MINISTRY OF EDUCATION AND SCIENCE OF UKRAINE NATIONAL
AVIATION UNIVERSITY
FACULTY OF AIR NAVIGATION, ELECTRONICS AND
TELECOMMUNICATIONS
AEROSPACE CONTROL SYSTEMS DEPARTMENT

APPROVED FOR DEFFENCE
Head of the Department

Yurii MELNYK

“ ” 2024

QUALIFICATION PAPER
FOR THE ACADEMIC DEGREE OF
BACHELOR

Title: «Autonomous navigation system of a wheeled robot»

Performer: student of group CS-404 Yelyzaveta HULBINAS

Supervisor: Yurii MELNYK

Srandarts inspector: Mykola DYVNYCH

Kyiv 2024

MIHICTEPCTBO OCBITU I HAVKHU YKPATHU
HAIIOHAJIBHUN ABIALIIMHUN YVHIEPCUTET
®AKYJIBTET AEPOHABIT AL, EJJEKTPOHIKH TA TEJIEKOMYHIKAIIIMI
KA®EJPA AEPOKOCMIYHUX CUCTEM YIIPABJIIHHS

JHOITYCTUTHU A0 3AXUCTY
3aBinyBau kadeapu

Op1it MEJIBHUK
« » 2024 p.

KBAJII®IKAIIIITHA POBOTA
(ITOSICHIOBAJIBHA 3AIIUCKA)
BUITYCKHHUKA OCBITHBOI'O PIBHS
«BAKAJIABP»

Tema: «CructemMa aBTOHOMHOT HaBITaIlii KOJIICHOTO poboTa»

Buxonagsenp: cryaent rpynu CY-404 €muzasera ['YJIBBIHAC

KepiBHuk: HOpiit MEJIBHUK

HopmokonTponep: Muxkouma INBHNUY

Kuis 2024

HAILIOHAJIBHUM ABIALIIMHUN YVHIBEPCUTET
dakyapTeT aepoHaBirailii, eJIeKTPOHIKH Ta TEICKOMYHIKAIIIH

Kadenpa Aepoxocmiunux cucmem ynpagiinus

OcBiTHIil cCTyNIHb: OakasaBp

i iCTh: BTOMATH3AIlIA Ta KOMII FOTEPHO-1HT BaHI1 TEXHOJIOT1]
CrneniagabHicTb: 151 ABTOMaTH3a1(1s Ta KOMIT FOTEPHO-1IHTEIPOBaH1 TEXHOJIOT 1]

3ATBEP/IKYIO
3aBinyBau kadeapu

Op1it MEJIBHUK
« » 2024 p.

3ABJAAHHSA
HA BUKOHAHHA KBaJdidikauiifHol po0oTH cTyaeHTa

['yns6inac €nuzasetn CepriiBHu

1. Tema po6oTu (mpoekTy): «CructemMa aBTOHOMHOT HaBIraIi KOJiCHOTO poOOTay.
3aTBepKeHa Haka3oM pekTopa Bix «1» kBitHs 2024 p. No 511/cr.

2. Tepmin BukoHaHHs1 po6oTH (MpoekTy): 3 13.05.2024 mo 13.06.22024

3. Buxiani 1ani 10 po6oTu (mpoekTy): po3podka MOyt aBTOHOMHOI HaBirarii
KOJIICHOTO po00Ta 3 o0y 10BOI0 ONTUMATIBLHUX aJITOPUTMIB 00XO0/ Ty MEPEIIKO/ 3
BUKOPUCTAHHSAM KapT MiCIIEBOCTI

4. 3MicT NOSICHIOBAJILHOI 3aNIMCKH (MepeJiik MUTaHb, 0 MiJIAralTh po3pooii):
PO3/IUJI |. HABITAIIMHA CUCTEMA JUII MOBUIBHUX POBOTIB;
PO3AUI 2. INTAHYBAHHA HUIAXY MOBUIBHOT'O POBOTA; PO3IJT 3.
PE3VYJIbTATU BITPOBAJKEHHSA TIPOTPAMHOI'O 3ABE3ITEYEHH,
BUCHOBOK; CIIMCOK BHMKOPUCTAHOI JIITEPATYPU TA
PECVYPCIB.

5. Hepesik 000B’s13k0BOr0 rpagiuHoro marepiany: PucyHnku pe3ynbrariB

MOJICITIOBAHHS Ta PO3paxyHKiB. Marepianu npe3eHTarlii B Power Point.

6. Kanenpapuuii nian-rpadgix

1 OTpumaHHS 3aBJIaHHS 13.05.2024-16.05.2024 Bukonano

dopMyBaHHSI METH Ta 17.05.2024-18.05.2024 Bukonano
2 OCHOBHHX 32BJ/IaHb
JOCTIIKEHHS

AHani3 iICHYyIOUYMX METO/IB 19.05.2024-23.05.2024 Bukonano

TeopeTnuHuit po3rs 24.05.2024-28.05.2024 Bukonano
pilIeHHS TPOOJIeMH

Po3pobka meTo1iB 30.05.2024-2.06.2024 Bukonano
IJIaHYBaHHS TPAEKTOPIi
pyxoMoro o0'ekra,
3aTHOI'O 31HCHIOBATH
ABTOHOMHHI pyX y pi3HUX
CepeIOBUILAX

Odopmienns 2.06.2024-4.06.2024 Bukonano

6 NOSCHIOBAJILHOT 3alIUCKU

[linroroBka npe3eHTallli 5.06.2024-11.06.2024 BukoHnaHno
7 PO3/IaTKOBOTO MaTepialy

7. Jara Buaadi 3aBaanusi: «13» tpaBus 2024 p.

KepiBHuK qumniomMHOT poOOTH Opiit MEJIBHUK

(mianuc KepiBHHUKA)

3aBIaHHS MPUIHAB 0 BUKOHAHHS €mzasera ' YJIBBIHAC
(minmmc
BHITYCKHHKA)

NATIONAL AVIATION UNIVERSITY
Faculty of Air Navigation, Electronics and Telecommunications

Aerospace Control Systems Department

Educational level: bachelor

Specialty: 151 "Automation and Computer-integrated Technologies"

APPROVED BY
Head of Department
Yurii MELNYK
") 2024 y.

