Том 35, 1995

No 2

УЛК 517.988.8

© 1995 г. П. Ф. ЖУК

(Kuea)

АСИМПТОТИЧЕСКОЕ ПОВЕДЕНИЕ s-ШАГОВОГО МЕТОДА НАИСКОРЕЙШЕГО СПУСКА ПРИ МИНИМИЗАЦИИ КВАДРАТИЧНОГО ФУНКЦИОНАЛА В ГИЛЬБЕРТОВОМ ПРОСТРАНСТВЕ

Доказано существование предельных итерационных параметров s-шагового метода наискорейшего спуска при минимизации квадратичного функционала F(u) = 0.5 (Au, u) - (f, u) в гильбертовом пространстве. Исследовано асимптотическое поведение метода; в частности, для гильбертовых пространств получены аналоги результатов, установленных ранее Экейком и Форсайтом для конечномерных пространств.

Ввеление

Пусть A — линейный, ограниченный, самосопряженный и положительноопределенный оператор, заданный на вещественном гильбертовом пространстве H со скалярным произведением (u,v) и нормой $||u|| = \sqrt{(u,u)}$. Известным
итерационным методом минимизации квадратичного функционала F(u) = 0.5 (Au, u) - (f, u) (или, что то же самое, решения операторного уравнения Au = f) является s-шаговый, $s \ge 1$, метод наискорейшего спуска (сокращенно: s-шаговый метод), начало изучения которого было положено в работе [1]. Последовательные приближения s-шагового метода строятся по правилу

(1)
$$u_{k+1} = u_k + \sum_{i=1}^{s} \gamma_i^{(k)} A^{i-1} z_k, \qquad k = 0, 1, \ldots,$$

где u_0 — произвольное начальное приближение, $z_k = Au_k - f$ — градиент функционала F(u) в точке $u = u_k$, а итерационные параметры $\{\gamma_i^{(k)}, i = 1, 2, \ldots, s\}$ выбираются из условия минимума величины $F(u_{k+1})$.

Вычислительные эксперименты, проведенные в начале 50-х годов Форсайтом, показали, что s-шаговый метод обладает специфическим асимптотическим поведением. В работе [2] было высказано предположение о том, что погрешности одношагового (s=1) метода в конечномерном пространстве сходятся к 0, колеблясь между двумя предельными направлениями. Это предположение было доказано в [3] с помощью развитой там техники последовательных преобразований распределения вероятностей. В [3] показано, что если $u_0 \neq u^{\ddagger}, u_1 \neq u^{\ddagger}$ ($u^{\ddagger} = A^{-1}f$ — точный минимум функционала F(u)), то последовательности $\{y_{2k+v} = z_{2k+v}/||z_{2k+v}||, k=0,1,\ldots\}, v=0,1$, нормированных градиентов одношагового метода в конечномерном пространстве сходятся и их пределы принадлежат некоторой плоскости, натянутой на два собственных вектора оператора A.

Наиболее известные результаты об асимптотическом поведении s-шагового метода в конечномерном пространстве принадлежат Форсайту [4]. Им было показано, что разложение любого предельного вектора последовательности $\{y_k, k=0,1,\ldots\}$ по системе собственных векторов оператора A содержит не менее s+1 и не более 2s ненулевых компонент, причем каждый предельный вектор инвариантен по направлению относительно двух последовательных итераций метода, а множество предельных векторов последовательности $\{y_{2k+\nu}, k=0,1,\ldots\}, \nu \in \{0,1\}$, есть континуум (т. е. непустое, связное и замкнутое в H множество).

Асимптотическое поведение *s*-шагового метода в гильбертовом пространстве рассматривалось в [5]. Показано, что, как и в конечномерном пространстве, *s*-шаговый метод, рассматриваемый через итерацию, асимптотически ведет себя линейно. Именно это позволило рекомендовать для ускорения сходимости метода скорейшего спуска известные способы ускорения сходимости линейных итерационных процессов (см., например, [6]).

В настоящей работе развит новый по сравнению с указанными выше работами подход к изучению асимптотического поведения *s*-шагового метода, базирующийся на доказательстве существования предельных итерационных параметров

$$\gamma_i^{\nu} = \lim_{k \to \infty} \gamma_i^{(2k+\nu)}, \qquad i = 1, 2, \ldots, s, \quad \nu = 0, 1.$$

Данный подход может быть также использован для анализа асимптотического поведения *s*-шагового метода при минимизации произвольных достаточно гладких функционалов в гильбертовом пространстве.

В § 1 исследована скорость сходимости *s*-шагового метода. Как известно (см., например, [1]), *s*-шаговый метод сходится по крайней мере со скоростью геометрической прогрессии. Для конечномерного пространства в [4] показано, что *s*-шаговый метод сходится, вообще говоря, не более чем со скоростью геометрической прогрессии. Точнее, в [4] доказано, что если $u_0 \neq u^*$, $u_1 \neq u^*$, то последовательность $[F(u_{k+1}) - F(u^*)]/[F(u_k) - F(u^*)]$ отделена от нуля. Для одношагового метода в [4] удалось, опираясь на работу [3], доказать более сильный результат, а именно: если $u_0 \neq u^*$, $u_1 \neq u^*$, то существует отличный от нуля и, вообще говоря, зависящий от начального приближения предел

(2)
$$\lim_{k \to \infty} \left\{ \left[F\left(u_{k+1} - F\left(u^* \right) \right] / \left[F\left(u_k \right) - F\left(u^* \right) \right] \right\}$$

В § 1 данной работы доказано, что последовательность $[F(u_{k+}) - F(u^*)]/[F(u_k) - F(u^*)]/[F(u_k) - F(u^*)]$, порожденная s-шаговым, $s \ge 1$, методом в гильбертовом пространстве, не убывает и ограничена. Отсюда, в частности, следует существование предела (2). Полученный результат можно рассматривать как распространение на s-шаговый метод асимптотического свойства двухслойных градиентных методов, установленного в [7, с. 338] (отметим, что указанный результат для s-шагового метода в конечномерном пространстве был доказан в [8]).

В § 2, опираясь на результаты § 1, мы доказали существование предельных итерационных параметров s-шагового метода. Этот результат является важнейшим

в данной работе. Он позволяет установить в § 3 строение множества предельных функций последовательности функций распределения нормированных градиентов y_k и получить аналоги результатов из [3] и [4]. В частности, доказано, что если $u_0 \neq u^*$, $u_1 \neq u^*$, то последовательность функций распределения нормированных градиентов одношагового метода по четным (нечетным) итерациям поточечно сходится.

Отметим, что все наши рассуждения основаны на следующих известных соотношениях для *s*-шагового метода (см., например, [1]).

1. Для любого k = 0, 1, ...

(3)
$$z_{k+1} = z_k + \sum_{i=1}^{s} \gamma_i^{(k)} A^i z_k,$$

или (в операторном виде)

(4)
$$z_{k+1} = Q_k z_k, \qquad Q_k = E + \sum_{i=1}^s \gamma_i^{(k)} A^i,$$

гле E — единичный оператор.

