framework. The framework is

designed to support uncertainty.

CUSTOMER AVAILABILITY in Smart Trading Group. One Agile Manifesto

principle states, “Business people and developers must work together daily throughout

the project.” In our experience, these groups don’t have to work together every day

throughout a project cycle, but there are definite times when the customer must be

available. In theory, a project must not be urgent if the customer can’t make time to

clarify requirements or review functionality. The customer can have a proxy, such as a

product manager; but someone needs to be available every day to represent the

customer’s vision.

CONSISTENT RESOURCES in Smart Trading Group. Part of the power of agile

is a level of familiarity within the team and a consistent understanding of the processes

they use. Agile teams and processes get better over time. If project team members are

new to each other, they must learn processes together while at the same time trying to

complete the project. Agile works best with a core group of people who work together

on continuous projects. Agile isn’t a good methodology to use with a team that has

never worked together before, unless you have long-term plans to keep them together.

CO-LOCATED RESOURCES in Smart Trading Group. Agile promotes face-to-

face communication and common understanding. One of the best ways to support this

principle is to put your team members face to face. Co-location is an amazing tool.

Your team can get out of email hell, and their mutual understanding of the project will

increase.

One of the best setups we have seen is at a Fortune 500 company we visited. All

10 of the project team members are in an area approximately 25 feet by 25 feet. The

cubicles have half-walls that provided a level of privacy when people are sitting but let

them easily see the rest of the team and communicate when they stand up. This setup

provides the privacy the developers enjoy when they’re deep into a coding session but

73

also lets team members stand up to converse with each other at any time without

having to go to each others’ cubicles. Team members can also walk a few feet and

reach common areas where they can whiteboard a design or have a quick caucus.

In larger companies, a project team may be constructed of team members from a

shared resource pool. For example, the QA (Quality Assurance) lead for a project may

be from the QA shared resources pool. If such team members view themselves as

resources on loan, and not as team members dedicated to the project, the result can be

functional silos.

When silos exist, team members are more concerned about the welfare of their

team or area than they are with the livelihood of the project. This mentality doesn’t

bode well for agile development and leads to customer neglect. The team needs to

bond as a unified group toward the goals of the project. Roles are assigned, but one of

the objectives of agile is for the team to working collectively. Working collectively

can also be applied to team member roles. A tester can point out a possible code

improvement. A developer can suggest a feature enhancement. In general, team

members speak out—they don’t limit their roles to their titles. Management should

ensure that individual goals include how well employees support the common good of

the project.

Now that you know the characteristics that make agile easier to implement, let’s

look at a few that make agile more difficult to move to. First challenge will be finding

expertise to help you with your migration. If you’re fortunate, you’ll have some level

of agile experience within your company; but this probably won’t be true to the point

that you can coach yourself through an agile migration. We’ll help you with this issue

by showing you how often Smart Trading Group requested assistance, from initial

training to issues encountered along the way.

Agile is compromised as team size increases. Major principles such as face-to-

face communication and common understanding require additional effort to maintain

their effectiveness as a team grows.

Larger teams require additional overhead to ensure that information is shared

consistently across all groups. Scrum teams frequently use the term scrum of scrums,

74

meaning a representative from each team Scrum attends a master Scrum meeting to

share information with other groups.

Jeff Bezos of Amazon.com believes that the most productive and innovative

teams can be “fed with two pizzas.” Jeff shared this thought with his senior managers

at an offsite retreat. He envisioned a company culture of small teams that could work

independently, which would lead to more innovative products. Since that time, the

Amazon “pizza teams” have created some of the most popular features on the site

(Fast Company, 2004).

If your team has an average appetite, you can convert Jeff’s concept into a team

of five to seven people. This is a nice-size group for communication and agility. If five

to seven is perfect, then what is the maximum size for a team to remain agile? On the

high side, we believe you can have a team of 15 people without major impact on your

agility. When you have more than 15, communication needs to become more formal,

which slows the team.

There are ways to make agile work with larger or distributed teams, but you’ll

sacrifice some level of agility.

DISTRIBUTED DEVELOPMENT in Smart Trading Group. Related to large

teams, many companies use distributed development. Frequently, the distributed

development is performed by offshore resources. Distributed development implies that

the team is large in size and that communication methods must be scaled to get

information to all involved. In addition, you may have issues with time zone

differences, language, and code integration into a common environment. Some

offshore companies support and advertise the use of agile methodologies, but their

location may make it challenging to support the core principles. We’ve seen agile

teams successfully use offshore resources for commodity or repeatable-type work,

such as regression testing, smoke testing, and cookie-cutter development (for example,

providing an offshore group with standardized tools to create automated workflows).

FIXED-BID CONTRACT WORK in Smart Trading Groupю Fixed-bid contract

work goes against most of the agile principles. The customer isn’t a partner, evolving

requirements are a no-no, and adapting is usually called scope creep.

75

We used to believe that fixed-bid work couldn’t be performed using an agile

process, but recently we’ve met several managers who have customized their process

to allow the inner workings to be agile while customer interaction remained contract

oriented.

Team that will work together for only one project, they’re usually better served

by using a plan-driven methodology unless they have previous exposure to agile.

If the team will work through multiple projects or releases, you can introduce

agile techniques, and the team can migrate to a full agile methodology as their

knowledge matures.

An organization’s structure Smart Trading Group can create artificial barriers

between teams, and so can skill sets. If your team has specialized skill sets, it’s hard to

be agile when the work mix doesn’t correlate well to the available resource types.

Some tasks always have to be done by certain individuals, which doesn’t help the team

bond or unite when pursuing the completion of a feature.

Specialized skill sets also place an additional constraint on team capacity.

Imagine that your team has only one person who can perform user-interface design,

and the work assigned to an iteration is 80 percent user-interface work. Other team

members can look for work to do outside of the iteration, but delivery will be slow due

to the one-person constraint.

Teams that are just becoming agile usually have members with specialized roles.

You can overcome this constraint by cross training over time and rewarding

employees for obtaining and using additional skills.

Many people get hung up on the questions, “Are we doing it right? Are we doing

it in an agile fashion? Are we following a pure agile process?” When teams ask us

these questions, we tell them the answers aren’t important. All we want to know is

this: Have you created a development process that provides the most benefit to your

company This same mentality has managers trying to find a perfect agile methodology

and insert it directly into their company. As we discussed earlier, you can start with a

packaged agile process, but you need to look at the realities of your company and

adjust accordingly. Smart Trading GroupMedia will look at a generic agile process and

76

see how it applies to their realities; then, they’ll modify the process to fit their

environment.

Many managers hesitate to begin major change initiatives like becoming agile

because they must objectively identify the risks involved with the transition. By

conducting a comprehensive readiness assessment, you can prove to management that

the organization possesses the necessary characteristics for a successful transition to

agile. If your organization isn’t ready for certain agile practices, the assessment will

help pinpoint exactly which characteristics need to be enhanced. This information will

help management make a more informed decision about whether the organization

should start the agile initiative.

Figure 3.1 shows part of a complete readiness assessment report from an online

readiness assessment tool, created by Ahmed, named Dr. Agile (www.dragile.com).

As you can see, the first column lists different agile practices. To the right of each

practice are the organizational characteristics that are assessed; the final columns show

the assessment results. A report like this is beneficial and insightful to executives

because it shows them the amount of effort needed to adopt agile in the organization.

Many times, executives are reluctant to start an agile adoption initiative because there

are too many unknowns. One of these important unknowns is whether the organization

is ready. Readiness assessments give executives visibility into the amount of effort

(which they translate into cost) required for the adoption process.

When executives looks at this report and sees that their organization has all the

necessary characteristics for a successful adoption, they’re more inclined to support

and even champion the initiative. If the organization needs to enhance some of the

characteristics required for the adoption of agile practices, then executives have the

option to either undertake the necessary steps to improve these characteristics or go

ahead with the adoption of those practices the organization is currently ready for.

We believe that readiness assessments provide executives with the right amount

of information, visibility, and insights to make them support the agile transition

initiative.

77

Figure 3.1. Part of a readiness-assessment report generated by Dr. Agile

(www.dragile.com). The report shows each agile practice (far-left column) and

the degree to which its supporting characteristics are achieved in the organization

(far-right columns) [52]

Smart Trading Group identified a set of 20 or so common agile practices. Then

we created a readiness-assessment table for each of these practices. By creating a

separate readinessassessment table for each practice, we’ve given people the flexibility

to assess their team/organization for one particular practice without having to go

through the assessment questions for all the other practices; and we’ve made the

assessment extensible, because new practices can easily be added to the assessment by

creating readiness-assessment tables for them. The next section will show you the

readinessassessment table for an agile practice and take you through a step-by-step

description of how to use the table to determine whether your team or organization is

ready to adopt this practice [17].

The assessment uses two main components: organizational characteristics and

assessment indicators. Organizational characteristics are the various attributes you

need to assess to determine whether a team or organization is ready to adopt a certain

agile practice. These characteristics may be related to a number of different aspects of

the organization, most commonly the following:

78

■ Customers—The project’s customers and clients

■ Builders—The technical staff involved with the development of the project

■ Managers—The managers or executives overseeing the project and involved

with decision making

Figure 3.2 The readiness-assessment table for the agile practice of collaborative

planning [65]

■ Tools—The software tools used within the organization or for a certain project

■ Culture—The overall culture of the people within an organization or the project

team

■ Project management—The procedures and practices related to managing

projects in the organization

■ Software process—The activities and artifacts related to the software-

development process in the organization

79

■ Physical environment—The physical layout of the organization and the

geographical and spatial distribution of its employees [56]

Indicators are the questions you use to assess each organizational characteristic.