Quialification Paper Assignment for Graduate Student

Hulbinas Yelyzaveta Serhiyivna

1. The qualification paper title « Autonomous navigation system of a wheeled
robot »

Approved by the rector order from «01» April 2024 Ne 511/cr.

2. The paper to be completed between: 13.05.2024 and 13.06.2024

3. Output data to the work (project): development of a module for autonomous
navigation of a wheeled robot with the construction of optimal algorithms for
avoiding obstacles using terrain maps.

4. Contents of the explanatory note (list of questions to be developed):
SECTION I. NAVIGATION SYSTEM FOR MOBILE ROBOTS; SECTION 2.
PLANNING THE MOBILE ROBOT PATH; SECTION 3. RESULTS OF
SOFTWARE IMPLEMENTATION; CONCLUSION; LIST OF REFERENCES
AND RESOURCES.

5. List of required graphic material: Figures of simulation and calculation results.

Presentation materials in Power Point.

6. Planned schedule:

Ne Task Execution term Execution
mark
. 13.05.2024-
1 Task receiving 16.05.2024 Executed
5 Purpose formation and describing 17.05.2024- Executed
the main research tasks 18.05.2024
. . 19.05.2024- Executed
3 Analysis of existing methods 23 .05.2024
4 Theoretical consideration of the 24.05.2024- Executed
problem solution 28.05.2024
Developing of methods for planning 30.05.2024- Executed
5 the trajectory of a moving object 2.06.2024
capable of autonomous movement
in various environments
. 2.06.2024- Executed
6 Making an explanatory note 4.06.2024
v Preparation of presentation and 5.06.2024- Executed
handouts 11.06.2024
7. Date of task receiving: “13” May 2024
Diploma thesis supervisor Yuriy MELNYK.
(signature)
Issued task accepted Yelyzaveta HULBINAS.

(signature)

PEDEPAT

[TosicHrOBasbHA 3amUCKa A0 AUIUIOMHOT poboTn «CrcreMa aBTOHOMHOI HaBiraiii
KOJIICHOTO poOoTa»: 58 cT., 29 pucyHkiB, 13 BUKOPUCTAaHUX KEPEIL.

AxtyanbpHicTh TeMu. [IpoOiema cTBOpEeHHS HaBIraliiHOi CUCTEMH, IO JO3BOJISIE
pPYXOMHUM 00'€KTaMm 3/1HCHIOBAaTH aBTOHOMHHUN PYX Yy pEalbHHUX CEPEIOBHUINAX, JYXKE
BaXJIMBA B Cy4yacHOMY CBITI. MacoBe BHUPOOHHIITBO aBTOHOMHHUX POOOTIB, 3/aTHUX
IpaioBaTl y CKJIQJHUX YMOBaX, 3HAYHO CHPOCTUTH KUTTS Jonei. Hikomy He
JIOBENIETHCSl PU3UKYBATH CBOIM KHUTTAM, BUKOHYIOUH POOOTY.

B nmanmii yac HaiyacTilie BHUKOPHUCTOBYBAaHMMH aBTOHOMHUMH PYXOMHUMU
00'eKTaMH Yepe3 3PYUHICTh iX BUKOPHUCTAHHS € MOOLIbHI poOOTH. Y 3B'S3KYy 3 LIUM
PO3IIIAIa€ThCA 3aBAaHHS NOOYI0BH CUCTEMH HAaBITallll came Jisl JAaHOTO THUITY pOOOTIB.

O0’€eKT I0CTiIZKEeHHSA — aBTOHOMH1 MOO1JIbHI poOOTH.

IIpeamer mocJiIzKeHHs — cUCTeMa aBTOHOMHOI HaBirailii pooora.

MeTta fgocJiukeHHsT — CTBOPEHHS HaBITAIlIMHOI CHCTEMH, IO JIO3BOJISE
3MIIICHIOBATH aBTOHOMHUH pyX Ha IiomuHi (2D).

HaykoBa HOBHM3HAa — po3po0JieHO MOAYJIb ABTOHOMHOI HaBiramii pobora 3
noOyZI0BOI0 ONTUMATBHUX AJITOPUTMIB OOMUHAHHS MEPEIIKO] 3 BUKOPUCTAHHAM KapT
MICLIEBOCTI.

Metoan JOCHIIKEHHsI. METOAU aHalli3y, aHAJIITUYHOIO Ta KOMII FOTEPHOTO
MOJICJIFOBAHHSI, METO/IU BUMPOOYBAaHb 1 EKCIIEPUMEHTY.

Marepianu AUIIIOMHOT POOOTH MOKYTh OyTH BUKOPUCTAH1 JJIsl BUPILIECHHS 3a1a4
ABTOHOMHOT'O BHWKOHAaHHS 3aBlIaHb KOJICHUMH pPOOOTaMH PI3HOTO TPHU3HAYEHHS TIO
KapTaM MICIIEBOCTI 3 OOMUHAHHSM TEPEIIKO MO0 HaWOIIbII ONTUMATBHOMY, B JTAHUX

yMOBax, MapuipyTy.

