
2017 IEEE 4th International Conference Actual Problems of Unmanned Aerial Vehicles Developments (APUAVD) pp.61-64

978-1-5386-1816-5/17/$31.00 c© 2017 IEEE 61

Dynamic Aided-Design of UAV
Navigation Systems

V.M. Sineglazov
Aviation Computer-Integrated Complexes Department,

Educational & Research Institute of Information and
Diagnostic Systems,

National Aviation University
Kyiv, Ukraine

svm@nau.edu.ua

A.P. Godny
Aviation Computer-Integrated Complexes Department,

Educational & Research Institute of Information and
Diagnostic Systems,

National Aviation University
Kyiv, Ukraine

andrewgodny@gmail.com

Abstract—Presented navigation system for unmanned
aerial vehicles based on microservices with an integrated
environment introduces a new approach to managing the
design process. Used in the proposed medium design
scenario can greatly simplify the work of the designer.
Available in medium monitor provides the flexibility of
design processes with a flexible structure description of
design procedures in the design scenario.

Keywords—unmanned aerial vehicles; dynamic
integration; microservices; integrated environment;
scheduling mechanism; design

I. INTRODUCTION
The general trend in the market development of

navigational systems of mobile objects is such that
developers are moving towards deepening integration
between inertial, satellite and other systems under the
impact of increasingly stringent requirements. At the same
time, the International Civil Aviation Organization (ІСАО)
on Future Air Navigation System (FANS) recommends
using on-board SNS with mandatory combination with the
inertial navigation system as the central link of the
navigation complex.

Currently, the design objectives "improving the
accuracy and reliability of navigation parameters
estimation" are achieved, as a rule, due to the use of
autonomous navigation systems in the INS structure with
higher resolution and accuracy. However, the equipment
cost of autonomous navigation systems with improved
characteristics and its manufacturing in mass-produced
conditions of UAVs and, accordingly, INCs is sufficiently
large.

Therefore, for INS, the most acceptable from the
standpoint of realizing the design objectives of "improving
the accuracy and reliability of navigation parameters
estimation" and the "efficiency-cost" criterion is the use of
data integration systems.

II. PROBLEM STATEMENT
Today to improve the accuracy and reliability of

UAV’s navigation system you need to create more robust
navigation complex. New complex will be heavier and
more expensive. And what more importantly, it will affect
all other UAV’s characteristics. On the other hand, you
can combine couple UAV into one information system.
This approach will keep both price and weight of this
UAVs down.

So, it is necessary to create a dynamic informational
system based on Microservices where each UAV will act
as one micro service connected with others to form one
dynamic navigation system so they can share data to solve
navigation issues.

III. MICROSERVICES-BASED ARCHITECTURES
Microservices is a variant of the service-oriented

architecture (SOA) architectural style that structures a
system as a collection of loosely coupled services.[6] In a
microservices architecture, services should be fine-
grained and the protocols should be lightweight. The
benefit of decomposing an application into different
smaller services is that it improves modularity and makes
the system easier to understand, develop and test. It also
parallelizes development by enabling small autonomous
teams to develop, deploy and scale their respective
services independently. It also allows the architecture of
an individual service to emerge through continuous
refactoring. Microservices-based architectures enable
continuous delivery and deployment. [7]

There is no industry consensus yet regarding the
properties of microservices, and an official definition is
missing as well. Some of the defining characteristics that
are frequently cited include:

 Services in a microservice architecture (MSA) are
often processes that communicate with each other
over a network in order to fulfill a goal using
technology-agnostic protocols such as HTTP.
However, services might also use other kinds of
inter-process communication mechanisms such as
shared memory. Services might also run within the
same process;

 Services in a microservice architecture should be
independently deployable;

 The services are easy to replace;

 Services are organized around capabilities, e.g.,
user interface front-end, recommendation,
logistics, billing, etc.;

 Services can be implemented using different
programming languages, databases, hardware and
software environment, depending on what fits
best;

 Services are small in size, messaging enabled,
bounded by contexts, autonomously developed,

Dynamic Aided-Design of UAV Navigation Systems

62 2017 IEEE 4th International Conference Actual Problems of Unmanned Aerial Vehicles Developments (APUAVD)

independently deployable, decentralized and built
and released with automated processes.

 A microservices-based architecture [6]:

 Naturally enforces a modular structure;

 Lends itself to a continuous delivery software
development process. A change to a small part of
the application only requires one or a small
number of services to be rebuilt and redeployed;

 Adheres to principles such as fine-grained
interfaces (to independently deployable services),
business-driven development (e.g. domain-driven
design), ideal cloud application architectures,
polyglot programming and persistence, lightweight
container deployment, decentralized continuous
delivery, and DevOps with holistic service
monitoring;

 Provides characteristics that are beneficial to
scalability.

 The microservices approach is subject to criticism
for a number of issues:

 Services form information barriers;

 Inter-service calls over a network have a higher
cost in terms of network latency and message
processing time than in-process calls within a
monolithic service process;

 Testing and deployment are more complicated;

 Moving responsibilities between services is more
difficult. It may involve communication between
different teams, rewriting the functionality in
another language or fitting it into a different
infrastructure;

 Viewing the size of services as the primary
structuring mechanism can lead to too many
services when the alternative of internal
modularization may lead to a simpler design.