Indicators can be targeted at four different groups in the organizations:

■ Developers—Team members who are involved in building the actual system.

They usually include developers/coders, architects, and testers.

■ Managers—Any team members involved with management of the project. This

role is suitable for project managers, team leaders, and any other management

positions in direct relation with the project.

■ Product owners—Team members who are involved with the product’s business

direction. This role is suitable for any team member who is in direct contact with the

customer. Some of the common positions that fall under this role are business analyst,

product manager, product leader, engagement manager, and project manager (if

they’re in contact with the client).

■ Assessors—People outside the team. Their main role is to observe whether

certain process activities and artifacts exist. Common positions that fall under this role

are agile coaches, quality-assurance personnel, process-improvement personnel, and

independent observers outside the team. Figure 4.5 shows where the organizational

characteristics and indicators are laid out in the readiness-assessment table for

collaborative planning.

80

The top part of the table names the agile practice and briefly describes it. Section

A lists the organizational characteristics. In this example, four characteristics should

Figure 3.3 Dissecting the layout of a readiness-assessment table

be assessed for collaborative planning (management style, manager buy-in,

power distance, and developer buy-in). Each characteristic is accompanied by a brief

explanation of what you want to discover by assessing it. For example, as mentioned

earlier, you assess power distance to determine whether people are intimidated by their

managers and afraid to participate and be honest in the presence of those managers.

In front of each characteristic (section B) are reference codes. These codes refer

to the indicators that are used to assess the organizational characteristic. The first letter

81

after the underscore in the code denotes whom the indicator is targeted at. If the letter

is an M, then a manager should answer the indicator. The letter D refers to a developer,

C to a customer or product owner, and A to an assessor. The indicators are grouped

depending on this letter. In this example, we have only three indicators for managers

and five for developers; indicators targeted at managers are grouped together (section

C), and indicators targeted at developers are also grouped together (section D). If we

were analyzing an agile practice that had more indicators targeted at assessors, then we

would have a section E (beneath D) that contained those indicators.

The main change in the development area is that Smart Trading Group will no

longer use the waterfall model for development. In the past, the developer received a

functional specification and started building from it. In the new model, the developer

has the feature card, and all the information is recorded on it. The developer works

with the requirements team and the product manager to build to the minimum

specification so a demonstration and validation can be obtained quickly. Another

significant change is the daily stand-up meeting.

 The development team used to meet daily to discuss status during development;

now, most of the project team (not just developers) is there to synchronize on

information and quickly resolve roadblocks to keep development rolling. Table 3.1

outlines the Development phase

Table 3.1

Smart Trading Group’s new Development phase [81]

ID Development

phase

Group(s)

Change notes

1 Perform iteration 0:

development

initiation

work

Project team

with

potential

executive

assistance

In the past, Smart Trading

Groupdevelopers received a func

tional specification to build from at

this point.

This step is used to put foundation

pieces in place, such as architecture,

vendor contracts, and environment

preparation.

2 Perform

development

Project team

The team swarms on the features to

clarify the design and build the

82

iterations 1–n.

functionality. Unit testing occurs at a

minimum.

Demonstrations are scheduled for the

end of the iteration, but impromptu

customer demonstrations can happen

within the iteration.

3 Hold a daily stand-

up

meeting (part of the

development

iterations)

Project team

Smart Trading GroupMedia had

weekly status meetings in the past,

but they were only attended by

managers

who reported status for their teams.

The new daily stand-up meeting is

limited to 15 minutes, and it’s

“standing.” The team discusses what

has been done, what will be done, and

any roadblocks or issues.

The team discusses the status of

features and whether they’re ready to

be integrated.

4 Integrate-build.

Development

implementation

In the past, Smart Trading

Groupwaited until the end of devel

opment to integrate and build.

Optimally, they would like to

integrate every day, but for now they

will settle for integrating three times a

week.

5 Test.

Quality

assurance

Smart Trading Grouphasn’t made

many changes to the testing process.

The team considered test-driven

development, but the assessment they

completed indicated they aren’t

mature enough to pursue it at this

time.

6 Repair bugs.

Development

Previously, Smart Trading

Groupreserved a few weeks at the

end of the project to do bug cleanup.

In the new model, bugs identified

during an iteration affect capacity for

subsequent iterations. Smart Trading

Group reserves some time during the

deployment phase to clean up bugs,

but major bugs are treated as features.

7 Update

maintenance

Development

In the past, the team waited until

deployment to create maintenance and

83

and support plans.

support plans. Now they

consider them part of feature delivery

8 Complete the

iteration.

Project team

This step indicates the end of the time

allotted for the iteration.

Development phase is focused around delivering value early and early validation

of customer requirements. Testing also occurs sooner so that issues are easier to trace

and repair.

Smart Trading Group also needs to consider a new phase that was previously

limited to the end of the project: the Adapt phase.

In the past, change was a bad word at Smart Trading Group. If you needed to

change requirements, the schedule, the scope, or some other project attribute, you had

to create a change request. Now, change is expected, and the Adapt phase is dedicated

to reacting to change. See table 8.7. Smart Trading GroupMedia still requires change

requests for some items, specifically those that require incremental cost; but most

changes are embraced, and the team works to deliver what is needed at the end, not

what was requested at the beginning

Table 3.2

Smart Trading GroupMedia’s Adapt phase embraces change [65]

Step

Adapt phase

Adapt phase

Change notes

1 Perform customer

acceptance.

Requirements

and guests

In the past, Smart Trading

Groupperformed customer

acceptance at

the very end of development. The

new process allows

several reviews.

The deliverables for the iteration

are presented to the

customer for review, testing, and

ultimately acceptance.

When the review is kicked off,

stakeholders are invited

to see the overall status of the

iteration. In the past, the

review was only for customers.

84

This step helps prevent

surprises.

If features aren’t accepted, the

team reviews the issues

and makes a decision on whether

to continue work on

the feature into the next iteration.

In the past, rework

time was limited to the bug-fix

window.

2 Undertake

discovery

Project team

The team reviews new information

that materializes

during development: business-

climate changes, com

petitor product changes, priority

changes, and so on.

3 Evaluate the

iteration pace.

Project manager

The project manager reviews

development’s actual

velocity versus the forecast

velocity and adjusts the

features assigned to the next

iteration accordingly.

4 Re-plan.

Project manager

and team

The team modifies the plan for the

next iteration based

on all the information gleaned

during the Adapt phase.

The team focuses on learning as the project progresses and delivering what is

needed at the end, not necessarily what was requested at the beginning.

Adaptation occurs throughout Smart Trading Group’s development lifecycle, but

it’s stressed during the Adapt phase. Customer demonstrations provide the ultimate

opportunity to validate whether the product is on track and, if not, what needs to be

done to redirect. This phase more than any other reveals what agile is all about.

Change is unavoidable in a project, so the methodology should embrace change. The

team will be busy enough reacting to the change; they don’t need additional hassles

from the process.

85

Smart Trading Group hasn’t identified many functional changes for the

Deployment phase, but they have found some cultural areas to work on; see table 3.3

Table 3.3

Smart Trading GroupMedia’s Deployment phase

Step

Deployment phase

Group(s)

Change notes

1 Train support

groups

Implementation

This step is

unchanged.

2 Finalize

maintenance

plans.

Development

In the past, the

entire plan was

created days

before deployment;

now it’s tweaked

and final

ized. Work began

back in the

Planning phase.

3 Finalize operation

and

support plans.

Implementation

The team finalizes

these plans versus

doing all

the work at this

point.

4 The team finalizes

these plans versus

doing all

the work at this

point.

Project Team

The team finalizes

the documentation

versus

doing all the work

at this point

5 Deploy the code to

disaster recovery

Implementation

Smart Trading

Grouphas had

issues deploying in

86

 the past. To

mitigate risk, they

will deploy to the

disaster

recovery

environment first

to identify potential

production

deployment issues.

6 Deploy the code to

production

 This step is now

performed after

disaster-recov

ery deployment.

7 Hold a lessons-

learned

(retrospective)

meeting

Project team

Smart Trading

Grouphas never

stopped to review

its processes

between releases.

8 Celebrate Project team and

stakeholders

Things have been

chaotic lately, and

Smart Trading

Grouphas

stopped

celebrating. The

company needs to

return a sense of

accomplishment to

the team.

Smart Trading GroupMedia’s Deployment phase finalizes work that has been

in progress since the Feasibility phase. Items such as maintenance plans have been

discussed and worked on throughout the project. The team has also added a step to

stop and reflect on how well the process is working—a retrospective.

The team also notes that they’ve quit celebrating at the end of projects. After

many change requests, schedule slips, and chastisement from the executives, the team

87

hasn’t been in a celebratory mood lately. The team believes in the new process, and

they believe that the future will warrant success, so celebrations have been added as an

anticipated part of the delivery process.

3.3. Pilot project of forming a flexible management system in a trading enterprise

The pilot will be the first time the new lifecycle is exposed on a real project with

a real team. In effect, it’s a marketing event for the new process. If you choose the

wrong type of pilot, you may end up aborting, which will be a poor advertisement for

the new methodology. With that thought in mind, you want to select a project that will

push you through the test but not shove you. You want time to test the process in all

areas such as requirements, design, development, testing, and implementation. You

also want to give your pilot team time to acclimate to their new level of ownership.