ABSTRACT

Explanatory note to the thesis "Autonomous navigation system of a wheeled
robot": 58 p., 29 figures, 13 references.

Actuality of the theme. The problem of creating a navigation system that allows
moving objects to move autonomously in real environments is very important in the
modern world. Mass production of autonomous robots capable of working in difficult
conditions will greatly simplify people's lives. No one should have to risk their life
doing the job.

Currently, mobile robots are the most frequently used autonomous moving
objects due to their ease of use. In this regard, the task of building a navigation system
specifically for this type of robots is considered.

The object of research is autonomous mobile robots.

The subject of research is a system of autonomous robot navigation.

The purpose of the research is to create a navigation system that allows for
autonomous movement on a plane (2D).

Scientific innovation — a robot autonomous navigation module was developed
with the construction of optimal algorithms for bypassing obstacles using terrain maps.

Research methods: methods of analysis, analytical and computer modeling,
methods of tests and experiments.

The materials of the thesis can be used to solve the problems of autonomous
performance of tasks by wheeled robots of various purposes on maps of the area with

the bypassing of obstacles along the most optimal, under the given conditions, route.

PLAN

PEDEP AT ... a e e 7
N Y o 2 SR OUSRRI 8
o I N TR RRPS 9
INTRODUCTION ..ottt sttt ettt st st sbesteereeneeneeneeneas 11
00 = O I8 []\ SRR 12
NAVIGATION SYSTEM FOR MOBILE ROBOTS......ccccoiieieiececese e 12
1.2, ODBStACIEe UELECTIONeiivie et e s 18
1.3. Stereo vision method in the problem of determining the distance to an obstacle. 19
1.4. Triangulation method in the problem of determining the distance to an
0] 151 - T [23
CONCLUSION ...ttt ettt e ettt sbesbeeseeneeneeneeneens 27
SECTION 2 ...ttt ettt b et s et e e et et et e sbeabeeseeneeneeneeneens 28
PLANNING THE PATH OF A MOBILE ROBOT ...oooiiieeeee e 28
2.1. Description of the movement of a moving ObJeCtc.cceevvevieiieiie e 28
2.2. Navigation SYStEM SIUCLUIEccveeiieeriieiieeie e seesie e sie e eeenes 29
2.3. SLAM algorithm.......cooieiii e 31
2.4. Constructing an environmental map in the formofagridmapcccccoeeuvee. 33
2.5, ODBStACIE trACING ...eiveeciie e 34
2.6. General planning StIUCLUIEociiviiiieeiee e 35
2.7. Algorithms for avoiding 0bStacles..........c.oooeiiiiiiiiii e 36
2.7.1. Dijkstra’s algorithm.........cccocoiiiiiiiiii e 36
2.7.2. AIGOrtNM A (A-STAI) c.eieeiiiieiieie et nre s 38
2.7.3. Algorithm A* (A-star) for wheeled robots..........c.ccooiiiiiiie 38
2.7.4. AIGOrithm D* (D-STAr)ceiiiieiiieie e sne s 40
A R T AN [0 o] 11 114 1 I OSSPSR 41
2.8. Efficient Path Method...........ccooiiiiiiii s 42
00 = O I []\ I SRR 45
RESULTS OF SOFTWARE IMPLEMENTATIONccoviiiiieieene e 45

3.1. Building an obstacle map

3.3. Comparison of accuracy and speed of algorithmscccoov i,

CONCLUSION. ..o

10

INTRODUCTION

The problem of creating a navigation system that allows moving objects to move
autonomously in real environments is very important in the modern world. More and
more tasks are being performed by some service robots instead of people. Over time,
most processes for the production of material assets, exploration of new territories
(including in space) and servicing people will be performed by autonomous robots.

Mass production of autonomous robots capable of working in difficult conditions
will greatly simplify people’s lives. No one should have to risk their life doing the job.

Creating some universal method that can automate robot movement in various
environments will be a huge step towards creating fully autonomous and
multifunctional robots. In this regard, this task is currently truly relevant and requires
finding more optimal solutions in many respects, such as reducing the error in
calculations by sensors of distances to environmental objects and the ability to create
groups of robots that can jointly perform one task that a mobile robot cannot can do it

alone.

11

SECTION 1

NAVIGATION SYSTEM FOR MOBILE ROBOTS

The main problem of all currently existing mobile devices that move
independently, without human control, remains navigation. To successfully navigate in
space, the robot’s on-board system must be able to build a route, control movement
parameters (set the angle of rotation of the wheels and the speed of their rotation),
correctly interpret information about the surrounding world received from sensors, and
constantly monitor its own coordinates.

Computer route planning systems are quite well developed. Initially, they were
created for the simplest virtual environments, and the program simulating the robot’s
actions quickly found the optimal path to the goal in two-dimensional labyrinths and
rooms filled with simple obstacles.

When fast processors appeared, it became possible to form a movement trajectory
on complex three-dimensional maps and in real time. A significant contribution to this
algorithmic direction has been made by companies that develop computer games and
finance relevant research. In modern games, each of the conflicting sides involves
several hundred combat units operating on randomly generated three-dimensional maps,
and each unit quickly and quite efficiently finds its way to the goal. Therefore, in real
operating conditions such algorithms are ineffective.

A full-fledged robot must determine its own coordinates and choose the direction
of a movement only based on the indicators of on-board sensors, therefore, artificial
intelligence systems created for autonomous machines are focused on supporting a
continuous cycle of “poll of sensors — making an operational decision to change the
route”.