2. Для любого k = 0, 1, ...

(5)
$$(A^{i}z_{k}, z_{k+1}) = 0, \quad i = 0, 1, \ldots, s-1.$$

3. Для любого вектора $u \in H$

(6)
$$F(u) - F(u^*) = (A^{-1}z, z)/2,$$

где z = Au - f, A^{-1} — обратный к A оператор.

В частности, для любого $k = 0, 1, \ldots$

(7)
$$F(u_k) - F(u^*) = (A^{-1}z_k, z_k)/2.$$

§ 1. О скорости сходимости s-щагового метода

Основную роль при исследовании скорости сходимости *s*-шагового метода играет

 Π е м м а 1. Для любого $k=0,1,\ldots$ имеет место равенство

$$(1.1) (A^{-1}z_{k+2}, z_k) = (A^{-1}z_{k+1}, z_{k+1}).$$

Доказательство. Из (4) следует, что $z_{k+2} = Q_{k+1}z_{k+1}$. Поэтому, используя самосопряженность оператора A и соотношение (5), имеем

$$(A^{-1}z_{k+2}, z_k) = (A^{-1}z_{k+1}, Q_{k+1}z_k) = (A^{-1}z_{k+1}, z_k + \sum_{i=1}^{s} \gamma_i^{(k+1)} A^i z_k) =$$

$$= (A^{-1}z_{k+1}, z_k) = (A^{-1}z_{k+1}, z_k + \sum_{i=1}^{s} \gamma_i^{(k)} A^i z_k).$$

Но из (3) следует, что $z_k + \sum_{i=1}^s \gamma_i^{(k)} A^i z_k = z_{k+1}$. Лемма доказана.

В качестве первого приложения леммы 1 укажем необходимое и достаточное условие окончания *s*-шагового метода за конечное число итераций.

Обозначим через V множество элементов $z \in H$, для которых система векторов z, Az, \ldots, A^sz линейно независима.

Лемма 2. Если $z_0 \notin V$, то $z_k = 0$, k = 1, 2, ..., иначе $z_k \in V$, k = 0, 1, ...

Доказательство. Предположим, что $z_0 \notin V$. Тогда система векторов $z_0, Az_0, \ldots, A^sz_0$ линейно зависима и для некоторых чисел $\{\gamma_1, \ldots, \gamma_s\}$ будет $z = z_0 + \gamma_1 Az_0 + \ldots + \gamma_s A^sz_0 = 0$. Рассмотрим вектор $u = u_0 + \gamma_1 z_0 + \ldots + \gamma_s A^{s-1}z_0$. Так как z = Au - f, то из (6) следует $F(u) = F(u^*)$. Поскольку итерационные параметры $\gamma_1^{(0)}, \ldots, \gamma_s^{(0)}$ выбираются из условия минимума величины $F(u_1)$, то, полагая $\gamma_1^{(0)} = \gamma_i$, $i = 1, 2, \ldots, s$, имеем $F(u_1) = F(u^*)$. Из (7) следует, что $z_1 = 0$. Таким образом, если $z_0 \notin V$, то $z_k = 0$, k = 1, 2.

Предположим, что $z_0 \in V$, но $z_1 \notin V$. Повторяя рассуждение, изложенное выше, имеем $z_2 = 0$. Но из соотношения (1.1) следует, что $z_1 = 0$, т. е. противоречие. Таким образом, если $z_0 \in V$, то $z_1 \in V$. Аналогично получаем, что $z_k \in V$, $k = 2, 3, \ldots$ Лемма доказана.

Поскольку случай $z_0 \notin V$ не представляет интереса с асимптотической точки зрения, то в дальнейшем будем предполагать, что начальное приближение u_0 зафиксировано и $z_0 \in V$. Тогда из леммы 2 следует существование последовательности

(1.2)
$$\rho_{k} = \sqrt{[F(u_{k+1}) - F(u^{*})]/[F(u_{k}) - F(u^{*})]}, \qquad k = 0, 1, \ldots,$$

характеризующей скорость сходимости s-шагового метода.

В качестве второго приложения леммы 1 докажем основной результат данного параграфа.

Рассмотрим, наряду с пространством H, энергетическое пространство $H_{A^{-1}}$, состоящее в точности из элементов пространства H, но отличающееся от него выбором скалярного произведения и нормы: $(u,v)_{A^{-1}}=(A^{-1}u,v)$, $||u||_{A^{-1}}=\sqrt{(A^{-1}u,u)}$. Известно (см., например, [7]), что $H_{A^{-1}}$ является гильбертовым пространством, нормы пространств H и $H_{A^{-1}}$ эквивалентны, а оператор A самосопряжен и положительно определен в пространстве $H_{A^{-1}}$.

T е о р е м а 1. Для любого k = 0, 1, ...

$$(1.3) ||z_{k+2} - \rho_k^2 z_k||_{L^{k-1}}^2 = ||z_{k+1}||_{L^{k-1}}^2 (\rho_{k+1}^2 - \rho_k^2),$$

$$(1.4) \rho_k \le \rho_{k+1} \le 1.$$

Доказательство. Из (7) следует, что $\rho_k = \|z_{k+1}\|_{A^{-1}}/\|z_k\|_{A^{-1}}$. Поэтому

$$||z_{k+2} - \rho_k^2 z_k||_A^{\rho_{k-1}} = ||z_{k+2}||_A^{\rho_{k-1}} - 2 \frac{||z_{k+1}||_A^{\rho_{k-1}}(z_{k+2}, z_k)_{A^{-1}}}{||z_k||_A^{\rho_{k-1}}} + \frac{||z_{k+1}||_A^{\rho_{k-1}}}{||z_k||_A^{\rho_{k-1}}}.$$

Из леммы 1 следует, что $(z_{k+2},z_k)_A^{-1}=\|z_{k+1}\|_A^\rho_A^{-1}$, поэтому $\|z_{k+2}-\rho_k^2z_k\|_A^{\rho_A-1}=\|z_{k+2}\|_A^\rho_A^{-1}-\|z_{k+1}\|_A^\rho_A^{-1}/\|z_k\|_A^\rho_A^{-1}=\|z_{k+1}\|_A^\rho_A^{-1}-\|\rho_{k+1}^2-\rho_k^2\|$. Соотношение (1.3) доказано. Из него следует, что $\rho_k\leq \rho_{k+1}$. Но так как $F(u_{k+1})\leq F(u_k)$, то для любого $k=0,1,\ldots$, будет $\rho_k\leq 1$. Теорема доказана.

Замечание 1. При s=1 соотношения (1.1), (1.4) следуют из [7, с. 338]. Для s-шагового метода в конечномерном пространстве эти соотношения доказаны в [8].

Следствия из теоремы 1.