Agile is about methodology and culture. The team should understand the literal

process, but they should also begin to understand what it means to be agile. You want

them to start envisioning what it’s like to own a project and be highly involved in

decisions. Let’s look at the traits of a good pilot project.

Pilot project should have an overall completion estimate somewhere between a

couple of weeks and a maximum of 8 weeks. One of the easiest ways to complicate

your migration is to test your new methodology on a large project.

Smart Trading Group populates its request backlog via a quarterly planning

process. The executives review all known project requests once every three months,

prioritize them, and loosely assign them to the quarter for completion. Smart Trading

Group supports a website that includes news, classifieds, and travel/outdoors content.

Executives from these three areas attend the quarterly planning process along with

managers from support areas such as online advertising, user registration, and

engineering. Smart Trading Group’s project backlog is pictured in table 3.4.

88

Table 3.4

Smart Trading Group’s project backlog [54]

Area

Potential

projects

Priority

H-M-L

Priority

H-M-L

Request

type

Detailed

description

News

My News”

personalization

M

9 weeks

Customer

User can build

their own page

with content

from

AcmeNews.

com along

with other

sites.

Classifieds

Free merchan

dise

advertising

M

7 weeks

Customer

Compete with

eBay and

Craig

slist for lost

classified

adver

tisements.

All

Free merchan

dise

advertising

M

2 weeks

Infrastructure

Many readers’

videos are

being

blocked by

firewalls.

Investigate

Flash as a

solution.

Classifieds Autos email L 1 weeks Customer Many readers’

89

 alerts

 videos are

being

blocked by

firewalls.

Investigate

Flash as a

solution.

News

Wireless

weather alerts

M

3 weeks

Customer

Many readers’

videos are

being

blocked by

firewalls.

Investigate

Flash as a

solution.

News

Behavioral

targeting

M

10 weeks

Advertiser

Serve tailored

ads to the

reader

based on their

browsing

habits.

When the Smart Trading Group quarterly planning team sits down to identify

their pilot project, they invite the project manager, Wendy Johnson, to assist. Wendy

recently trained on the agile principles, and she has worked with the core team to

outline the new methodology. Wendy also has a good feel for what a test project

should do to exercise all the new processes. The team sits down and compares the

projects in the backlog to the selection criteria.

Smart Trading GroupMedia begins by screening projects by size. The team filters

out the behavioral targeting and ”My News” projects because they’re estimated to run

longer than 8 weeks. Next, they filter by project breadth. The Macromedia

investigation is only an investigation—it will hit few areas and won’t have a code

deliverable. It’s also a high-priority project, which means there will be little patience

for testing a new process.

90

The autos email alert item is closer to a feature than a project. It’s a small

enhancement to the existing autos site. This project doesn’t require a feature-card

meeting and will have only one iteration. Wireless weather alerts is a niche project that

requires a limited and specialized project team. It doesn’t require team members from

most of the departments.

That leaves Smart Trading Group with the free merchandise advertising project.

It’s estimated to last less than 8 weeks, which will allow for timely feedback. It will hit

all the phases of the new process and involve all the major functional areas of a

project: requirements, design, development, implementation, quality, and operations.

It’s a medium-priority project, so it will push the team along. It’s also a good fit

because third parties won’t be involved.

The project is a product-management initiative, which means an internal product

manager can play the role of the customer. This supports a pilot objective of not

involving a real customer in the first test of the agile methodology. Based on all these

findings, Smart Trading Group chooses the free merchandise advertising project as its

pilot. Smart Trading Group’s next step will be to identify the team members needed to

perform the pilot.

Many companies struggle when trying to validate a project’s value. Some

companies initialize a project without knowing if it’s viable; other companies

scrutinize the value of a project for months before making a decision. There are issues

with both approaches.

If you perform minimal validation, you’ll frequently deliver projects that provide

marginal value. You may also find that you’re aborting on projects because you

overlooked major risks at the outset. In both instances, you waste company time and

resources and potentially lose the opportunity to deliver valuable projects.

Companies that perform too much validation have a different set of issues. These

companies create so many hurdles and gateways that a considerable expense is

associated with project justification. They also minimize their ability to achieve

benefits from projects that need to deliver value early: time that could be spent

performing the project is frequently lost to the justification cycle.

91

This process works for two reasons:

■ The feasibility effort is time-boxed.

■ The team is empowered to question the viability of the project after the

Feasibility phase.

Time-boxing the effort prevents a runaway train. A time limit adds urgency to the

effort and prevents waste. Smart Trading GroupMedia has a 3-day limit for feasibility

work. We suggest you create a time limit for feasibility work within your company,

too. A good rule of thumb is 2 to 5 days. Some employees won’t be happy with this

time limit: they will say that each project is different and that larger projects require

more time for feasibility work.

They will also say that setting a fixed time for an activity is anti-agile. We agree

with all these points. This is where our second point comes into play: the team can

cancel the project at any time.

The agile process that Smart Trading Grouphas created is represented by five

virtual phases. We use the term virtual because in reality you may perform feasibility,

planning, development, or adapting at any point in an agile project. The work is not

performed in a serial fashion.

First is the Feasibility phase. You use this phase to determine if an idea has

enough merit to justify going forward with more detailed requirements, planning,

funding, and staffing. Why are you doing this project? What is the value of this

request? What are the risks in pursuing this project? The Feasibility phase provides

answers to these questions quickly. You can see typical feasibility activities in figure

10.2.

The Planning phase gets started by reviewing the output of the Feasibility phase

and going deeper into the information provided. You use the Planning phase to break

the idea into discrete pieces of functionality called features or user stories. You then

prioritize the features and loosely assign them to development iterations.

The release plan provides a first pass at the work that will be created, tested, and

demonstrated during the Development phase. This work is completed in iterations and

92

queued for later deployment. Each iteration is a deliverable subset of features; these

features are demonstrated at the end of development iterations.

When the team reviews the features that are delivered, they adapt. The team

gathers feedback from the customer during the Adapt phase to ensure their needs were

satisfied by the features delivered. The team also reviews their velocity (pace) to see if

their capacity estimates are correct. The team uses this information to adjust the plan

for the forthcoming iteration.

The last phase is Deployment, which begins after the last iteration is complete.

You use this phase to deliver code to the production environment. You also use the

Figure 3.3 Overview of Smart Trading GroupMedia’s phases

Deployment phase to prepare all of those affected by delivery of the project: you

train customers, prepare support organizations, turn on marketing plans, and complete

the phase with a project retrospective. Smart Trading Group’s pilot project, free

merchandise advertising (FMA), has been approved for feasibility research.

93

The FMA project met the conditions of the criteria: it’s medium priority, can be

completed within 8 weeks, and involves the majority of departments and areas within

Acme. Now Smart Trading GroupMedia needs to identify a group of employees to

look at the idea in more detail and make sure it’s feasible to fund the project and

identify a full project team.

Figure 3.4 Smart Trading Group’s Feasibility phase. The team gathers just enough

information to validate the value of the project and make the call about whether to go

forward

Deployment phase to prepare all of those affected by delivery of the project: you

train customers, prepare support organizations, turn on marketing plans, and complete

94

the phase with a project retrospective. Smart Trading GroupMedia’s pilot project, free

merchandise advertising (FMA), has been approved for feasibility research.

The FMA project met the conditions of the criteria: it’s medium priority, can be

completed within 8 weeks, and involves the majority of departments and areas within

Acme. Now Smart Trading GroupMedia needs to identify a group of employees to

look at the idea in more detail and make sure it’s feasible to fund the project and

identify a full project team.

After a project has been endorsed for feasibility analysis, you assign an individual

or a team to perform the work. The work can be performed by an individual if the idea

is simple, such as a slight enhancement to existing functionality. More complicated

ideas should be reviewed from various perspectives, and a team will be required to

provide the analysis

The feasibility guide focuses the team on the areas they should be researching

during the phase. When the team feels they’re reaching diminishing returns, or their

time limit expires, they will summarize their findings and present them to an approval

body. The team will make a recommendation on “go/no go” at the conclusion of the

exercise, and the approval body will make the ultimate decision about whether to

proceed.

Note that an approval body can be as small as a product manager or as large as a

steering committee or executive team. In our experience the feasibility team’s

suggestion is usually followed. Let’s follow Smart Trading GroupMedia as it goes

through the feasibility phase with its pilot project, beginning with the creation of a

feasibility team.

Smart Trading Group’s agile process allows for different teams to be used

between the Feasibility phase and the Planning/Development phases. For example, a

light team or even one person can do the feasibility analysis. When an idea is through

the Feasibility phase, Smart Trading Groupcan identify the team for planning and

development—the actual project team.

Smart Trading Group chose this design to minimize the impact on the

organization until the project has been deemed viable. In the case of the pilot project,

95

Smart Trading Grouphas decided to name the team for planning and development

during the Feasibility phase. Only a few team members receive feasibility

assignments; the remaining team members sit in on feasibility activities to learn how

the process works. This is the beginning of Acme’s agile education process.

On projects after the pilot, Smart Trading Group will perform the Feasibility

phase as designed, having only needed team members participate. When you create

your lifecycle, you can go either way. If you can free up the entire team for the

Feasibility phase, and the entire group is about eight people or fewer, then we

recommend having the entire project team involved in feasibility activities. In contrast,

you may choose to limit involvement to the minimum amount of employees needed to

explore the project for value. Many companies do this because they have a limited

number of team members.