There can be several such cycles — one is responsible for following the main
route, the other for avoiding obstacles, etc. In addition, at the hardware level, each cycle
can be supported by sensors of different types and different operating principles,
generating data streams of different volumes and intensity.

12

Mobile robot navigation covers a wide range of different technologies and
applications. It relies on both very old technologies and the most advanced
achievements of science and technology.

The navigation system in robotics is divided into three levels:

o global — determination of the absolute coordinates of the device when
moving along long routes;

o local — determining the coordinates of the device in relation to some
(usually starting) point. This scheme is in demand by developers of tactical unmanned
aircraft and ground robots performing missions within a pre-known area;

o personal — the robot positions parts of its body and interacts with nearby
objects, which is important for devices equipped with manipulators.

Navigation systems are classified according to one more criterion — they can be
passive or active. A passive navigation system involves receiving information about
one’s own coordinates and other characteristics of one’s movement from external
sources, while an active one is designed to determine the location only on one’s own.
As a rule, all global navigation schemes are passive, local ones are both, and personal
schemes are always active [6].

In the process of local navigation, a number of tasks arise:

o Trajectory motion control,

o Detection localization of obstacles;

o Ensuring movement along a given route: along a strip, in a labyrinth, on a
map of the area;

o Determination of own coordinates in local space;

o Scanning space;

o Drawing up a map of the area and linking it to it.

13

1.1. Hierarchical structure of the robot control system

When building a robot navigation system, many technical difficulties appears, the
solution of which is assigned to the control system. To move towards a goal, the robot
needs to form a fairly accurate image of the space around it. Today this is achieved
mainly by using laser rangefinders and ultrasonic emitters (sonars). However, the laser
beam will help to obtain an image of the environment only in the line of sight. In
addition, small interference often appears along the path of the beam, introducing an
error into such an image. And ultrasonic sensors are characterized by a long response
time (if the robot is in a large and open space), on the order of tenths of a second, which
does not allow the robot to move quickly. The speed of sound in different conditions
can also “float”, affecting the accuracy of distance estimation, as a result, the overall
picture of the environment in the robot’s “head” is distorted.

Creating three-dimensional maps using lasers in real time is even more difficult
and, at a minimum, requires significant computing power, which has not yet been
implemented in the form of compact on-board boards. For these reasons, the value of
the information coming from on-board sensors is low. The robot needs to translate it
into a formal and structured “verbal” description of the world (recognition task), which
so far turns out rather poorly. Technical vision systems promise to provide the greatest
effect here but they are also still imperfect. However, this drawback has already been
overcome in projects where robots operate in buildings and in any other predetermined
environment [6]..

A promising idea turned out to be storing a complete map of the area in the
machine’s memory. Usually it is presented in a geometric (very detailed, but also very
voluminous) or topological (compact, symbolic, but less detailed) form.

The best results are obtained from three-dimensional maps, but their storage and
processing by the robot’s on-board system is difficult: the computing resources required
are too large by today’s standards. And most importantly, the robot is not always able to

correctly determine its real location on such a map.

14

A lot of research is being done to train autonomous vehicles in methods of
independently constructing terrain maps. This area is heavily funded by the military,
who are interested in automating the processes of constructing maps of any area of the
Earth. The obstacle to this lies not so much in the weakness of the algorithms, but in the
relatively slow on-board processors. During movement, the robot must quickly and
accurately control the motor and the position of the wheels.

Some robotics problems, in principle, do not allow an exact solution (this is, for
example, the problem of controlling the torque of an electric motor so that the robot
strictly follows the route). In other problems related to the dynamics of robot motion
(the field of theoretical mechanics), finding the answer is still very far away, and the
search for approximate coefficients that determine the motion parameters requires the
on-board device to constantly solve systems of differential equations. The robot must
know its real location and it is almost always different from that stored in the on-board
system.

Determining coordinates is a fundamental navigation problem, the answer to
which is of interest not only to roboticists, but also to specialists from many other fields
— primarily space, aviation and automotive.

The general functional diagram of a sensing robot equipped with a technical
vision system (possibly together with other external information sensors) is shown in
fig. 1.1. The robot’s sensory system must supply its control system with information
about the current situation in the external environment: the presence, type, parameters,
location and orientation of objects of manipulation (impact); the correctness and quality
of the robot’s performance of technological operations and/or other actions; the
existence of obstacles and ways to bypass them, etc. The control system also receives
tasks (commands) to the robot from a human operator, other robots, higher-level
computers, technological equipment or other devices. In accordance with the above
diagram, information from the technical vision system can be supplied to different
levels of the control system [3].

For example, data on the location of obstacles is needed to build up a model of

the working environment in order to plan the robot’s actions; the results of object
15

classification are necessary at the strategic level for dividing the general plan of action
into specific manipulation operations, setting their sequence and parameters;
information about the location and orientation of objects is necessary for the formation
at the tactical level of the required movements of the robot, according to which, in turn,
software laws for coordinated changes in the corresponding degrees of mobility are
constructed: information about the deviation of the actual trajectory from the
programmed one can be used directly at the executive level to generate control signals
to the drives when executing the program in order to correct the movement of the

robot’s working body.