Следствие 1. Существует предел

$$\rho = \lim_{k \to \infty} \rho_k \le 1.$$

Следствие 2. Существует предел

(1.5)
$$\lim_{k \to \infty} \frac{||z_{k+2} - \rho^2 z_k||}{||z_k||} = 0.$$

Действительно, из (1.3) вытекает

(1.6)
$$\lim_{k \to \infty} \frac{||z_{k+2} - \rho^2 z_k||_{A^{-1}}}{||z_k||_{A^{-1}}} = \lim_{k \to \infty} (\rho^2 - \rho_k^2 + \rho_k \sqrt{\rho_{k+1}^2 - \rho_k^2}) = 0.$$

Из равенства (1.6) и эквивалентности норм $\|\cdot\|$, $\|\cdot\|_{A^{-1}}$ следует (1.5). Следствие 3. Существует предел

(1.7)
$$\lim_{k \to \infty} (||z_{k+2}||/||z_k||) = \rho^2.$$

Действительно,

$$\left| \frac{||z_{k+2}||}{||z_k||} - \rho^2 \right| = \left| \frac{||z_{k+2}|| - \rho^2 ||z_k||}{||z_k||} \right| \le \frac{||z_{k+2} - \rho^2 z_k||}{||z_k||} \to 0, \qquad k \to \infty.$$

Следствие 4. Положим $y_k = z_k / \|z_k\|$. Тогда

(1.8)
$$\lim_{k \to \infty} ||y_{k+2} - y_k|| = 0.$$

Действительно,

$$\rho^{2} (y_{k+2} - y_{k}) = \frac{||z_{k+2}||}{||z_{k}||} y_{k+2} - \rho^{2} y_{k} + \left(\rho^{2} - \frac{||z_{k+2}||}{||z_{k}||} \right) y_{k+2}.$$

Поэтому

$$\rho^2 \ ||y_{k+2} - y_k|| \le \frac{||z_{k+2} - \rho^2 z_k||}{||z_k||} + \left| \ \rho^2 - \frac{||z_{k+2}||}{||z_k||} \ \right| \ \Rightarrow 0, \qquad k \to \infty.$$

§ 2. Существование предельных итерационных параметров

Основным результатом данного параграфа является

T е o p е m a 2. Eсли $z_0 \in V$, то существуют предельные итерационные параметры s-шагового метода

$$\gamma_i^{\nu} = \lim_{k \to \infty} \gamma_i^{(2k+\nu)}, \qquad i = 1, 2, \ldots, s, \quad \nu = 0, 1,$$

зависящие, вообще говоря, от начального приближения.

Для доказательства теоремы нам потребуются вспомогательные утверждения. Так как $z_0 \in V$, то существует последовательность нормированных градиентов $y_k = z_k / \|z_k\|$, $k \ge 0$. Обозначим через E_t спектральную функцию оператора A, а через $\phi_k = \phi_k(t) = (E_t, y_k, y_k)$ — функцию распределения вектора y_k . Пусть Σ_k — множество точек роста функции ϕ_k (соответствующие определения см., например, в [9]).

Лемма 3. Множество Σ_k содержит не менее s+1 точек и $\Sigma_{k+1}\subseteq\Sigma_k$, $k=0,1,\ldots$

Доказательство. Предположим, что множество Σ_k имеет менее s+1 точек. Тогда функция φ_k имеет в точности $r, r \leq s$, точек роста t_1, \ldots, t_r и является, очевидно, кусочно-постоянной со скачками $h_p^{(k)} = \varphi_k (t_p + 0) - \varphi_k (t_p - 0), \ p = 1, 2, \ldots, r$. Следовательно,

$$(2.1) (A^{i+j}y_k, y_k) = \sum_{p=1}^r t_p^{i+j} h_p^{(k)}.$$

Подставив правую часть (2.1) в определитель Грама det $[(A^{i+j}y_k, y_k)]_{i,j=0}^s$, нетрудно убедиться, что он равен 0, следовательно, система векторов $y_k, Ay_k, \ldots, A^s y_k$ линейно зависима. Однако $y_k \in V$, т. е. противоречие. Первое утверждение леммы доказано.

Далее, пусть $t \in \Sigma_{k+1}$, ε — произвольное положительное число, $E_{\Delta} = E_{t+\varepsilon} - E_{t-\varepsilon}$. Используя перестановочность операторов E_{Δ} и A, имеем $0 < \phi_{k+1} \ (t+\varepsilon) - \phi_{k+1} \ (t-\varepsilon) = ||E_{\Delta} y_{k+1}||^2 = ||Q_k E_{\Delta} y_k||^2 \ ||z_k||^2 \ ||z_{k+1}||^{-2} \le ||Q_k||^2 \ ||z_k||^2 \times ||z_{k+1}||^{-2} \ [\phi_k \ (t+\varepsilon) - \phi_k \ (t-\varepsilon) \]$. Следовательно, $\phi_k \ (t+\varepsilon) > \phi_k \ (t-\varepsilon)$ и $t \in \Sigma_k$. Лемма доказана.

Множество Σ_0 является, очевидно, замкнутым подмножеством спектра оператора A. Положим $\lambda = \min \Sigma_0$, $\Lambda = \max \Sigma_0$, $q_k(t) = 1 + \gamma_1^{(k)}t + \ldots + \gamma_s^{(k)}t^s$.

 Π емма 4. Для любого $k=0,1,\ldots$

$$\max_{t \in [\lambda, \Lambda]} |q_k(t)| \le (\Lambda/\lambda)^s.$$

Доказательство. Так как $Q_k = q_k \, (A)$, то из соотношений (4), (5) следует

$$\int_{1}^{\Lambda} t^{i} q_{k}(t) d\varphi_{k}(t) = (A^{i} y_{k}, Q_{k} y_{k}) = 0, \qquad i = 0, 1, \dots, s - 1.$$

Функция φ_k имеет, в силу леммы 3, не менее s+1 точек роста, поэтому (см., например, [10]) многочлен $q_k(t)$ имеет s простых корней $t_{1k} < \ldots < t_{sk}$, расположенных на интервале] λ , Λ [. Поэтому

$$\max_{t \in [\lambda, \Lambda]} |q_k(t)| = \max_{t \in [\lambda, \Lambda]} \left| \left(1 - \frac{t}{t_{lk}}\right) \dots \left(1 - \frac{t}{t_{sk}}\right) \right| \leq \left(\frac{\Lambda}{\lambda}\right)^s.$$

Лемма доказана.

Следующее соотношение является основным при доказательстве теоремы 2. Положим $v_k = z_{k+2} - \rho_k^2 z_k$, $\mu_{i+j}^{(k)} = (A^{i+j} z_{k+2}, z_{k+2})$.