If you’re working on an agile project, one with volatile requirements or a tight

deadline, you won’t have deep requirements when you begin the Feasibility phase. A

request or idea has been approved for a feasibility investigation, and no one has

documented detailed requirements to this point. Your idea is relatively new, and

you’re working rapidly to either start the project or dismiss it. The information that is

available is presented to the feasibility team. The idea usually has a champion or

author who can meet with the team and go over the concept. This person brings in all

the information they have at this point, whether it’s a diagram on a cocktail napkin, a

detailed flowchart, or a mini functional specification. The following items can be

analyzed during the Feasibility phase: If your idea comes from within, you may have a

white paper created by someone to outline the idea. In Smart Trading GroupMedia’s

case, the idea came from product management, which created a proposal for FMA.

Smart Trading Group starts its feasibility work with a meeting between Jay (the

product manager) and the feasibility team.

When you create your own custom methodology, you’ll determine the approval

level required to pass from the Feasibility phase to the Planning phase. Final approval

may come from the project team, or you may decide to have it come from a

management group. It’s logical to have different approval levels depending on the

96

scope of a project. For example, a project that can be completed in a few days with

existing team members may be blessed by a product manager or project team.

Conversely, a project that will take months to complete, with incremental expense,

probably needs approval from a management group

Smart Trading Group has a team that is dedicated to their project, but it isn’t

unusual to have team members working on different projects at the same time. In

many environments, executives want to know what types of skill sets are needed and

how long you’ll need those skill sets. In these instances, the output from your

feasibility work should include a high-level estimate of the people you’ll need for the

project and approximately how long you’ll use them. This is especially true if you

believe you’ll need help from outside the company; outside assistance may require

additional funds that aren’t budgeted for your team or the platform

After a project makes it through feasibility analysis, you select the team that will

deliver the project. Ideally, you want to begin with your feasibility team and expand

that group as needed. Feasibility-team members can share the information from the

Feasibility phase with the additional team members; this will kick-start the project

team. Assignments are based on the current estimated size of the project, the type of

team members needed, and team member availability. If your company is small, you

may have the same people work on every project. You may also have employees who

are dedicated to a website or product within your company.

Smart Trading Group uses a resource pool for its projects. This provides

flexibility and also increases the tribal knowledge throughout the team. There are

specialists for each area, but team members may be assigned to any product or project

depending on company need and the employee’s desire to learn about a new area or

technology.

 When the pilot project is chosen, chances are that some core-team members will

be on it due to their functional jobs. But the majority of pilot-team members probably

won’t be from the core team. You need to review your pilot-team roster and determine

whether the team has enough core-team members to support mentoring and hand-

holding during the pilot.

97

If the pilot team does not have enough mentoring, you should assign a few

coreteam members to assist them. These core-team members must be present for all

major meetings and check in daily with the team.

Table 3.6

 The pilot project team for the Auctionator/Online Auction System. (OAS)

Pilot project

role

Name

Background

Pilot project

role

Project

manager

*Wendy

Johnson

Wendy is part of the core team.

She looks

forward to seeing how the project-

manager

role works in an agile

environment.

Developer

*Roy Williams

Roy is part of the core team.

Developer

Developer

Matt Lee

Matt usually supports development

of appli

cations for the Classifieds group.

Developer

UI

Ryan Getty

Ryan has a lot experience doing

prototype

work, which should bode well for

the agile

process.

UI

QA

Gina Wallace

Gina is curious to see how much

she’ll be

involved in planning the pilot

project. Her

peer, Vijay Kumar, is on the core

team, and

QA

98

she’ll ask Vijay for mentoring

during the pilot

Operations

Tom Klein

Tom works for Matt Shiler, who is

on the

core team. Tom has no agile

experience.

Operations

Requirements

Rich Jenkins

Rich has spent a lot of time

learning about

agile from his peer on the core

team, Wes

Hunter.

Requirements

Architecture

Keith

Gastaneau

Keith is part of the core team.

Architecture

Customer

Jay Fosberg

Jay is a product manager for the

Classifieds

group and proposed the concept of

Free

Merchandise Advertising. Jay will

play the

role of the customer for the pilot.

Customer

Smart Trading Group has three core-team members working on the pilot project.

A good rule of thumb is to ensure that the pilot team includes two or more core-team

members. Smart Trading Group also has a bonus in that one of the core-team members

on the pilot is the project manager. She will be involved in almost every aspect of the

project and available to provide mentoring to the pilot team. Jay Fosberg will be the

proxy for the customer during the project, which isn’t a stretch for him. Jay has always

been a strong supporter of the customer and an advocate for application usability.

After you identify the pilot project team, you need to train them and orient them

on the process you’re going to assess

The untrained pilot-team members go through a process similar to that followed

by the core team. They need an overview of why the company is pursuing agile,

99

training on the agile principles, and an understanding of the process they’re to use on

the pilot. If possible, have your agile coach provide the pilot team’s training, with

core-team members contributing to the discussions. This process training takes one or

two days and is slightly different for the pilot team. In addition to the fundamental

principles and practices of agile, they also need training on how the core team has

represented those principles in the custom methodology.

For example, they need to see how the core team’s new process supports the agile

principle of customers and developers working together daily. If core-team members

are attending the fundamentals training with the pilot team, they can show the pilot

team how the principles are reflected in the custom methodology.

You should expect the untrained team members to have some cynicism and

negativity related to using the new process. Their concerns usually relate to the

following:

■ A misunderstanding of agile principles—Common misconceptions

■ A belief that the current process works fine—Project team members may be

unaware of the issues that the new methodology addresses.

■ Lack of detail in the agile process—In the past, you may have prescribed every

step in the development process. Now, the team is asked to participate in selecting the

processes that add the most value, and that can be a shock.

If your environment has been controlling in the past, the last item will take time

to resolve. Agile doesn’t assign employee A to do step B; it tells the employee to

deliver value to the customer as quickly as possible and provides tools and processes

to reach that goal. The team works together to determine logical steps and assignments

during the project.

No matter what the feedback is, listen to the pilot team with an open mind. Where

applicable, show them how the new design takes their concerns into account.

If team members appreciate the value of a project, it will increase the likelihood

of their buy-in and support. If they don’t believe in the value, they may not apply

themselves, and they may undermine the project. You can provide clarity around the

value by having the team work together to create an elevator statement.

100

An elevator statement allows you to condense the project concept into a short,

compelling paragraph. The idea is that if you’re asked about your project in an

elevator on the bottom floor of a building, you should be able to describe the project in

a concise, intriguing way before you reach the top. This is a great tool for

communicating the value of the project to those outside the team, and it centralizes

everyone on the benefits that should be delivered [9].

You begin the exercise by having the team review the known requirements and

the desired deliverables. Then the team works together to answer the following

questions:

■ Who is the customer?

■ What do they need?

■ What is the category of the product or service?

■ What are the most compelling benefits to the customer?

■ Can you quantify the benefits?

■ What differentiates your product from existing alternatives?

We also find it helpful to show the team a few examples of elevator statements to

get them started.

User stories in Smart Trading Group. Some of the people we’ve worked with

refer to feature cards as user stories on steroids. We believe this is an accurate

description. Feature cards share the same goals as user stories. Smart Trading Group

aren’t looking for requirements; you want information to help you plan. Smart Trading

Group aren’t looking for formal requirements to review; you want to interact with the

customer verbally to better understand their needs. Smart Trading Group also want to

gather just enough information to understand the scope of the system.

User stories and feature cards collect conversations with customers. Feature cards

also aim to represent a piece of work that can be completed within an iteration. And

feature cards and user stories both collect the tests needed to verify a feature is

complete.

The main thing that makes feature cards different is the additional fields for

uncertainty, dependencies, and frequency of use. By adding these fields, you make it

101

easier for the team to prioritize and sequence features after the initial customer

conversations.

Use cases in Smart Trading Group. Use cases have been an essential

requirements-gathering tool for many years. We’ve used them on many projects, and

they can provide a good process for documenting a system’s detailed requirements.

But if use cases are used too early, they can create issues for a project:

■ A use case can imply technical-design details and bias the team toward

implementation. You can easily lose sight of what the customer needs and begin

rushing down the path to building the application.

■ A use case can define a large scope of functionality. You want to see all your

features defined as pieces of work that can be completed within an iteration. Many

times, a use case exceeds this timeframe.

The use case didn’t have an extreme bias toward design details, but hints were

starting to surface. Greg’s team was already thinking about using PeopleSoft and a

SQL database. This team also assumed there would be separate screens for each

benefits area and that the customer would receive a change confirmation via email.

Such assumptions may end up being correct, but they steer the customer away from a

conversation about their needs and into a discussion of implementation details. It’s

important to note that there are two types of use cases: essential and real. An essential

use case is closer to a feature card; the interaction listed is at a high level and isn’t

implementation specific [45].

A real use case describes the detailed interation with the system, naming screens,

databases, triggers, and other system artifacts. Returning to the second issue with use

cases, let’s see how scope could become large for an Auctionator feature (see figure

3.5).

102

Figure 3.5 A Smart Trading Group use case [46]

A Smart Trading Group use case can create issues for a project when it’s used too

early. The format can bias the team toward implementation planning versus trying to

understand the true user or business need

The Smart Trading Group team could probably complete the main use case for

place a bid within 10 days, but other use cases that could come from the exceptions

probably wouldn’t be completed within the same 10 days. Frequently, it takes more

time to create an exception feature than it does to support the main, perfect world flow.

In conclusion, we think use cases are a great requirements-gathering tool, but

they should be used in conjunction with feature cards or after feature cards are

complete.