Vision system

modules for
»| video sensors processing and
analyzing video
l communication system
= — interface with & human operator
other sensory systems P and higher-level
computers
robot
control
system . 7

Ea highest level <€

—> strategic level R

- tactical level -

- executive level -

1
v
internal
information drives robot executive system
SENSO0rs
- motion system manipulation system
J

— robot working environment

Figure 1.1 — Functional diagram of the robot’s hierarchical control system

16

Regardless of how the video sensors are placed, the information obtained with
their help is used to control the adaptive robot in accordance with one of the following
two principles. The first is based on continuous (or quasi-continuous) input of a video
feedback signal to correct the robot’s trajectory. Servo systems operate on this principle,
minimizing deviations of the current position from the desired one, which is determined
based on visual observation of the target object.

The second principle is based on inputting information from the video sensor into
the robot control device in discrete portions. Each such portion serves to develop
programmed movements for the next time interval, during which the robot moves to the
next target position “blindly,” i.e., without continuous visual feedback. Each of these
principles of using video information to control robots has its own area of application.

Although systems with “visual servo control” are undoubtedly promising, video
sensors based on the second principle described above, “kissing,” are still much more
widespread. In the simplest case, based on the results of the operation of the video
sensor, based on a priori specified conditions, a decision is made only on starting or
stopping (interrupting) a predetermined program of robot actions, switching to one or
another rigid subroutine, changing the sequence of execution of commands of the
control program, complete information about each of which should be entered into the
control device before the robot starts operating [3]. Wider capabilities are provided by
adaptively changing the robot’s control programs themselves in accordance with the
actual situation, determined from information from the video sensor. Adaptive robots
are capable of automatically generating movements during operation without the need

for a priori human indication of detailed laws of change in all controlled coordinates.

17

1.2. Obstacle detection

There are many ways to detect obstacles. These may include ultrasonic, radar,
optical and other sensors.

In the practice of controlling a mobile robot, the problem appears of quickly
collecting information about the space around it in order to correctly complete the task.
To increase the speed of completing a task, it is necessary to increase both the speed of
movement of its mechanical parts and the speed of collecting and processing
information [2]. As a result, the mechanical impact of physical contact between the
robot and an obstacle or objects being manipulated can be destructive to the system. In
addition, a mobile robot must be able to obtain information about all objects around it,
both stationary and moving, which would allow it to learn and plot the shortest course
to speed up the task. Cases when information about the environment is pre-installed by
developers into the program are increasingly becoming an exception, since such devices
are not sufficiently universal and safe [10].

The main methods for detecting obstacles and identifying their coordinates are
considered. Let’s assume that the video sensor is located on the mobile base and is
directed in the direction of its movement. In this case, obstacles that must be avoided or
navigation beacons come into view. To do this, it is necessary to determine the presence
of the obstacle itself and the distance to it. Let’s assume that the outline or characteristic
points of the obstacle can be determined from the image. In this case, there are two main
approaches to determining the distance to this obstacle. One of them is based on the use
of stereo vision methods and a method related to stereo vision — triangulation, and the
second is based on the use of a number of frames in processing, rather than just one,

along with measuring the parameters of the robot’s movement.

18

1.3. Stereo vision method in the problem of determining the distance to an

obstacle

The stereo vision method for determining the distance to an obstacle is based on
the fact that a video camera, just like a photo camera, is essentially an angular device.
Each point of the real object O is mapped to point I of the real image, located behind the
focus f of the objective or lens, by means of the light emitted or reflected by this object,

as shown in fig. 1.2.

Figure 1.2 — Formation of an optical image point

To construct an optical image, an optical objective or a collecting lens is used. In
optics, these devices are considered equivalent, but the lens consists of a set of lenses
(in some lenses, mirrors), designed to mutually compensate for aberrations and
assembled into a single system inside the frame [10].

The image of one plane perpendicular to the main optical axis of the lens is
constructed in one plane of the actual image, which for the imaged plane is called the
plane of best vision. The image of any other plane will be shifted along the main optical
axis of the lens. To input an image into a computer (convert an optical image into a
graphic image), in most cases, a charge-coupled device (CCD) is used. Devices with
charge injection (CI) and others can also be used. The CCD is located in a plane
perpendicular to the main optical axis behind the lens focus. In the CCD plane, a real

image of a plane located at a certain predetermined distance from the lens will be

19

constructed. This distance is determined by the lens and the location of the CCD relative
to it. Any other plane will be depicted in the CCD plane as a spot, the larger the further
its plane of best vision is from the CCD plane. As long as the spot produced on the CCD
does not exceed the size of one photosensitive element, the image will be sharp,
otherwise it will begin to blur. The distance between the extreme optical image planes
in which the CCD image remains sharp is called the depth of field of the lens. Each of
these planes corresponds to a plane in the space of objects. The image of a scene
constructed in the space of objects between these planes, taken from a CCD, will be
sharp. Objects located outside these planes will be blurred by the (X) axis of the graphic
image. If a feature point is identified in each image, an equivalent triangle can be
constructed, shown in fig. 1.3.

The coordinate of a point along each axis in the image is a function of the angle
between the optical axis and the projection of the ray forming this point onto the plane
formed by the optical axis and the perpendicular to it corresponding to the considered
axis of the image. The idea of the stereo vision method is: there are two cameras, each
of which has a characteristic obstacle point in its field of view, and the cameras
themselves are located at a known distance from each other. Conveniently, let’s assume
that the cameras are oriented in such a way that the optical axes of the lenses are
collinear, the line connecting the focal points of the lenses is perpendicular to both
optical axes, and the lines parallel to it, passing through the optical axes and falling into
the field of view of both cameras, coincide with the horizontal axis (X) graphic image.
If a feature point is identified in each image, an equivalent triangle can be constructed,

shown in fig. 1.3.