 Π емма 5. Для любого $k=0,1,\ldots$ имеют место равенства

(2.2)
$$\sum_{i=1}^{s} \mu_{i+j}^{(k)} \left(\gamma_i^{(k)} - \gamma_i^{(k+2)} \right) = (A^j Q_k v_k, v_k), \qquad j = 0, 1, \ldots, s-1.$$

Доказательство. Зафиксируем некоторое $j \in \{0, 1, \dots, s-1\}$ Так как $z_{k+3} = Q_{k+2} z_{k+2}$, то из (5) следует

$$(2.3) (A'z_{k+2}, Q_{k+2}z_{k+2}) = (A'z_{k+2}, z_{k+3}) = 0.$$

Далее, учитывая, что $z_{k+2} = Q_{k+1}Q_k z_k$, преобразуем скалярное произведение $(A^j z_{k+2}, Q_k z_{k+2})$:

$$(2.4) (A'z_{k+2}, Q_k z_{k+2}) = (A'z_k, Q_k (Q_{k+1}Q_k)^2 z_k).$$

Заметим, что $(A'z_k, Q_k (Q_{k+1}Q_k) z_k) = (A'z_{k+1}, z_{k+2}) = 0$, $(A'z_k, Q_k z_k) = 0$, поэтому из (2.4) следует

$$(2.5) (A'z_{k+2}, Q_k z_{k+2}) = (A'z_k, Q_k (Q_{k+1}Q_k - \rho_k^2 E)^2 z_k) = (A'Q_k v_k, v_k).$$

Так как

$$(A^{j}z_{k+2}, Q_{k}z_{k+2}) - (A^{j}z_{k+2}, Q_{k+2}z_{k+2}) = \sum_{i=1}^{s} \mu_{i+j}^{(k)} (\gamma_{i}^{(k)} - \gamma_{i}^{(k+2)}),$$

то из (2.3), (2.5) вытекает требуемое равенство (2.2). Лемма доказана.

Равенства (2.2) образуют систему из s линейных алгебраических уравнений относительно $\{\gamma_i^{(k)}-\gamma_i^{(k+2)},\ i=1,2,\ldots,s\}$ Определитель этой системы $d^{(k)}=\det\ [\mu_{i+j}^{(k)}]_{\substack{j=0,1,\ldots,s-1\\i=1,2,\ldots,s}}$ является определителем Грама векторов

$$Az_{k+2}, \ldots, A^s z_{k+2}$$
 в пространстве H_A -1:

$$d^{(k)} = \det \left[(A^{i+j} z_{k+2}, z_{k+2})_{A^{-1}} \right]_{i, i=1, 2, \dots, s}$$

Следовательно, $d^{(k)} > 0$ и система (2.2) имеет единственное решение

(2.6)
$$\gamma_i^{(k)} - \gamma_i^{(k+2)} = d_i^{(k)}/d^{(k)}, \qquad i = 1, 2, \ldots, s,$$

где $d_i^{(k)}$ — определитель, образованный из $d^{(k)}$ заменой i-го столбца на столбец правой части (2.2).

Оценим определитель $d^{(k)}$ снизу.

Лемма 6. Для любого k = 0, 1, ...

$$d^{(k)} \ge \lambda^{s(s+1)} ||z_{k+3}||_A^{2(\frac{s-1}{1})} ||z_{k+2}||_A^{2-1}.$$

Доказательство. Заметим, что при $0 \le n \le s$ векторы $A^n z_{k+2}, \ldots, A^s z_{k+2}$ линейно независимы, поэтому их определитель Грама в пространстве H_A^{-1}

$$g_n = \det [(A^{i+j}z_{k+2}, z_{k+2})_{A^{-1}}]_{i,j=n,\ldots,s} > 0.$$

Так как $d^{(k)}=g_1,\ g_s=(A^{2s-1}z_{k+2},\ z_{k+2}),$ то определитель $d^{(k)}$ можно представить в виде

$$d^{(k)} = (g_1/g_2) \cdot \ldots \cdot (g_{s-1}/g_s) (A^{2s-1}z_{k+2}, z_{k+2})$$

или, полагая $r_n = \sqrt{g_n/g_{n+1}}$, в виде

(2.7)
$$d^{(k)} = r_1^2 \cdot \ldots \cdot r_{s-1}^2 \left(A^{2s-1} z_{k+2}, z_{k+2} \right).$$

Оценим r_n . Согласно [9], r_n — расстояние в пространстве $H_{A^{-1}}$ между вектором A^nz_{k+2} и линейной оболочкой $\mathcal{L}^{(n)}$, натянутой на векторы $A^{n+1}z_{k+2},\ldots,A^sz_{k+2}$.

Пусть $z^* = \gamma_{n+1}A^{n+1}z_{k+2} + \ldots + \gamma_s A^s z_{k+2}$ — проекция вектора $A^n z_{k+2}$ на $\mathcal{L}^{(n)}$. Тогда для всех n, 0 < n < s, имеем

$$(2.8) r_n = \|A^n z_{k+2} - z^*\|_{A^{-1}} \ge \lambda^n \|z_{k+2} - \gamma_{n+1} A z_{k+2} - \dots - \gamma_s A^{s-n} z_{k+2}\|_{A^{-1}} \ge \lambda^n r_0.$$

Вычислим значение r_0 . Заметим, что поскольку параметры $\{\gamma_i^{(k+2)}, i=1,2,\ldots,s\}$ обеспечивают минимум величины $F(u_{k+3})$, то из соотношения (6) получаем

$$||z_{k+3}||_{A^{-1}} = \min_{\gamma_1, \ldots, \gamma_s} ||z_{k+2} - \gamma_1 A z_{k+2} - \ldots - \gamma_s A^s z_{k+2}||_{A^{-1}} = r_0.$$

Следовательно, $r_0 = \|z_{k+3}\|_{A^{-1}}$. Из (2.8) имеем

(2.9)
$$r_n \ge \lambda^n ||z_{k+3}||_{A^{-1}}, \quad n = 1, 2, \dots, s-1.$$

Утверждение леммы вытекает из (2.7), (2.9) и очевидной оценки $(A^{2s-1}z_{k+2}, z_{k+2}) \ge \lambda^{2s} ||z_{k+2}||_{A}^{2s-1}$. Лемма доказана.

Перейдем к оценке $d_i^{(k)}$. Разложим $d_i^{(k)}$ по i-му столбцу:

$$d_i^{(k)} = \sum_{i=0}^{s-1} d_{ij}^{(k)} \varepsilon_j^{(k)},$$

где $\varepsilon_j^{(k)}=(A^jQ_kv_k,\,v_k),\quad d_{ij}^{(k)}$ — соответствующее алгебраическое дополнение. Так как $\mu_v^{(k)}=(A^vz_{k+2},\,z_{k+2})\leq \Lambda^{v+1}\|z_{k+2}\|_{A^{-1}}^2$ при $v\geq 0$, то $\|d_{ij}^{(k)}\|\leq d\|z_{k+2}\|_A^{2(s-1)}$, где число d зависит лишь от s и Λ . Следовательно,

$$(2.10) |d_i^{(k)}| \le sd ||\mathbf{z}_{k+2}||_A^{2(s_1^{-1})} \max_{j=0, 1, \dots, s-1} |\varepsilon_j^{(k)}|.$$