In our experience, a functional specification is a deep, detailed document that

speaks to how a requirement will be delivered. Functional specifications frequently

103

include use cases, wireframes, interaction diagrams, formal business requirements, and

entityrelationship diagrams.

Functional specifications are common in a waterfall environment. We usually see

the following flow around a functional specification:

1 A business-requirements or marketing-requirement document is created.

2 A functional specification is created from the business-requirement document.

3 A technical design document is created from the functional specification.

4 A test plan is created from the functional specification.

The process can be formal, and each document is created in series. In some cases,

the customer may not be consulted as the documents are being created; this process is

common with fixed-bid work. The team is trying to deliver to a requirement document

and to use statements such as “The system shall….” If the customer did not detail their

requirements correctly, you don’t care—you get paid as long as you deliver to their

specifications. This approach is different from the agile mentality of learning as you

go and engaging in frequent customer interaction.

If you contrast a feature card to a functional specification (FSP), you’ll notice the

following differences:

■ A feature card starts a requirements conversation. An FSP tries to cover all

requirements immediately.

■ A feature card is used to record conversations. An FSP doesn’t include

conversations but focuses on documenting how a documented business requirement

will be met.

■ A feature card focuses on verbal communication, common understanding, and

synchronizing the team on the customer goals. An FSP focuses on documenting the

functional details and having team members read the FSP to understand what they

should do.

■ A feature card focuses on gathering just enough information to prioritize,

sequence, and estimate the work. Note that we don’t see an issue with creating

functional specifications, but we do see issues with the process that usually surrounds

104

them. In our experience, we’ve witnessed four weaknesses with the processes typically

used with a formal FSP:

■ A functional specification focuses on delivering what was requested at the

beginning. In our experience, what the customer wants changes as they see the product

demonstrated. Feature cards begin the process of identifying what is needed at the end,

not the beginning.

■ A functional specification can position the customer as an enemy, with

definitive statements such as the system shall. The customer is also somewhat inhuman

when their needs are presented on paper versus via a face-to-face conversation.

■ The process around functional specifications can delay the ability to get early

estimates for the project. An FSP may take weeks or months to complete, and then it’s

passed to developers for technical design and ultimately development estimates. It

may take months to get an estimate for project duration.

■ When estimates do come in, you may realize that you’ve completed functional

specifications for features that you won’t have time to complete. This FSP work will

be wasted effort. There is value in FSPs when you work with offshore resources, or to

help you support traceability requirements. It’s also great to have a document that

holds all the information about a feature in one place, especially if you don’t have a

dedicated team room or a place to hold your whiteboard diagrams and flow. We’ve

seen some teams take pictures from their whiteboard-modeling discussions and store

them in the FSP.

This is a great idea because team members usually understand diagrams better

than requirements statements. The main point is that you don’t want to start your

initial planning process by creating detailed functional specifications.

Estimating software in A Smart Trading Group is a mystery for most teams.

Teams can spend huge amounts of time breaking down features to create their

estimates, but the actual time needed is usually a vastly different number. The issue

lies in two areas: techniques and expectations.

Most teams use traditional estimation and capacity-planning techniques.

Traditional techniques are dependent on constants and repetitive work. A traditional

105

planning process wants to know how much time it takes to build a widget, how many

machines are available to build the widgets, and how many hours a day the machines

can be used for building the widgets [15].

As you probably know, each piece of software is unique, and it’s difficult to

estimate something that is being built for the first time. We never build the same

widget twice. It’s also hard to treat a developer like a machine and predict their output

on a daily basis. Communicating this to sponsors and stakeholders is also challenging;

many experienced software professionals still believe incorrect estimates are more

closely tied to incompetence than to the realities of software development. Agile

estimation techniques won’t remove uncertainty from your early estimates, but they

will improve your accuracy as the project proceeds. This is true because agile

estimation methods take actual work into account as the project progresses. Your work

mix may be diverse, but if you measure at an aggregate level you can still identify an

average that you can use for estimating your capacity. We’ll demonstrate this process

as we follow the Auctionator through its development iterations.

In the early stages of a project, someone guesses how long it will take to deliver.

This person may be a salesperson, project manager, or development manager. They

may make a guess based on their experience, or they may have some quick chats with

seasoned employees and solicit their opinions. When the timeline guess is in place, the

project begins. If the project is related to a product, there may be marketing

requirements to reference. If the project is for a customer, there may be a statement of

work to reference. In either case, it’s common for an analyst team to convert the

information into functional specifications. After the functional specifications are

completed, a conversation begins with the development team, designs begin to evolve,

and some teams may document a technical design and architectural plan. When this

work is complete, the development team provides estimates based on the anticipated

approach. The team also estimates their capacity by resource type. Then the estimates,

capacity, and known dependencies are entered into a project plan. At this point, the

team has a schedule that they feel confident in, and they share it with the stakeholders.

This exercise may take several weeks or months to complete. If a project is timeboxed,

106

the team may find that there isn’t enough time to deliver all the features forwhich they

created functional specifications, designs, and estimates. The team then has to scope

back the features for the project to meet the timeline, realizing they’ve wasted valuable

time in estimating features that won’t be pursued [46].

Agile estimation techniques address the shortcomings of this method. You don’t

design and estimate all your features until there has been a level of prioritization and

you’re sure the features are needed. You used a phased approach to estimation,

recognizing that you can be more certain as the project progresses and you learn more

about the features.

At a high level, the phased process looks like this:

1 Estimate the features in a short, time-boxed exercise during which you estimate

feature size, not duration.

2 Use feature size to assign features to iterations and create a release plan.

3 Break down the features you assigned to the first iteration. Breaking down

means identifying the specific tasks needed to build the features and estimating the

hours required. 4 Re-estimate on a daily basis during an iteration, estimating the time

remaining on open tasks. Agile estimating is also different in that you involve the

entire team in the estimation process. Let’s take a moment to look at the value of

whole-team estimation.

The first thing the Smart Trading Group team needs to do is establish two

reference points for all features. They do this by identifying a feature that is 2 story

points in size and a feature that is 5 story points in size. After a review of the features,

the Smart Trading Group team concludes that Search by category is 2 story points and

Receive help online is 5 story points; see table 3.6.

Smart Trading Group’s team then reviews all the features against Search by

category and Receive help online to determine if the other features are the same size,

smaller, or larger. As additional features are estimated, they’re also used as reference

points to compare the nonestimated features.

After the Smart Trading Group team completes the planning-poker exercise, they

have a prioritized, estimated product backlog. Now the question becomes, how many

107

features can they complete within the project timeline? We’ll rejoin Smart Trading

GroupMedia to see how they answer this question.

Table 3.7

Story points let you evaluate capacity and throughput without performing

detailed task analysis in advance [78]

ID

Feature name (ability to)

Story points

5 Register on the site

3

4 Place an item up for bid

3

10 Bid on an item

3

17 Auction engine

8

13 Search by category

2

16 Purchase an item

immediately

2

1 Flag problem postings

2

6 Contact the seller

3

2 Create alerts for item type

3

9 Receive help online

5

11 Record seller feedback

5

12 View seller information

2

14 Perform advanced search

8

3 Email a friend

2

108

7 Customize my view

8

15 Retract a bid

2

Extreme Programming (XP) environments frequently have iterations of 1 to 2

weeks in length. Scrum teams like to do a sprint/ iteration every 30 days. More than

likely, a number between 1 and 4 weeks will work for your environment.

We suggest that you start with 2-week iterations and see how that timeframe

works for you. It may be good to use this 2-week iteration length for several projects

before making the call on whether it’s successful. If you find that your features are too

large to complete in 2 weeks, you can examine your features to see if you’ve broken

them down to their true, essential requirements; alternatively, you can try a longer

iteration length. Smart Trading GroupMedia has followed this advice and created its

release plan assuming 2- week iterations.

Smart Trading Group has only two iterations in its pilot project, which is a minor

change from the company’s previous development process. In theory, you want more

iterations so you can demonstrate and react to new information sooner. But in the case

of a pilot project, two iterations are fine. The team is just learning agile techniques,

and they can increase the number of iterations on subsequent projects [15].

When Smart Trading Group completes detailed planning for iteration 1, the team

finds that they’ve assigned 19 story points into the iteration. For now, 20 points will be

used as the capacity number, so they plan iteration 2 to hold 20 story points. Smart

Trading Group’s features were prioritized, grouped, and estimated remaining is to load

up each iteration with 20 story points.

109

Figure 3.7 The completed release plan for the Auctionator project [38]

The numbers in parentheses represent story-point estimates. Smart Trading

GroupMedia has estimated its story-point capacity at 20 points per iteration. After

loading, iteration 1 holds 19 points, and iteration 2 contains 20 points.

Smart Trading Group has involved the entire project team in creation of the

release plan, so the team is up to speed on why the project is being pursued, the overall

timeline, and the features assigned to each iteration. Smart Trading Groupstill needs to

110

bring other groups on board to make sure the project is supported and to create

awareness about support that may be needed.

The first objective of the kickoff meeting is to bring stakeholders and sponsors up

to speed. The project team shares the information gathered during the feasibility and

chartering exercises, including scope, benefits, key dependencies, constraints, risks,

and the release schedule. In a traditional environment, the presentation may be

performed by a project manager or development manager. In an agile environment,

you should try to get as many team members to present as feel comfortable doing so.