20

Figure 1.3 — Equivalent triangle (point A is the position of camera 1, point B is
camera 2, point C is the projection of a point in object space onto the plane in which the

optical axes of the lenses lie).

The base “c” of the triangle is equivalent to the distance between the cameras,
and the angles at basis — determined by the image from each camera. Now that one side
and two angles have been defined for a triangle, any of its characteristics can be
calculated, including its height [10]. The height corresponds to the distance from the
line connecting the centers of the CCD matrices to the projection of a point in the space
of objects onto the plane in which the optical axes of the lenses lie, and is determined by

the equation:

_ ctgpf-tga (11)
tgp +tga

Now, using the angle y of the elevation of a point in space above its projection
onto the plane in which the optical axes of the lenses lie, the required distance L to the

point itself in the space of objects can be calculated using the equation:

__h
L= (12)

The angle y is determined by the vertical coordinate (YY) on the graphic image
obtained from any camera or by the average value. One of the problematic areas in
stereo vision is determining the relationship between the coordinates in the image and
the angular coordinates of the ray coming from the imaged point. The most rational

method of solving this problem is experimental.

21

For a camera-lens pair, in a plane perpendicular to the optical axis of the camera,
at a given distance, a calibration surface with a uniform grid applied to it is placed. Grid
nodes located on the image axes have, on the one hand, a known coordinate in the
image, and on the other, a known coordinate in space, which means a table of
correspondence between angles and coordinates along each image axis can be compiled.

At intermediate points the function is found by linear interpolation. Another
problem is the very definition of a common point in two images. The most
straightforward way to solve this problem is to directly recognize patterns from two
images. However, this task is quite complex, and its solution directly from images is
complex, resource-intensive, and has a significant error in determining coordinates. In
addition, even with successful detection of objects (especially those of similar shape and
color), if several of them fall into the field of view of the camera, especially in cases
where some of them fall into the field of view of only one camera, the problem of
establishing correspondence with each other arises images of the same object detected
on different cameras. To solve this problem, active or passive beacons are used, which
mark obstacles or navigation beacons [10]. These can be multi-colored emitters or
colored corner reflectors, if there is a spotlight on the mobile robot itself. The main
condition is the ability to easily distinguish one beacon from another and from
background radiation in the image. What is used for is a variation of simple geometric
shapes, easily recognizable, and colors. In the case where you intend to work near
sources of interference, it is advisable to choose beacons or a searchlight that emit in a
wavelength range different from the one inherent in the interference. For example, if the
robot is working in a crowded environment, it is not wise to use infrared. In addition, it
IS necessary to equip the system with optical filters that cut off wavelengths not used by
beacons. These can be bandpass filters or, in the case of using beacons of the same
color, line filters — allowing you to isolate almost only one wavelength and completely
filter out background radiation at other wavelengths. Since a typical CCD matrix
perceives radiation in a fairly wide range of wavelengths, even with significant
brightness of a monochromatic beacon, the intensity of the light flux from a seemingly

insignificant interference, when integrated over the entire wavelength range, can
22

generate false images of beacons. Thus, the use of optical filters makes it possible to

organize the search for beacons even in a very noisy environment.

1.4. Triangulation method in the problem of determining the distance to an
obstacle

Another method used to detect points belonging to an object in a video image and
the distance to them is the triangulation method [6,9], using illumination with a laser
beam or scanning of a laser beam. Similar methods are good for determining distances
to objects at which the beam is directed, but are increasingly used in rangefinders or
profilometers.

In the orientation of mobile robots, triangulation using laser illumination is not
very suitable, since it is necessary to organize laser scanning of space, which, along
with the low speed of household video cameras (25 frames per second), gives a rather
low resolution. In addition, additional drives and moving parts appear, which means the
weight increases, additional dynamic moments and forces arise, as well as weak points
of the structure, since it is the mechanical components that have the least reliability. The
use of a video sensor in such a system is redundant, since instead of a video sensor/laser
pair, a laser lidar [8] can be used, which provides greater scanning speed and accuracy.
Another approach is the triangulation method using a light strip. The use of
illumination, made in the form of a laser beam scan in a plane parallel to the floor,
similar to that shown in figures 1.4, 1.5, except in cases where the presence of obstacles

IS expected below or above this plane, is quite acceptable.

23

Figure 1.4 — Image of a nearby object illuminated by a laser scan

From Figures 1.4-1.5 it can be seen that the laser scan line in the image has a
broken character. The areas between the line breaks in the image correspond to
individual objects illuminated by the laser scan. This provides a mechanism for
selecting individual objects and estimating their size. In addition, from Figures 1.4-1.5 it
is clear that when an object is removed, the image of the intersection of the object with
the laser illumination plane moves away from the latter, which provides a mechanism
for estimating the distance to the identified object. This method looks quite simple, but
it should be remembered that when using household cameras and lenses, the image of
the line will be sharp enough only within the finite limits determined by the depth of
field of the lens.