Data integrity is a main problem with such approach
that needs to be solved. With each microservice
responsible for its own data persistence. As a result, data
consistency can be a challenge. Embrace eventual
consistency where possible. To solve this issue we
developed new approach – dynamic data integration.

IV. DYNAMIC DATA INTEGRATION
This approach implies the existence of a link between

all modules. It manages all available components of the
system, is responsible for communication between
modules, data conversion (if necessary), quality control.

This approach allows to minimize the cost of adding
new modules and upgrading of current, reduces
maintenance costs of the whole system, and simplifies the
management of data flow in the system. The advantages
of this approach are obvious, but it requires the
establishment of common rules for the interaction of all
integrated components and create a unified reporting
format to simplify the processes of interaction between

different UAVs [4]. To solve these problems, you can
apply the method of dynamic data integration.

The method of dynamic data integration developed to
link different types of UAVs in a single information
process. In addition, all considered UAVs have equal
rights. The order is determined by the interaction of
conditions and information processing requirements [1].
With dynamic data integration, system operates with
commands forming the object parameters, and
implements communication objects directly between the
commands, while providing a more flexible way of
combining and "understanding" of different types of data.
In the system parameter of an object should not be
separated from the command. The parameter is only a
formal representation of data in the system.

Considered an integrated environment CAD has the
following properties:

 Completeness and integrity of the design object
descriptions, provides integrated transformations;

 Simplicity and convenience of operation of
writing, design procedures, it builds descriptions
of many alternatives – integrated project
operations;

 Flexibility of design processes, provides a flexible
framework of descriptions of design procedures
that allows you to manage transitions scenario
design and modify the contents of responses to
possible events;

 A variety of classes of design operations in
accordance with the level of complexity of project
tasks and qualifications assure the combination of
design operations and their use as a whole;

 Simplicity and convenience of operations for the
joint processing of graphics, text and spreadsheet
object descriptions;

 Support and combine object-oriented and subject-
oriented descriptions of design processes with the
ability to connect descriptions of the processes;

 Evolutionary development, provide feedback
based on the logging of user actions used in
conjunction with data and their further structuring;

 The accumulation of knowledge acquired for the
subsequent synthesis of executable elements that
allows developing evolutional system and
configuring it to various classes of design objects;

 Simplicity and convenience of management
conversational interaction provides a unified
operations dialog interaction kernel environment.

V. DATA STANDARDIZATION
For the improvement of CADS functioning it is
necessary to supply data standardization that
includes such positions:

 As a standard message, body accepts standard
XML.

V.M. Sineglazov, A.P. Godny

2017 IEEE 4th International Conference Actual Problems of Unmanned Aerial Vehicles Developments (APUAVD) 63

 As a standard interface, description system accepts
standard XSD.

 As a standard, modified standard XML messages
accept XSLT.

 As a first access to the message body language,
take XPATH.

These standards are well established and have wide
support. [4]

In practice, not all systems support XML-interface for
data exchange. In this case, it is necessary to use ASB
transformation services message format in XML-
messages.

Fig. 1. Format conversion mechanism.

If C1 and C2 formats – not XML, converters may be a
specific software product. Nevertheless, even in this case,
the conversion from XML in a simple straightforward
format (e.g., comma delimited) can be performed using
XSLT-transformation. Steps to change formats you can
easily make at the ASB level. Received by ASB data will
be converted to the intermediate XML format, and the
output will be converted to the format of the recipient.
Application systems themselves do not need to be
reworked in this regard, because all conversions are
performed at the level of ASB.

If the format is XML, the conversion can be
performed by means of XSLT transformations.

The most common mode of transmission was and is
still is working through the files. Some systems for
interaction do the following: perform a data dump of C1,
file transports by mail or through the carrier and loads
into C2, and all operations are performed manually. This
process does not meet the requirements of modern
business.

VII. PRIORITY INHERITANCE PROTOCOL
Since the navigation system has to guarantee the

optimal use of computing resources and to ensure a
minimum command processing time, system that
organizes the task scheduler is required, which will be
responsible for compliance with the required criteria of
the navigation system. We propose to use Asymmetric
preventive inheritance priority protocol (APIPP).

Operation of synchronizing mechanism, implemented
in APIPP, characterized by the following provisions [8]:

Each resource is assigned with two threshold
priorities: a threshold priority of readers and threshold
priority of writers.

Ceil priority for readers used as meeting the objectives
of readers’ requests and is numerically equal to the
priority of the task with the highest priority of those tasks
that can capture this resource for writing:

 _ ()_ max .r ii r modified by iceil read pri


 (1)

Ceil priority for writers is used while satisfying the
query of task-writer and is numerically equal to the
priority of the task with the highest priority of those tasks
that can that can capture this resource for reading:

 _ ()_ max .r ii r used by iceil write pri


 (2)

Task , which has the highest priority among all the
active tasks, takes control. Before entering the critical
section in relation to the resource r, task  must capture
the resource for reading, if it does not modify data, or for
writing, if it would modify the data.