At Smart Trading GroupMedia’s kickoff, four team members present: Wendy, the

project manager, Jay, the customer, Gina, the tester, and Roy, the developer. A second

objective of the kickoff meeting, and perhaps the most important, is to bring support

groups up to speed so they can see when their help may be needed. Some of the

support areas typically discussed during a kickoff meeting are as follows:

■ Operations—These teams will support your application once it’s deployed, and

they need to know what type of maintenance will be required to keep the application

working correctly.

■ Security—In larger companies, your application may need to be reviewed to

make sure it complies with corporate standards.

■ Load testing—In larger companies, you may need to reserve load-testing

equipment.

■ Load balancing—You may have specialized groups that manage load-

balancing environments, and you’ll need their support for your project.

■ Hardware and storage—If you’re doing a project that requires new equipment,

you may need help from hardware teams.

■ Documentation—If your project will require supporting documentation, you

may want to invite documentation teams to your kickoff.

■ Marketing—If you need to do public announcements or advertising, you must

bring this team up to speed with your release plan.

■ Training—If your project will require training for employees or customers, you

should invite this team to the kickoff.

111

The Smart Trading GroupMedia team loads the iteration plan into a tool called a

burn down chart that lets them view the iteration plan and present it to stakeholders

and other parties who may not be on-site or have easy access to the team work area

(see figure 16.9).

You may also find that your iteration becomes complex due to dependencies and

that it’s hard to keep track of all the work using an iteration wall or a burn down chart

alone. In those instances, you can use tools such as Microsoft Project. Some people

believe that if you’re using a tool like Microsoft Project, you aren’t agile.

Many people believe that tools like Project imply formality and overhead, and

they’re good only for traditional projects. We can tell you that this definitely isn’t true.

It isn’t the tool that takes away agility but the way the tool is used. Let’s look at an

example. As we’ve mentioned, Greg is a project manager, and his team releases new

software every 8 weeks. Greg typically uses tools such as an iteration wall and burn

down charts. But his team noted that on some iterations, it was hard to keep track of

dependencies.

Figure 3.8 Smart Trading Group enters its iteration plan into a burndown chart [37]

112

A Smart Trading Group lets them track the work remaining as the iteration

progresses. An electronic tool makes it easier to share status with the rest of the

company or the customer.

Project teams have struggled with these issues for years. They frequently prepare

to deploy code and at the last second realize something is missing. Let’s delve into

these two issues and see how Smart Trading Group simplifies status measurement and

makes status transparent to the team

Figure 3.9 Microsoft Project relation [49]

A Smart Trading Group use case isn’t usually viewed as a tool used by agile

teams, but it can help with agility when an iteration becomes complex or team

members need to anticipate how much work they must deliver. The key to using a tool

is to make sure everyone knows that assignments are tentative and to ensure that the

plan is highly visible and updated daily.

113

As we mentioned, Smart Trading Group has entered its iteration tasks into a burn

down chart, which projects how much work should be completed as the iteration

progresses. On a day-by-day basis, the team can see if they’re on track, running

behind, or running ahead of schedule.

Smart Trading Group estimates 152 hours of tasks to complete for the iteration.

The burn down chart shows that this number needs to be down to 138 hours of work

after day 1, 120 hours of work after day 2, and so on.

On the last day, the team should have no hours of work remaining. Software

development doesn’t care if it’s being tracked in a nice linear chart. In reality, the

work comes in surges, with the team sometimes stuck on an issue or problem and not

making any progress. Figure 3.10 shows Smart Trading Group’s burn down chart after

7 days of work. Many teams collect the estimates for remaining hours of work at their

daily stand-up meetings.

This is where the days remaining line comes from in the chart. Day 1 represents

the task estimates before work has begun, and day 2 represents the estimates after the

first stand-up meeting. The Smart Trading Group team has started work, and now they

believe the work is larger than originally estimated. What was originally estimated at

152 hours of work is now estimated to be 160 hours of work.

114

Figure 3.10 A burndown chart [45]

A burndown chart tells you how many hours of work you should have remaining as

the iteration progresses.

Figure 3.11 As the iteration progresses Smart Trading Group [87]

Iteration progresses sees status on a daily basis. In this example they’re running

behind after seven days of work, but they’re trending to get back on schedule.

115

This is a common occurrence: after your team gets deep into the code, they may

encounter surprises and need to increase their estimates for hours of work remaining

for some tasks. They will also discover new tasks that you’ll need to record into your

burn down chart. The positive here is that some tasks will also be easier than expected,

which will help your team stay on track toward completing the work within the

iteration. Your team will also appreciate knowing the status of the iteration on a daily

basis.

Smart Trading Group’s situation also illustrates another common occurrence: as

the team progresses from day 4 to 5, the amount of work remaining doesn’t change.

This happens when a team gets stuck on an issue. The team may be investigating

options or doing technical research, so no code is created during this time.

A pilot project basically maps to the first stage (the innovators; see figure 23.3).

The majority has gone through the process of conducting a pilot project at Smart

Trading GroupMedia and at your organization.

116

CONCLUSIONS

The numbers in parentheses represent story-point estimates. Smart Trading Group

has estimated its story-point capacity at 20 points per iteration. After loading, iteration

1 holds 19 points, and iteration 2 contains 20 points.

Smart Trading Group has involved the entire project team in creation of the

release plan, so the team is up to speed on why the project is being pursued, the overall

timeline, and the features assigned to each iteration. Smart Trading Groupstill needs to

bring other groups on board to make sure the project is supported and to create

awareness about support that may be needed.

Almost every agile pilot has these issues: the process may be slower, the team

struggles to normalize around the process, and agile cynics find reasons to stop using

agile.

Almost every agile pilot provides the benefit of letting the team experience agile

and start understanding what the principles are all about.

If you work for a small company, the pilot may be your last test step before going

live with agile across your company. Your goals will focus on maturing and on adding

more agile practices as you mature. You can do this with the help of an agile coach.

Smart Trading Group’s development team has never enjoyed change requests.

Whenever the customer asks for a change, team members go back to their desks and

mumble about “scope creep.” After their agile training, team members have a new

perspective. Let’s look at an example. If a customer asks for an alarm clock, and

during a demonstration they notice that they forgot to ask for a snooze button, then

they have experienced a natural occurrence in software development. Sometimes you

miss a feature detail during a requirements discussion, and a demonstration exposes

what was overlooked. This type of change should be embraced.

On the other hand, if a customer asks for an alarm clock, and after a

demonstration they request that the alarm clock also be usable as a coffeemaker, then

you have a radical change in requirements and potentially a new project. Some might

call this scope creep, but we think the issue ties to the need to ask “why?” during the

117

featurecard exercise. If the root business need is known, it’s doubtful that a major

functionality shift like this will take place during development.

Smart Trading Group’s new development model has a formal adapt phase

between iterations, during which the team demonstrates to the customer. These

demonstrations will occur every 2 weeks. The team has also adopted an approach of

surfacing work in advance of the adapt window if pieces are ready early or if the

feedback will help them make design decisions.

During development iterations, the team needs to be 100 percent focused on the

work at hand. Everyone must be available to clarify requirements and to collaborate on

and solve solutions.

Smart Trading Group’s development team works on projects and maintains the

three existing websites. In addition, they have daily maintenance activities, and they

frequently work on mini-enhancements that don’t require a project team. These

supporting activities have contributed to Smart Trading Group’s failure to deliver in

the past. The development team must continue to perform their support activities, but

in their new development model they will try to defer maintenance and support

activities until the adapt week. During development, they will be interrupted only for

critical production issues. Smart Trading Group also realized that the company had

become people dependent in several areas. Experts existed for every area, and

developers didn’t cross-train with each other.

When a production problem occurred, frequently only one person had the skills to

work the issue. Smart Trading Group identified this problem when the company

outlined its new agile process and created a plan to cross-train the developers. The

cross-training will spread skills throughout the team and let the developer with the

most free time address the issue, which will minimize project interruptions

Smart Trading Group estimates 152 hours of tasks to complete for the iteration.

The burn down chart shows that this number needs to be down to 138 hours of work

after day 1, 120 hours of work after day 2, and so on.

Smart Trading Group’s situation also illustrates another common occurrence: as

the team progresses from day 4 to 5, the amount of work remaining doesn’t change.

118

This happens when a team gets stuck on an issue. The team may be investigating

options or doing technical research, so no code is created during this time.

A pilot project basically maps to the first stage. The majority of this has gone

through the process of conducting a pilot project at Smart Trading GroupMedia and at

your organization.

In the past, Smart Trading Group sought feedback from the customer after

development was complete. Using this approach, Smart Trading Group’s team

frequently found the customer had functionality issues with the code that was

developed. The issues went beyond bugs: they frequently tied to the customer saying

the code didn’t meet their needs. Smart Trading Group tried to address as many issues

as possible before going live, and if major issues couldn’t be fixed quickly, they

delayed shipping the product.

In Smart Trading Group’s previous process, the business analysts worked with

the customer to document requirements. Frequently, an internal product manager

communicated the needs. After the requirements were documented, the analyst passed

them to the developer and determined whether there were any questions.

In Smart Trading Group’s new process, the developers have already had direct

interaction with the customer. The entire team participated in the feature-card exercise,

and the developers gained clarity on some customer needs by asking questions

directly. The customer (in this case, the product manager) will also be available during

the development iterations and can clarify their needs and be consulted if issues are

encountered.

If the Smart Trading Group team decided to track their pilot project in a project

tool, they would say that the project is around 50 percent complete.