Оценим $\varepsilon_j^{(k)}$. Из леммы 4 и соотношения (1.3) вытекает, что

$$(2.11) \qquad |\varepsilon_{j}^{(k)}| = |(A^{j+1}Q_{k}v_{k}, v_{k})_{A^{-1}}| \le \Lambda^{j+1} \max_{t \in [k, \Lambda]} |q_{k}(t)| \times$$

$$\times \ ||v_k||_{A^{-1}}^2 \leq \Lambda^{s+j+1} \lambda^{-s} ||z_{k+1}||_{A^{-1}}^2 \left(\rho_{k+1}^2 - \rho_k^2\right).$$

Перейдем теперь к доказательству теоремы 2. Из равенства (2.6), оценок (2.10), (2.11) и леммы 6 следует, что

$$|\gamma_i^{(k)} - \gamma_i^{(k+2)}| \le M \rho_{k+2}^{2(1-s)} \rho_{k+1}^{-2} (\rho_{k+1}^2 - \rho_k^2), \qquad i = 1, 2, \ldots, s,$$

где число M не зависит от i и k. Так как $\rho_0 \leq \rho_k, \ k=0,1,\ldots$, то

$$(2.12) |\gamma_i^{(k)} - \gamma_i^{(k+2)}| \le M \rho_0^{-2s} (\rho_{k+1}^2 - \rho_k^2), i = 1, 2, \ldots, s.$$

Из ограниченности последовательности ρ_k и оценки (2.12) следует, что ряд $\gamma_i^{(v)} + (\gamma_i^{(2+v)} - \gamma_i^{(v)}) + \ldots + (\gamma_i^{(2k+2+v)} - \gamma_i^{(2k+v)}) + \ldots$ абсолютно сходится для любого $v \in \{0, 1\}$ и $i \in \{1, 2, \ldots, s\}$ Его сумма, очевидно, равна $\gamma_i^v = \lim_{k \to \infty} \gamma_i^{(2k+v)}$. Теорема доказана.

3. Асимптотическое поведение нормированных градиентов

В этом параграфе исследуется множество предельных функций последовательности функций распределения $\varphi_k = \varphi_k(t) = (E_t y_k, y_k)$ нормированных градиентов y_k s-шагового метода.

Согласно определению [9], любая функция φ_k определена и не убывает на всей числовой оси, непрерывна слева на интервале $]-\infty$, $\Lambda[$ и $\varphi_k(t)=0$ при $t\leq \lambda, \ \varphi_k(t)=1$ при $t\geq \Lambda.$

Обозначим через $\mathscr V$ множество функций $\psi=\psi(t)$, обладающих, как и функции ϕ_k , перечисленными выше свойствами. Пусть $\{\psi_k, k=0,1,\ldots\}$ — некоторая последовательность функций из множества $\mathscr V$.

Будем говорить, что последовательность $\{\psi_k, k=0, 1, \ldots\}$ поточечно сходится, если существует функция $\psi \in \mathscr{V}$ такая, что во всех точках непрерывности функции ψ имеет место равенство ψ (t) = $\lim_{k \to \infty} \psi_k$ (t). Функцию ψ будем называть пределом последовательности $\{\psi_k, k=0, 1, \ldots\}$ и обозначать $\psi = \lim \psi_k$.

Отметим, что любая последовательность может иметь не более одного предела. Действительно, если $\psi^{(1)}$ и $\psi^{(2)}$ — пределы последовательности $\{\psi_k, k=0,1,\ldots\}$, то они принадлежат множеству \mathcal{V}' , следовательно, не убывают, непрерывны слева на интервале $]-\infty$, $\Lambda[$ и $\psi^{(1)}(t)=\psi^{(2)}(t)=1$ при $t\geq \Lambda$. Пусть $t<\Lambda$, а $t_1< t_2<\ldots$ — сходящаяся к t последовательность точек непрерывности функций $\psi^{(1)}$ и $\psi^{(2)}$ (такая последовательность существует, поскольку множества точек разрыва функций $\psi^{(1)}$ и $\psi^{(2)}$ не более чем счетны). Из определения поточечной сходимости следует, что

$$\psi^{(1)}(t_i) = \psi^{(2)}(t_i) = \lim_{k \to \infty} \psi_k(t_i), \qquad i = 1, 2, \ldots$$

Поэтому, учитывая непрерывность слева функций $\psi^{(1)}$ и $\psi^{(2)}$ в точке t, имеем $\psi^{(1)}(t) = \psi^{(2)}(t)$. Таким образом, $\psi^{(1)} = \psi^{(2)}$.

Будем говорить, что ψ является предельной функцией последовательности $\{\psi_k, k=0,1,\ldots\}$, если существует подпоследовательность $\{\psi_{k_l}, k_l < k_2 < \ldots\}$ этой последовательности, поточечно сходящаяся к ψ , т. е. $\psi = \lim \psi_{k_l}$

Имеет место следующее свойство компактности: множество предельных функций произвольной последовательности $\{\psi_k, k=0, 1, \ldots\}$ функций из множества \mathscr{Y} непусто.

Действительно, в силу второй теоремы Хелли (см., например, [11]), существует подпоследовательность $\{\psi_{k_i}, i=1,2,\ldots\}$, сходящаяся в каждой точке числовой оси к некоторой функции ψ^* . Изменим значения функции ψ^* в ее точках разрыва так, чтобы вновь образованная функция ψ принадлежала множеству \mathscr{V} . Тогда $\psi = \lim_{l \to \infty} \psi_{k_l}$ и является, очевидно, предельной функцией последовательности $\{\psi_k, k=0,1,\ldots\}$.

Цель данного параграфа состоит в описании множества Ф предельных функций последовательности $\{\varphi_k, k=0,1,\ldots\}$. Основную роль при этом играют многочлены $q^{(v)}(t)=1+\gamma_1^v t+\ldots+\gamma_s^v t^s,\ v=0,1,\ \pi(t)=q^{(t)}(t)\ q^{(0)}(t)-\rho^2$, где

$$\gamma_i^{\nu} = \lim_{k \to \infty} \gamma_i^{(2k+\nu)}, \qquad \rho = \lim_{k \to \infty} \rho_k,$$

существование которых следует из теорем 1, 2.

Предварительно отметим, что $\Phi = \Phi_0 \cup \Phi_1$, где Φ_v — множество предельных функций последовательности $\{\phi_{2k+v}, k=0,1,\ldots\}, v\in\{0,1\}$ Действительно, если $\phi\in\Phi_0\cup\Phi_1$, то, очевидно, $\phi\in\Phi$. Наоборот, если $\phi\in\Phi$, то $\phi=\lim_{l\to\infty}\phi_{k_l}$. Тогда как среди чисел k_i , $i=1,2,\ldots$, бесконечно много либо четных, либо нечетных, то либо $\phi\in\Phi_0$, либо $\phi\in\Phi_1$, что и требовалось доказать.

Отметим, что из свойства компактности следует, что множества Φ , Φ_0 , Φ_1 непусты.

Следующая лемма устанавливает связь между предельными функциями и указанными выше многочленами.