24

Figure 1.5 — Image of a distant object illuminated by a laser scan

The computational part of the triangulation method practically repeats the
computational part of the stereo vision method. An additional advantage of this
approach is that there is no need to use two cameras. Instead, the sweep is arranged so
that in the equivalent triangle in Fig. 1.3, it originates from the base and coincides with
the height. Then three quantities are known: the angle «a, as before determined from the
image, the distance from the vertex A to the height h (from the focus of the video
camera to the laser scan), which will note as I, as well as the angle between the height
and the base, equal to 90 degrees. Thus, the following equation is valid:

h=1-tga (1.3)

The main disadvantage of this approach is the detection and determination of
distance only to objects in the laser scanning plane, which is why instead of two
equations (1.1)—(1.2), one (1.3) appears here. In order to capture the return beam in such
a system, suitable lighting conditions and reflectivity of the target surface are necessary
so that the fringe is the brightest in the image. In practice, this is achieved by treating
the target surface with a matte finish, using high-contrast cameras, or reducing the level
of ambient lighting. When using the system in a robot to recognize objects in a room

environment, there is a large amount of noise that makes work difficult: smooth

25

surfaces can cause secondary reflections, edges and textures can have a hatched
appearance, and in the end, crosstalk is possible when more than one robot is working
with a similar system. Several approaches have been found to increase the robustness of
such systems. Using a stereo pair to register a band allows you to remove false
reflections but is highly dependent on user information on the object given a priori [8].
You don’t have to mix images from two cameras but use one as a checker for the other.
Robustness is achieved through sequential checks of the received ranging information,
the most important of which require independent conversions from one of the cameras.
Another limitation is that the error correction method does not provide a way to get rid
of multiple fringe images resulting from secondary reflections. As a result, all
measurements indiscriminately during secondary reflections are not taken into account.
Also, the elimination of incorrect information can be achieved through the interaction of
independent scanning devices [12]: two laser stripes and one camera are used. In
addition to robust ranging, surface normals can be obtained. The disadvantage of this
method is that the distance can only be obtained from the image to the point where the
stripes intersect, so it will take much more time to obtain a complete distance map.
Some other methods of interest propose using a single camera with a single stripe.
Reflections can be recognized by moving the sensor relative to the environment and
analyzing changes in the converted ranging information. By modulating the periodic
intensity of the beam, extraneous noise is eliminated [12]. Both of these methods obtain
ranging information from multiple images, making them prone to errors. Moreover,
modulating the beam intensity does not eliminate secondary reflections, which change
in unison with the primary reflection. To eliminate secondary reflections from metal
surfaces, linearly polarized light can be used, so that with each new reflection such a
beam changes its polarization. However, the registration method at the receiver is

difficult: several measurements through different polarization filters are required.

26

CONCLUSION

The task of navigation remains a key problem in mobile robotics, which implies
determining the position of a mobile robot in the workspace — localization and drawing
up a representation, description of the surrounding world — cartography. Information
about the current position of the robot is necessary to solve most encountered control
problems: passing a given path, finding a path to a given point, returning to the starting
position. Information about the surrounding world, which is most often presented in the
form of a map or terrain plan is necessary to remember the route taken, plan a trajectory

around static obstacles and track dynamic objects.

27

SECTION 2

PLANNING THE PATH OF A MOBILE ROBOT

Every modern enterprise is looking for all possible ways to make its work as
efficient as possible. Autonomous mobile robots (AMRs) are coming to the aid of
healthcare institutions, agricultural companies, manufacturing warehouses and logistics
organizations. Such devices successfully replace outdated equipment and improve
characteristics such as speed, accuracy and safety.

The task of creating robots that can move without human assistance from point A

to point B, avoiding collisions with obstacles, consists of many different subtasks.

2.1. Description of the movement of a moving object

Two types of moving objects are considered [11]: tracked and wheeled mobile
robots. The robot’s movement was studied in a Cartesian coordinate system centered at
point (0,0) on the environment map.

Equations of motion of a moving object:

(fv=aw=¢ec¢ =wx =v=*cosifp)y=vx*sinifp) (2.1)

Where x, y are the coordinates corresponding to the center of the circle describing
the mobile robot, ¢ is the heading angle, v, a are the linear speed and acceleration, w, €
are the angular speed and acceleration.

A tracked mobile robot can move in any direction on a plane, subject to the
constraints imposed by the equations of motion.

Unlike a tracked robot, a wheeled robot has limited capabilities in choosing the
direction of movement (fig. 2.1). The robot is presented in the shape of a rectangle with

an aspect ratio of 1:2.

28

zone into which the
robot cannot move
due to dynamic

zone of restrictions - zone of
possible possible
movement movement
zone of zone of
possible possible
movement zone into which movement

the robot cannot
move due to
dynamic
restrictions

Figure 2.1 — Possible directions of movement of a wheeled robot

It was considered a movement in which the angle of rotation relative to the
coordinate system under consideration is maintained after moving in any of the possible

directions.

2.2. Navigation system structure

The resulting structure of the navigation system of an autonomous mobile robot is

shown in the fig. 2.2.

29

Figure 2.2 — Navigation system structure

Elements of this system are [2]:

e Laser range finder — a device that allows to scan the surrounding space and
receive data about objects (obstacles) located in a given space in the form of distance
vectors;

e SLAM algorithm (Simultaneous Localization and Mapping) — an algorithm
developed for localizing a mobile robot in space, as well as constructing a dynamic map
of the environment;

e The obstacle tracer, based on the available data on the current location of the
robot and the current scan of the environmental map, builds a list of moving obstacles
and predicts their location at the next time;

e Obstacle avoidance algorithm — an algorithm that allows to construct a
trajectory for a mobile robot to avoid obstacles given the available data on the robot’s
location at a given time and the current scan of the environment map.;

e Mobile robot — an autonomous robot moving along a given trajectory with the

help of some control.

30

2.3. SLAM algorithm

The SLAM algorithm is necessary to create mobile robots that can move
autonomously in a non-deterministic environment.

There are two kinds of fundamental characteristic SLAM navigation methods.
These are methods that use various types of filtering and methods using Bundle
Adjustment.