119

REFERENCES

1. 31. Palmer S. R., Felsing J. M. Practical Guide to Feature-Driven Development

// InformIT. URL: http://www.informit.com/articles/article.aspx?p=26059

(30.05.15).

2. A Guide to the project management body of knowledge (PMBoK guide). Sixth

Edition – USA: PMI Inc., 537 p. (2017).

3. A Guide to the project management body of knowledge (PMBoK guide). Sixth

Edition – USA :PMI Inc., 2017. – 537 p.

4. Abbas N., Gravell A.M., Wills G.B. Historical roots of agile methods: Where

did «Agile thinking» come from? : Springer Verlag, 2008. 94-103 с.

5. Anup Hande, Sunita Suralkar, P.M.Chawan Distributed Software Project

Development. RL: http://www.ijera.com/papers/Vol2_issue3/FT239981003.pdf

(30.05.15).

6. Archibald R. High-tech management/ Russell D. Archibald; trans. with English.

Mamontov EV; under. ed. Bazhenova AD, Arefyeva A.O. - 3rd ed., Remaking.

and ext. - M .: ITI Company; DMK Press, 2004. - 472 s,

7. Arzamastsev, A., Fabrikantov, O., Zenkova, N., Belousov, N.: Optimizatsiya

formul dlya rascheta IOL [Optimization of formulae FOR intraocular lenses

calculating]. Vestnik Tambovskogo universiteta. Seriya Estestvennye i

tekhnicheskie nauki – Tambov University Reports. Series: Natural and

Technical Sciences, vol. 21, no. 1, pp. 208-213. (2016).

8. Baird A., Riggins F.J. Planning and sprinting: Use of a hybrid project use of a

hybrid project use of a hybrid project management methodology within a CIS

capstone course // J. Inf. Syst. Educ. 2012. Т. 23. № 3. С. 243–258.

9. Biloshchytskyi А.., Kuchansky А., Andrashko Yu., Biloshchytska S.. “A

method for the identification of scientists research areas based on a cluster

analysis of scientific publications,” Eastern-European Journal of Enterprise

Technologies. No.5.,Vol. 2., Issue 89, pp. 4-10, 2017.

120

10. Boehm B., Turner R. Using risk to balance agile and plan-driven methods //

Computer. 2003. Т. 36. № 6. С. 57–66.

11. Bushev S.D. Creative technologies for project and program management:

Monograph. / Bushueva NS, Babaev IA, Yakovenko VB, Grisha EV, Dzyuba

SV, Voitenko AS / - K .: Summit-Book, 2010. - 768 with.

12. Bushev S.D. Morozov V.V. Dynamic leadership in project management.

Tutorial. K .: Business Ukraine 2002, 310s

13. Bushev SD, Morozov VV Project Procurement Management. K .: Ukr. INTEI,

1999. Vol.1,2– 188s., 195s. 24. Shapoval M.I. Quality Management Kiev:

Knowledge, 2006. - 472s.

14. Bushev SD, Project management: the basics of prof. knowledge and competence

assessment system project. managers (National Competence Baseline, NCB UA

Version 3.1) / S.D. Bushev, NS Busheva. - Ed. 2nd. - K .: IRIDIUM, 2010. -

208 p.

15. Bushueva N., Models and Methods for Proactive Management of

Organizational Development Programs. Monograph. Scientific World, 2007,

199p.

16. Bushuyev, S., Burkov, V.: Resources Management for distributed projects and

programs. Monograph, Nikolayev: Publisher Torubara V.V., 338 p. (2015).

17. Bushuyeva, N.: Models and Methods for Proactive Management of

Organizational

18. Charles G. Cobb. Making Sense of Agile Project Management: Balancing

Control and Agility, by Wiley, 2011. – 265 p.

19. Chatfild C., Johnson T., Microsoft Project 2016 Step by Step. Amazon Digital

Services LLC, 2016, 577 p.

20. Cloud computing and emerging IT platforms: Vision, hype, and reality for

delivering computing as the 5th utility, Available:

http://www.sciencedirect.com/science/article/pii/S0167739X08001957, last

accessed 2019/02/21.

121

21. Cloud computing and emerging IT platforms: Vision, hype, and reality for

delivering computing as the 5th utility, [Online]. Available:

http://www.sciencedirect.com/ science/article/pii/S0167739X08001957

22. Cloud Terminology – Key Definitions, Available:

https://www.getfilecloud.com/cloud-terminology-glossary, last accessed

2019/02/21.

23. Cockburn A. Agile Software Development. Boston, MA, USA: Addison-

Wesley Longman Publishing Co., Inc., 2002. 5. Cohen D., Lindvall M., Costa P.

An Introduction to Agile Methods. , 2004. 341 p.

24. Cohn M. Succeeding with Agile: Software Development Using Scrum. 2008. P.

53–81.

25. Coplien J.O., Harrison N.B. Organisational patterns of agile software

development. Upper Saddle River, NJ, USA: Pearson Prentice Hall, 2004. 432

p.

26. Daniel D.R. Management information crisis // Harvard Bus Rev. 1961. №

September-October. С. 111–121.

27. Demarco T. Deadline. Project Management Novel [Text] / Tom DeMarco. - M.:

Top, 2006. - 288 p.

28. DeMarco, T., Lister, T.: Waltzing with bears. Risk management in software

development projects. - M.: Izd. "Company p.m.Office", 196 p.

(2005).

29. Development Programs. Monograph. Scientific World, 199 p. (2007).

30. Doug Carlo. Extreme project management. - M .: Company p.m. office, 2007. -

588 p.

31. Faulkner W., Badurdeen F. Sustainable Value Stream Mapping (Sus-VSM):

Methodology to visualize and assess manufacturing sustainability performance

// Journal of Cleaner Production. 2014. Т. 85. p. 8–18.

32. Fernandez D.J., Fernandez J.D. Agile project management - Agilism versus

traditional approaches // J. Comput. Inf. Syst. 2008. Т. 49. № 2. С. 10–17.

122

33. Free ITIL, v.3, Available: http://www.wikiitil.ru/books/2015_Free_ITIL.pdf,

last accessed 2019/03/10.

34. Furht, B., Escalante, A.: Handbook of Cloud Computing. Available:

https://link.springer.com/book/10.1007/978-1-4419-6524-0, last accessed

2019/02/21.

35. Gabrielle Benefield. Rolling out Agile in a Large Enterprise, HICSS '08

Proceedings of the Proceedings of the 41st Annual Hawaii International

Conference on System Sciences, 2008.

36. Garaedagi, D.: System thinking. How to manage chaos and complex processes.

Platform for modeling business architecture, Grevtsov Buks (Grevtsov

Publicher). 480 p. (2011).

37. Gary Chin. Agile Project Management: How to Succeed in the Face of

Changing Project Requirements, by AMACOM, 2004. – 229 p.

38. Gogunskii V., Kolesnikova K., Lukianov D. “Lifelong learning is a new

paradigm of personnel training in enterprises”, Eastern-European Journal of

Enterprise Technologies. № 4/2 (82). – pp. 4–10. 2016.

39. Gontoryova IV Project Management Kharkiv: KNEU, 2007. - 348p.

10.Tarasyuk G.M. Project Management Kiev: Caravel, 2009. - 320p.

40. Grashina M., Duncan V. Fundamentals of project management / M. Grashina,

V. Duncan. - St. Petersburg: Peter, 2006. - 208 p.

41. Hofstede G. Cultural dimensions for project management // International

Journal of Project Management. 1983. Т. 1. № 1. С. 41–48. 16. Livermore J.A.

Factors that significantly impact the implementation of an agile software

development methodology // Journal of Software. 2008. Т. 3. № 4. С. 31–36.

42. ICB CompetenceBaseline, IPMA, 2006 - 112p.

43. International Project Management Association. Individual Competence Baseline

Version 4.0. International Project Management Association, 432 p. (2015).

44. International Project Management Association. Individual Competence Baseline

Version 4.0.International Project Management Association,2015, 432 p.

123

45. James P. Lewis. Fundamentals of Project Management (3rd Edition) by

AMACOM Books, 2006. - 176 p.

46. Kalnichenko OV, Morozov VV Development of project concept. Methodical

instructions for the course work. - K .: Taras Shevchenko National University,

2015. - 42 p. (Electronic access: file: /// C: / Users / HOME / Downloads /%

D0% 9C% D0% B5% D1% 82_% D0% 9A% D0% A 0_% D0% BA% D0%

BE% D0% BD% D1% 86% D0% B5% D0% BF% D1% 86% D1% 96% D1%

8F_% D0% 9A% D0% 9D% D0% A3_2210% 20 (4) .pdf).

47. Keith Locker, James Gordon. Project management. Degrees of higher skill. - M

.: Grevtsov Publisher, 2008. - 352 p.

48. Ken Schwaber, Jeff Sutherland, “The Scrum Guide”, 2011. – 16 p.

49. Kosyakov, M.: Introduction to distributed computing. SPb: Public Research

Institute IST, 155 p. (in Russian) (2014).

50. Ladas C. Scrumban - Essays on Kanban Systems for Lean Software

Development // Lean Software Engineering: сообщество специалистов по

программной инженерии, практикующих методологию Lean. URL:

http://leansoftwareengineering.com/ksse/scrum-ban/ (30.05.15).