Лемма 7. Если $\phi \in \Phi_{\nu}$, $\nu \in \{0, 1\}$, то

(3.1)
$$\int_{\lambda}^{\Lambda} t' q^{(v)}(t) d\varphi(t) = 0, \quad j = 0, 1, \ldots, s-1,$$

(3.2)
$$\int_{1}^{\Lambda} t^{-1} \{ [q^{(v)}(t)]^{2} - \rho^{2} \} d\varphi(t) = 0,$$

(3.3)
$$\int_{\lambda}^{\Lambda} \pi^2(t) d\varphi(t) = 0.$$

Доказательство. Из соотношений (4), (5) следует, что $(A'y_k, Q_ky_k) = 0$, $j = 0, 1, \ldots, s-1$, или, в интегральной форме,

(3.4)
$$\int_{1}^{\Lambda} t^{j} q_{k}(t) d\varphi_{k}(t) = 0, \quad j = 0, 1, \ldots, s-1.$$

Далее, из определения ρ_k следует, что $((Q_k^2-\rho_k^2E)\ z_k,\ z_k)_A^{-1}=0$, поэтому $((Q_k^2-\rho_k^2E)\ y_k,\ y_k)_A^{-1}=0$, или, в интегральной форме,

(3.5)
$$\int_{\lambda}^{\Lambda} t^{-1} \left[q_k^2(t) - \rho_k^2 \right] d\varphi_k(t) = 0.$$

Наконец, из соотношения (1.5) следует, что

$$\lim_{k\to\infty}||Q_{k+1}Q_ky_k-\rho^2y_k||=0,$$

или, в интегральной форме,

(3.6)
$$\lim_{k \to \infty} \int_{1}^{\Lambda} [q_{k+1}(t) \ q_{k}(t) - \rho^{2}]^{2} d\varphi_{k}(t) = 0.$$

Так как $\varphi \in \Phi_v$, то существует последовательность $\{\varphi_{2k_i+v}, i=1,2,\ldots\}$ сходящаяся к φ поточечно. Поскольку последовательности многочленов $\{q_{2k_i+v}(t), i=1,2,\ldots\}$ $\{q_{2k_i+v}(t), i=1,2,\ldots\}$ сходятся, очевидно, к $q^{(v)}(t)$ и $q^{(1)}(t)$ $q^{(0)}(t)$ равномерно по $t \in [\lambda, \Lambda]$, то из первой теоремы Хелли следует, что

(3.7a)
$$\lim_{t\to\infty}\int_{\lambda}^{\Lambda}t^{j}q_{2k_{i}+\nu}(t)\ d\varphi_{2k_{i}+\nu}(t)=\int_{\lambda}^{\Lambda}t^{j}q^{(\nu)}(t)\ d\varphi(t),$$

(3.76)
$$\lim_{t\to\infty}\int_{\lambda}^{\Lambda}t^{-1}\left[q_{2k_{t}+\nu}^{2}\left(t\right)-\rho_{2k_{t}+\nu}^{2}\right]d\varphi_{2k_{t}+\nu}\left(t\right)=\int_{\lambda}^{\Lambda}t^{-1}\left\{\left[q^{(\nu)}\left(t\right)\right]^{2}-\rho^{2}\right\}d\varphi\left(t\right),$$

(3.7B)
$$\lim_{t\to\infty}\int_{\lambda}^{\Lambda} [q_{2k_{i}+1+\nu}(t) q_{2k_{i}+\nu}(t) - \rho^{2}]^{2} d\phi_{2k_{i}+\nu}(t) = \int_{\lambda}^{\Lambda} \pi^{2}(t) d\phi(t).$$

Из соотношений (3.4)—(3.7) вытекает утверждение леммы.

Обозначим через $\mathcal N$ множество нулей многочлена π (t). Строение предельных функций характеризует

Лемма 8. Любая функция $\phi \in \Phi$ кусочно-постоянна и обладает не менее s+1 и не более 2s скачками, причем точки скачков принадлежат множеству $\mathcal{N} \cap \Sigma_0$.

Доказательство. Пусть t^* — произвольная точка роста функции φ . Покажем, что $t^* \in \mathcal{N}$. Предположим противное: $\pi(t^*) \neq 0$. Тогда в силу непрерывности $\pi(t)$ существуют числа $\delta > 0$ и $\varepsilon > 0$ такие, что $|\pi(t)| > \delta$ для всех $t \in [t^* - \varepsilon, t^* + \varepsilon]$. Поэтому

$$\int_{\lambda}^{\Lambda} \pi^{2}(t) d\varphi(t) \geq \int_{t^{*}-\epsilon}^{t^{*}+\epsilon} \pi^{2}(t) d\varphi(t) \geq \delta^{2} \left[\varphi(t^{*}+\epsilon) - \varphi(t^{*}-\epsilon) \right] > 0,$$

что противоречит формуле (3.3). Следовательно, $t^* \in \mathcal{N}$.

Таким образом, ϕ обладает конечным числом точек роста $t_1, \ldots, t_r, r \leq 2s$, причем они принадлежат множеству \mathcal{N} . Поэтому ϕ кусочно-постоянна со скачками $h_i = \phi(t_i + 0) - \phi(t_i - 0) > 0$ в точках $t_i, i = 1, 2, \ldots, r$.

Покажем, что $s+1 \le r$. Предположим противное: $r \le s$. Из соотношений (3.1), (3.2) следует, что

(3.8)
$$\sum_{i=1}^{r} t_i' q^{(v)}(t_i) h_i = 0, \quad j = 0, 1, \ldots, s-1,$$

(3.9)
$$\sum_{i=1}^{r} t_i^{-1} \{ [q^{(v)}(t_i)]^2 - \rho^2 \} h_i = 0.$$

Рассмотрим равенства (3.8) как систему линейных алгебраических уравнений относительно переменных $\{q^{(v)}(t),\ i=1,2,\ldots,r\}$ Так как $r\leq s$ и

$$\det \begin{vmatrix} h_1 & \dots & h_r \\ t_1 h_1 & \dots & t_r h_r \\ \vdots & \vdots & \ddots & \vdots \\ t_1^{r-1} h_1 & \dots & t_r^{r-1} h_r \end{vmatrix} = h_1 \dots h_r \det \begin{vmatrix} 1 & \dots & 1 \\ t_1 & \dots & t_r \\ \vdots & \ddots & \vdots \\ t_1^{r-1} & \dots & t_r^{r-1} \end{vmatrix} \neq 0,$$

то из (3.8) следует, что $q^{(v)}(t_i)=0$, $i=1,2,\ldots,r$. Но из (3.9) вытекает $\rho=0$, что противоречит теореме 1.