Task  is performed with a base priority only if it has
no shared resources. Otherwise, its priority is the greatest
ceil priority among all ceil priorities captured its shared
resources:

  ,, (,) _ ()_ max .i r tr t r t got by ieffective pri ceil


 (3)

When shared resources are released task  gets base
priority back.

Task 1 can supplant task 2 only if 1 priority
strictly greater than the effective priority 2 .

The task can’t be completed or voluntarily suspend
execution until the release of all occupied resources.

Critical sections are nested, i.e., shared resources are
released in reverse order to their capture (stack).

A. The properties of the protocol
The properties Adirondack Park Invasive Plant

Program's (APIPP) coincide with those of the original PIP
and APIP. Therefore, we confine ourselves to the
following list of APIPP advantages:

Dynamic Aided-Design of UAV Navigation Systems

64 2017 IEEE 4th International Conference Actual Problems of Unmanned Aerial Vehicles Developments (APUAVD)

1) APIPP eliminates the possibility of deadlocks.
2) APIPP eliminates multiple blocks.
3) APIPP eliminates composite blocks.
4) APIPP reduces the number of task switches.
5) APIPP allows tasks to be performed in one stack

mode.
6) APIPP suitable for synchronizing with interrupt

handlers.
7) APIPP more effective than PIP and APIP.
For these reasons, in practice it is preferred to use

APIPP.

B. Example of using the protocol
There are four tasks in the system: 1 with the highest

priority, 2 medium priority, 3 low and 4 the lowest
priority; and a shared resource r. Task 2 tries to get
resource r for writing, other tasks are trying to get it for
reading. Behavior of the system in the case of APIPP is
shown on Fig. 2.

Fig. 2. Example of APIPP.

According APIPP, ceil priorities of resource are set as
follows: ceil priority for readers r established at the level
of the priority of task 2 (writer with the highest
priority), ceil priority for writers r established at the level
of the priority of task 1 (reader with the highest priority).

Task 4 gets resource r for reading (t1). Then more
priority-reader task is generated 3 (t2). However, the task
switching does not occur, because at this time priority of
the task 4 equal to a ceil priority of the readers who
captured resource, i.e. to the priority of tasks 2 . Such a
preventive blocking of tasks-readers, whose priority is
less than the ceil priority of readers avoids composite
blocks. The fact that the tasks which are using resource
that is captured by other task, do not get control before its
release (rather than blocking) reduces the number of task
switches and allows to perform all tasks via single stack.
Then higher priority task-writer is generated 2 (t3).
However, the task switch does not occur again due to the
same circumstances. This way of organizing mutual

exclusion mode prevents multiple blocking of tasks and
even more so - eliminates the possibility of a deadlock.
Next, task 4 is superseded by task 1 (t4), which has
been successfully performed (t7) using the resource r
(from t5 to t6) for reading, as the priority 1 is strictly
greater than the ceil priority of r readers. As a result of
this overlapping of critical sections of two tasks-readers
we accomplished an increase of the efficiency of
planning. Next, task 4 releases r (t8). At this point, the
most priority task among proactively blocked (2) is
unlocked and completed successfully (t11) using the
resource r for writing (from t9 to t10). Thereafter, control
is passed to the task 3 , which also completed
successfully (14) using the resource r (from 12 to 13).
Control again is passed to the low priority task 4 .

VII. CONCLUSIONS
Presented design for UAV navigation system based on

microservices with an integrated environment introduces
a new approach to managing the navigation process. Used
in the proposed medium design scenario can greatly
simplify the work of the designer. Available monitor
provides the flexibility of design processes with a flexible
structure description of design procedures in the scenario
design. Properties listed above for such system, coupled
with the ability to integrate data of various aspects of
presentation in a single information process, this system is
isolated in a special class of software employed to
integrate heterogeneous data.

REFERENCES
[1] K. Lee, CAD Basics (CAD/CMA/CAE), Peter Press, 2004.
[2] V.V. Kupriyanov, O.Y. Pechenkin, M.L. Suslov, CAD and

artificial intelligence systems, ROSNY and IT UP: DBMS, 1995.
(in Russian)

[3] G. Berezhnoj, “Problems building large IT systems”, PCworld,
1998. (in Russian)

[4] V.M. Sineglazov and A.P. Godny, “Dynamic data integration in
the design of complex computer-aided design systems,”
Electronics and Control Systems 2014, no. 2(40), ISSN 1990-
5548, pp. 51-58.

[5] Kristi Morton. Dynamic Workload Driven Data Integration U. of
Washington, 2012.

[6] Richardson, Chris. Microservice architecture pattern. 2017.
[7] I. Nadareishvili, R. Mitra, M. McLarty, and M. Amundsen,

Microservice Architecture: Aligning Principles, Practices, and
Culture, O’Reilly 2016.

[8] V.M. Sineglazov and A.P. Godny, Integrated Computer-Aided
Design System Software of Navigation Complex International
conference “Computer Algebra and Information Technology,”
Kyiv, October 2016, pp. 59-62.