51. Louise Ledbrook, “Waterfall Project Management: An Overview”, 2012,

http://projectcommunityonline.com/waterfall-project-management-

anoverview.html

52. Maimon O., Rokach L., Data Mining and Knowledge Discovery Handbook,

2005, [Online]. Available: http://www .bookmetrix.com/detail/book/ae1ad394-

f821-4df2-9cc4-cbf8b93edf40

53. Maimon, O., Rokach, L. : Data Mining and Knowledge Discovery Handbook,

2005, Available: http://www.bookmetrix.com/detail/book/ae1ad394-f821-4df2-

9cc4-cbf8b93edf40, last accessed 2019/03/11.

54. Management of projects, programs and project-oriented business: Collective

monograph. Volume 3 / V.V. Morozov, E.D. Kuznetsov, OB Danchenko and

others; for science. ed. VV Morozov - K .: University of Economics and Law

"KROK", 2012. - 238 p.

http://projectcommunityonline.com/waterfall-project-management-anoverview.html
http://projectcommunityonline.com/waterfall-project-management-anoverview.html

124

55. Mannaro K. Adopting Agile Methodologies in Distributed Software

Development. URL: http://veprints.unica.it/53/1/mannaro_katiuscia.pdf

(30.05.15).

56. Mazur II Project management: uch. manual / Mazur II, Shapiro VD , Olderogge

NG, Polkovnikov AV - M.: Omega-L, 2012. - 959 p.

57. Michael Cohn. Succeeding with Agile: Software Development Using Scrum, by

Addison-Wesley Professional, 2009. – 504 p.

58. Miles Downey. Effective coaching. Good Book, M. 2007. - 288

59. Milosevic D. A set of tools for project management / Dragan Z. Milosevic: Per.

with English. Mamontov EV; Ed. Unknown SI - M.: ITI Company; DMK Press,

2006. - 729 p.

60. Misra S.C., Kumar V., Kumar U. Identifying some important success factors in

adopting agile software development practices // J Syst Software. 2009. Т. 82.

№ 11. С. 1869–1890.

61. Morozov V. Formation, management and development of the project team / VV

Morozov, AM Cherednichenko, TI Shpileva - Kiev: Taxon, 2009. - 461p.

62. Morozov V., Kalnichenko O., Bronin S. ”Development Of The Model Of The

Proactive Approach in Creation Of Distributed Information Systems”, Eastern-

European Journal of Enterprise Technologies, № 43/2 (94), pp. 6-15, 2018.

63. Morozov, V., Kalnichenko, O.: Construction of an integrated model of

management processes of IT projects on the basis of a proactive approach. In

Monograph “Moden management: Economy and Administration”. Opole

(Poland): The Academy of Management and Administration in Opole, pp. 82-89

(2018).

64. Mostenska TL Management. Textbook. - 2nd edition. / T.L. Mostenska, V.O.

Novak, M.G. Lutsky, OV Ilyenko // - K .: Condor Publishing House, 2012.-

758p.

65. Novak V.O. Organizational behavior. Textbook. / V.O. Novak, T.L. Mostenska,

OV Ilyenko // - K .: Condor Publishing House, 2012.- 498p.

125

66. Nozdrina LV, Yashchuk VI, Polotai OI Project Management Kiev: Training

Center. l-ri, 2010. - 430s.

67. Oracle Primavera P6 Enterprise Project Portfolio Management, Available:

https://www.oracle.com/applications/primavera/products/project-portfolio-

management/, last accessed 2019/03/25.

68. Orr Alan D. Project Management: A Guide to Key Process Models and Methods

/ Ed. TVGerasimova. - Dnepropetrovsk: Business Book Balance, 2006. - 224 p.

- Per. with English.

69. Owen R., Koaskela L., Henrich G. Is agile project maangement applicable to

construction? Santiago Chile: , 2006.

70. Palmer S. R. An Introduction to Feature-Driven Development // DZone. URL:

http://agile.dzone.com/articles/introduction-feature-driven (30.05.15).

71. Pankaj Jalote, Aveejeet Palit, Priya Kurien, V.T. Peethamber, “Timeboxing: a

process model for iterative software development”, The Journal of System and

Software (2004), pp. 117-127

72. Pete Deemer and Gabrielle Benefield. THE SCRUM PRIMER An Introduction

to Agile Project Management with Scrum Version 1.04, goodagile from

www.goodagile.com, 2007

73. Portny. E. Project Management For Dummies; 2nd Edition, by Willey

Publishing, Inc., 2007. – 384 p.

74. Prigogine, I., Nikolis, G.: Knowledge of the complex. Introduction Per. from

English, M.: Lenar, 360 p. (2017).

75. Primak VM Project Management Kiev: University of Kiev, 2011. - 320p.

76. Proactive Project Management. Available: http://www.

itexpert.ru/rus/ITEMS/200810062247/, last accessed 2019/03/12.

77. Project management. Fundamentals of project management: pupil / ML Razu,

TM Bronnikov, BM Razu, etc .; Under. ed. prof. M. L. Razu. - M .: KNORUS,

2006. - 768 p.

78. Project management: a directory for professionals / Ed. VD Shapiro. - M .:

Omega-L, 2011. - 960 p.

https://www.oracle.com/applications/primavera/products/project-portfolio-management/
https://www.oracle.com/applications/primavera/products/project-portfolio-management/

126

79. Project Management: Project Planning Processes [Text]: Textbook / IV.

Chumachenko, V.V. Morozov, NV Dotsenko, A.M. Cherednichenko. - K .:

KROK University of Economics and Law, 2014. - 670 p.

80. Project Risk Management Guidelines: Managing Risk in Large Projects and

Complex Procurements / Dale F. Cooper, Stephen Gray, Geoffrey Raymond 14,

and Phil Walker. John Wiley & Sons Ltd, Chichester, West Sussex, England,

2005. - 384p.

81. Rach V.A. Project Management: Practical Aspects of Implementing Regional

Development Strategies: Tutorial. tool. / VA Rach, OV Rossoshanska, OM

Medvedev; in a row. V.A. Racha. - K.: KI.S., 2010. - 276 p.

82. Roberts Paul. Guide to Project Management, by Profile Books/The Economist,

2007. – 319 p.

83. Sachenko A., G. Hladiy, I. Dobrotvor “Multi-agent System of IT Project

Planning”, in Proceedings of the 9th IEEE International Conference on

Intelligent Data Acquisition and Advanced Computing Systems: Technology

and Applications (IDAACS), Vol. 2, 21-23 September, 2017, Bucharest, pp.

548-553.

84. Samokhvalov, Yu.: Development of the forecast graphethod in conditions of

incompleteness and inaccuracy of expert assessments. The magazine

Cybernetics and Systems Analysis;, T. 54, №1, pp. 84-91 (2018).

85. Sandeep J. Working with Agile in a Distributed Team Environment // MSDN

Magazine: журнал компании Microsoft для разработчиков. URL:

https://msdn.microsoft.com/en-us/magazine/hh771057.aspx (дата обращения:

30.05.15).

86. Schuh Peter. Integrating Agile Development in the Real World, by Charles

River Media, 2004. – 364 p.

87. Shenhar A.J. One size does not fit all projects: Exploring classical contingency

domains // Manage. Sci. 2001. Т. 47. № 3. С. 394–414.

88. Sutherland J., Viktorov A., Blount J. Distributed Scrum: Agile Project

Management with Outsourced Development Teams. Систем. требования:

127

Adobe Reader. URL:

http://141.138.141.68/~vandenho/Arjan/www/SutherlandDistributedScrumAgile

2006_v4_28_Feb_2006.pdf (30.05.15).

89. Sutherland, J.: Scrum: The Art of Doing Twice the Work in Half the Time,

2017, 272 р.

90. Tarasyuk G.M. Project Management Kiev: Caravel, 2009. - 320p. 15. Project

Management: Monograph / Ed. VD Shapiro. - St. Petersburg: TwoThree, 1996.

- 610 p.

91. Tesla Yu.M. Project Management Information Technologies Kiev, KNUBA. -

2013. - 120 p.

92. Teslia Yu.,. Khlevnyi A, Khlevna I., “Control of informational Impacts on

project management”, in Proceedings of the 1th IEEE International Conference

on Data Stream Mining & Processing, 23-27 August, Lviv, Ukraine, 2016.

93. Thomas D., Hansson D. H. Agile Web Development with Rails. 2007. P. 17–64.

2.

94. Turner J. Turner J. A Guide to Design-Oriented Management [Text] / J. Rodney

Turner. - M.: Grebennikov Publishing House, 2007. - 552 p.

95. Turner, R.: Guide to project-based management, tran. from English, Moskow,

Grebennikov Publishing House, 552 p (in Russian) (2007).

96. Tyan RB, Kholod BI, Tkachenko VA Project management. Textbook.- Kyiv:

Center for Educational Literature, 2004.- 224 p.

97. Vakulenko AV Quality Management Kiev: KNEU, 2004. - 167 p. 26.

Ostankova L.A. Analysis, modeling and management of economic risks Kiev:

Training Center. L-ri., 2011. - 256 p.

98. Vocabulary - Handbook on Project Management / Edited by SD Bushueva. -

Kyiv: Delovaya Ukraina Publishing House, 2001. - 640 p.

99. Wysocki R.K. Effective Project Management?: Traditional, Agile, Extreme.

Indianapolis, IN: Wiley, 2012.

100. Xavier Amatriain Rubio, Gemma Hornos Cirera. Agile Methods in

Research (presentation), by Telefonica, 2008. – 42 s.

128

101. Yu Beng Leau, Wooi Khong Loo, Wai Yip Tham and Soo Fun Tan.

“Software Development Life Cycle AGILE vs Traditional Approaches”,

International Conference on Information and Network Technology (ICINT

2012).