Таким образом, $s+1 \le r \le 2s$. Докажем, что $\{t_1,\ldots,t_r\} \subseteq \Sigma_0$. Пусть $t \notin \Sigma_0$. Тогда для некоторого $\varepsilon > 0$ имеем φ_0 $(t-\varepsilon) = \varphi_0$ $(t+\varepsilon)$. Пусть $0 < \varepsilon_1 < \varepsilon$. Из леммы 3 следует, что φ_k $(t-\varepsilon_1) = \varphi_k$ $(t+\varepsilon_1)$, $k=0,1,\ldots$, поэтому t— точка постоянства функции φ . Таким образом, из $t \notin \Sigma_0$ следует, что $t \notin \{t_1,\ldots,t_r\}$, поэтому $\{t_1,\ldots,t_r\} \subseteq \Sigma_0$. Лемма доказана.

Перейдем к описанию множества Ф. Воспользуемся следующей идеей. Согласно лемме 8, любая функция $\phi \in \Phi$ кусочно-постоянна и ее точки скачков принадлежат конечному множеству $\mathcal{N} \cap \Sigma_0$, следовательно, она однозначно определяется вектором, компонентами которого являются эти скачки. Таким образом, описание множества Φ сводится к описанию некоторого подмножества конечномерного пространства.

Точнее: пусть $\chi < \dots \chi_N$ — упорядоченные элементы множества $\mathcal{N} \cap \Sigma_0$ (из леммы 8 следует, что $s+1 \le N \le 2s$), а \mathbb{R}^N есть N-мерное вещественное евклидово пространство.

Рассмотрим отображение $\mathcal{F}: \mathcal{V} \to \mathbb{R}^{N}$, заданное формулой

$$\mathcal{F}\psi = (\psi(\chi + \varepsilon) - \psi(\chi - \varepsilon), \dots, \psi(\chi + \varepsilon) - \psi(\chi - \varepsilon)),$$

где число $\varepsilon > 0$ выбрано так, чтобы отрезки $\Delta_i(\varepsilon) = [\chi - \varepsilon, \chi + \varepsilon],$ $i = 1, 2, \ldots, N$, попарно не пересекались. Если функция $\varphi \in \Phi$ имеет скачок в точке χ , то он в силу выбора числа ε равен $\varphi(\chi + \varepsilon) - \varphi(\chi - \varepsilon)$, поэтому вектор $\mathcal{F}\varphi$ однозначно определяет функцию φ . Следовательно, отображение \mathcal{F} устанавливает взаимно однозначное соответствие между множеством Φ и его конечномерным образом $U = \mathcal{F}\Phi$. Более того, U есть множество предельных векторов последовательности $\{\mathcal{F}\varphi_k, k = 0, 1, \ldots\}$ А именно, имеет место

Лемма 9. 1. Если последовательность $\{\phi_{k_l}, i=1,2,\ldots\}$ поточечно сходится κ ϕ , то последовательность $\{\mathcal{F}\phi_{k_l}, i=1,2,\ldots\}$ сходится в пространстве \mathbb{R}^N κ $\mathcal{F}\phi$.

2. Если последовательность $\{\mathcal{F}_{\phi_{k_i}}, i=1,2,\ldots\}$ сходится в пространстве \mathbb{R}^N к h, то $h\in U$ и последовательность $\{\phi_{k_i}, i=1,2,\ldots\}$ поточечно сходится κ функции $\phi=\mathcal{F}^{-1}h$.

Доказательство. 1. Так как $\varphi \in \Phi$, то функция φ кусочно постоянна, причем скачки возможны лишь в точках χ_j , $j=1,2,\ldots,N$. Отрезки Δ_j (ϵ), $j=1,2,\ldots,N$, в силу выбора числа ϵ , попарно не пересекаются, поэтому

функция φ непрерывна в точках $\chi_j \pm \epsilon, j = 1, 2, \ldots, N$. Из поточечной сходимости последовательности $\{\varphi_{k_l}, i = 1, 2, \ldots\}$ к φ следует, что $\varphi_{k_l}(\chi_j \pm \epsilon) \rightarrow \varphi(\chi_j \pm \epsilon)$ при $i \rightarrow \infty, j = 1, 2, \ldots, N$. Поэтому, исходя из определения отображения \mathcal{F} , имеем $\mathcal{F}_{\varphi_{k_l}} \rightarrow \mathcal{F}_{\varphi}$ при $i \rightarrow \infty$ в пространстве \mathbb{R}^N .

2. Пусть $\lim_{i\to\infty} \mathcal{F}\phi_{k_i} = h$. Обозначим через Φ^* множество предельных функций последовательности $\{\phi_{k_i}, i=1,2,\ldots\}$. Из свойства компактности следует, что $\Phi^* \neq \emptyset$. Покажем, что множество Φ^* содержит единственную функцию. Действительно, пусть $\phi^{(i)}, \phi^{(2)} \in \Phi^*$. Повторяя рассуждения предыдущего пункта, получаем $\mathcal{F}\phi^{(i)} = \mathcal{F}\phi^{(2)} = h$. Следовательно, $h \in U$ и $\Phi^* = \{\phi\}$, $\phi = \mathcal{F}^{-1}h$.

Докажем, что $\lim_{t\to\infty} \varphi_{k_i} = \varphi$. Предположим противное: для некоторой точки t^* непрерывности функции φ имеет место $\varphi_{k_i}(t^*) \not \to \varphi(t^*)$. Из последовательности чисел $\{\varphi_{k_i}(t^*), i=1,2,\ldots\}$ выделим сходящуюся к некоторому числу $a \neq \varphi(t^*)$ подпоследовательность $\{\varphi_{k_i}(t^*), j=1,2,\ldots\}$ Пусть φ^* — некоторая предельная функция подпоследовательности $\{\varphi_{k_i}, j=1,2,\ldots\}$ Тогда $\varphi^* \in \Phi^*$ и $\varphi^* \neq \varphi$, т. е. противоречие. Лемма доказана.

Обозначим через W_v , $v \in \{0, 1\}$, множество неотрицательных решений $(h_1, \ldots, h_N), h_i \ge 0, i = 1, 2, \ldots, N$, системы линейных уравнений

(3.10)
$$h_1 + \ldots + h_N = 1, \qquad \sum_{i=1}^N \chi_i^i q^{(v)} (\chi_i) h_i = 0, \qquad j = 0, 1, \ldots, s-1.$$

Положим $U_{\nu} = \mathcal{F}\Phi_{\nu}$. Следующую теорему можно рассматривать как аналог результатов Форсайта [4], выраженный в терминах функций распределения векторов y_{ν} .

T е o p е m a 3. 1. Любой вектор из U имеет не менее s+1 u не более 2s ненулевых компонент.

- 2. $U_{\nu} \subseteq W_{\nu}$, $\nu = 0, 1$.
- 3. Если последовательность $\{\varphi_{k_i}, i=1,2,\ldots\}$ поточечно сходится κ φ , то κ этой же функции поточечно сходится последовательность $\{\varphi_{k,+2}, i=1,2,\ldots\}$
- 4. Множества U_v , v = 0, 1,— континуумы, т. е. непустые, связные и замкнутые в \mathbb{R}^N множества.

Доказательство. Первые два утверждения вытекают непосредственно из соотношений (3.1) и леммы 8.

Далее, имеем

$$|\varphi_{k+2}(t) - \varphi_k(t)| = ||E_t y_{k+2}||^2 - ||E_t y_k||^2| \le 2||y_{k+2} - y_k||.$$

Поэтому из (1.8) вытекает, что последовательность функций $\{\varphi_{k+2} - \varphi_k, k = 0, 1, \ldots\}$ сходится поточечно к 0. Но тогда последовательность

 $\phi_{k_i+2} = \phi_{k_i} + (\phi_{k_i+2} - \phi_{k_i})$ поточечно сходится к функции ϕ . Третье утверждение доказано.

Покажем, что U_v есть континуум. Воспользуемся следующим результатом из [12]: если $\{x^{(k)}, k=0,1,\ldots\}$ — ограниченная в \mathbb{R}^N последовательность и $\lim_{k\to\infty} (x^{(k+1)}-x^{(k)})=0$, то множество ее предельных векторов есть континуум.

Рассмотрим последовательность $x^{(k)} = \mathcal{F}_{\phi_{2k+v}}, k = 0, 1, \ldots$ Из леммы 9 следует, что U_v есть множество предельных векторов этой последовательности. Так как последовательность $\{x^{(k)}, k = 0, 1, \ldots\}$ очевидно, ограничена в \mathbb{R}^N , а из поточечной сходимости $\{\phi_{k+2} - \phi_k, k = 0, 1, \ldots\}$ к 0 следует, что $\lim_{k \to \infty} (x^{(k+1)} - x^{(k)}) = 0$, то U_v есть континуум. Теорема доказана.

Рассмотрим частный случай s=1. Так как тогда s+1=2s, то N=2, $U\subseteq \mathbb{R}^2$ и любой вектор из U имеет две положительные компоненты. Система (3.10) приобретает вид

(3.11)
$$h_1 + h_2 = 1$$
, $q^{(v)}(X_1) h_1 + q^{(v)}(X_2) h_2 = 0$.

Так как $U_{\nu} \neq \emptyset$, то система (3.11) имеет положительное решение $h^{(\nu)} = (h_1^{(\nu)}, h_2^{(\nu)}) \in U_{\nu}$. Поскольку $q^{(\nu)}(\chi_1) \neq 0$, то из равенства $q^{(\nu)}(\chi_1) h_1^{(\nu)} + q^{(\nu)}(\chi_2) h_2^{(\nu)} = 0$ следует, что $q^{(\nu)}(\chi_1) \neq q^{(\nu)}(\chi_2)$. Поэтому система (3.11) имеет единственное решение $h^{(\nu)}$ и $U_{\nu} = \{h^{(\nu)}\}$. Следовательно, множество Φ_{ν} содержит единственную функцию $\Phi_{\nu}^{(\nu)} = \mathcal{F}^{-1}h^{(\nu)}$ (эта функция кусочно постоянна со скачками $h_1^{(\nu)}, h_2^{(\nu)}$ в точках χ_1, χ_2). Отсюда вытекает аналог результата из [3], выраженный в терминах функций распределения векторов μ_{ν} .

Теорема 4. Последовательность $\{\phi_{2k+\nu}, k=0,1,\ldots\}$, $\nu\in\{0,1\}$, функций распределения нормированных градиентов одношагового метода поточечно сходится к кусочно-постоянной функции $\phi^{(\nu)}$.

Замечание 2. Пусть $E_{\Delta_i(\varepsilon)} = E_{\lambda_i+\varepsilon} - E_{\lambda_i-\varepsilon}$. Так как $\varphi_k(\chi_i + \varepsilon) - \varphi_k(\chi_i - \varepsilon) = \|E_{\Delta_i(\varepsilon)}y_k\|^2$, то из определения отображения $\mathcal F$ следует, что

$$\mathcal{F}\varphi_{k} = (\|E_{\Delta_{1}(\varepsilon)}y_{k}\|^{2}, \ldots, \|E_{\Delta_{N}(\varepsilon)}y_{k}\|^{2}).$$

Из леммы 9 вытекает, что множеством предельных векторов последовательности $\{\mathcal{F}_{\varphi_k}, k=0,1,\ldots\}$ является множество U. Так как сумма скачков любой функции $\varphi \in \Phi$ равна 1, то и сумма компонент любого вектора из U также равна 1. Поэтому

$$\lim_{k\to\infty} \left(\|E_{\Delta_{1}(\varepsilon)}y_{k}\|^{2} + \ldots + \|E_{\Delta_{N}(\varepsilon)}y_{k}\|^{2} \right) = 1.$$

Из этого равенства следует, что для сколь угодно малого $\varepsilon > 0$ нормированные градиенты *s*-шагового метода асимптотически вырождаются в подпространство $(E_{\Delta 1(\varepsilon)} + \ldots + E_{\Delta N(\varepsilon)})$ H.

СПИСОК ЛИТЕРАТУРЫ

- 1. Канторович Л. В. Функциональный анализ и прикладная математика//Успехи матем. наук. 1948. Т. 3. № 6. С. 89—185.
- 2. Forsythe G. E., Motzkin T. S. Asymptotic properties of the optimum gradient method (abstract)// Bull. Amer. Math. Soc. 1951. V. 57. № 2. P. 183.
- 3. Akaike H. On a successive transformation of probability distribution and its application to the analysis of the optimum gradient method//Ann. Inst. Statist. Math. Tokyo. 1959. V. 11. P. 1—16.
- 4. Forsythe G. E. On the asymptotic directions of the s-dimensional optimum gradient method//Numer. Math. 1968. V. 11. № 1. P. 57—76.
- 5. Заболоцкая А. Ф. Асимптотическое поведение s-шагового метода скорейшего спуска в гильбертовом пространстве//Ж. вычисл. матем. и матем. физ. 1979. Т. 19. № 1. С. 228—232.
- 6. Заболоцкая А. Ф. Ускорение сходимости метода скорейшего спуска в гильбертовом пространстве// Ж. вычисл. матем. и матем. физ. 1974. Т. 14. № 1. С. 218—221.
- 7. Самарский А. А., Николаев Е. С. Методы решения сеточных уравнений. М.: Наука, 1978.
- 8. Жук П. Ф., Бондаренко Л. Н. Об одной гипотезе Дж. Форсайта//Матем. сб. 1983. Т. 121. № 4. С. 435—453.
- 9. *Ахиезер Н. И.*, *Глазман И. М.* Теория линейных операторов в гильбертовом пространстве. Харьков: Виша школа. 1977. Т. 1.
- 10. Геронимус Я. Л. Теория ортогональных многочленов. М.: Гостехтеориздат, 1950.
- Колмогоров А. Н., Фомин С. В. Элементы теории функций и функционального анализа. М.: Наука, 1976.
- 12. Ostrowski A. M. Solution of equations and systems of equations. N. Y.-L.: Acad. Press, 1966.

Поступила в редакцию 26.08.92 Переработанный вариант 26.05.93