MonoSLAM. The very first visual monocular SLAM method was an algorithm
developed back in 2002 called MonoSLAM [13]. This method is a typical
representative of VSLAM methods that work using a filtering process. The
MonoSLAM algorithm has six degrees of freedom of the camera position (DOF) and
the coordinates of the position of singular points in three-dimensional space are
represented as a state vector of an extended Kalman filter (EKF).

The camera position calculation is based on the received motion model data. As a
result of the calculated new camera position, new special points are added. It is also
worth noting that the initial construction of the environment map occurs based on the
visible special points on the current frame.

The following stages of this algorithm can be distinguished:

o the initialization process occurs with previously known special points on
the map;

o estimation of the camera movement and three-dimensional positions of the
object’s special points is performed using an extended Kalman filter.

The main disadvantage of this algorithm is the increase in the number of
calculations as the surrounding space expands, which leads to an increasing number of
calculations of new singular points. Because of this, the size of the state vector
increases, which does not allow the use of this algorithm in real-time systems.

PTAM. To solve the main problem of the MonoSLAM method, an algorithm
called PTAM took the path of dividing the tasks of mapping and tracking between two
CPU threads [13]. Because of these two threads execute in parallel, the computational
cost of mapping does not have a significant impact on the tracking task. Therefore,

31

during the mapping process, can use Bundle Adjustment. This means that the tracking
task can be performed in real time while 3D modeling of singular points occurs at a
high computational cost.

The PTAM algorithm was the first algorithm to use Bundle Adjustment in real
time. Subsequently, the multithreading approach began to be often used in other
VSLAM algorithms. The construction of the initial map of the environment in PTAM
occurs using the five-point algorithm [13]. To clarify the camera position,
environmental map points are projected onto the image and a cloud of supposed visible
points is constructed from them. During the matching process, the position of new
points is determined by triangulation on specific frames, which are called key points.
An important development in the history of the development of SLAM algorithms,
thanks to the experience of developing PTAM, is the introduction of a keyframe-based
mapping system. To determine a key frame, the input frame is compared with another
key frame and if the difference is large, then the input frame is taken as a key frame. To
perform triangulation, there must be a significant difference between the input and key
frames. In PTAM, optimization of the three-dimensional position of special points
occurs by applying a global Bundle Adjustment with certain key frames, as well as with
all key frames on the environment map. It is also worth noting that the PTAM algorithm
uses a relocalization method for the camera tracking process [2].

In the task of finding the most suitable key frame of the resulting image, a
randomized tree search classifier is used. As a result, the following modules can be
distinguished in the PTAM method: 1) application of the five-point method for the task
of initializing an environment map; 2) the position of the video camera is estimated
using the coincidence of special points of the environment map and the resulting image;
3) using triangulation, the three-dimensional positions of object points are estimated,
and the already estimated positions are optimized using Bundle Adjustment; 4) when
using a randomized tree search classifier, the tracking process is restored.

The SLAM algorithm uses a Kalman filter to build a solution.

The Kalman filter is an efficient recursive filter that estimates the state of a

dynamic system based on a series of imprecise measurements. It was developed in 1960
32

and named after Rudolf Kalman. This filter is necessary to eliminate the error of the
SLAM algorithm caused by odometry. The Kalman filter processes the input data, i.e.,
the position of the robot and the singular points, and returns their estimated values.

The operating principle of the SLAM algorithm:

e The robot is in some unknown place. Using the data received by the sensors, a
visible section of the map is constructed from a given position;

e Using the trajectory obtained at this step, the next position for movement is
selected;

e There is a movement to a new position and a comparison of the current position
with the expected one obtained at the previous step;

e Based on the received data and data from the previous iteration, the map is

updated.

2.4. Constructing an environmental map in the form of a grid map

The environmental map is presented in the form of a grid map. The cell size is
selected depending on the required accuracy. Moreover, the smaller the cell size, the
longer the obstacle avoidance algorithm will work.

The resulting cells are divided into two types (fig. 2.3):

o free — these are the cells through which the robot can move unhindered);

. cells containing obstacles.

cells with obstacles

available cells

/ obstacles

Figure 2.3 — Example of an environmental map

33

For robots that can move in all directions on a plane, the cell size usually
corresponds to the dimensions of the robot, that is, the robot’s outline can be fit into this
cell. To achieve higher accuracy, it is possible to reduce the cell size, but the algorithm

for constructing the trajectory must be changed.

2.5. Obstacle tracing

Tracing moving obstacles allows to determine the location at the following
moments of time and the movement parameters of a mobile robot in a coordinate
system related to the environment. Most obstacles move without changing direction.
Thanks to this it is able to use obstacle tracing to predict their movement.

It may be apply tracing to an obstacle if:

o The obstacle is a rigid body;

o Submits to the equations of robot motion;

o Cannot change speed abruptly;

. It can be inscribed in a circle.

Each such obstacle has the following set of parameters:

(fv=aw=¢c¢=wx=v=*cosifip) y =v*sinifp) (2.2)

Where x, y are the coordinates corresponding to the center of the circle describing
the obstacle, ¢ is the heading angle, v,a are linear speed and acceleration, w, & are
angular speed and acceleration.

The obstacle state vector looks like this:

s=xypvwaeR)

34

Operating principle of the obstacle tracer:

e Creating a list of moving obstacles;

e Determining the radius of the circle R describing obstacles from the resulting
list;

e Constructing a state vector s for each obstacle.

2.6. General planning structure

Although different algorithms are designed to construct a trajectory in different

situations. The flow diagram of the rapid path planning algorithm is as shown in fig. 2.4

(Start)

v
’ Input the map information and /
/ the coordinates of S and G

\ 4 :
[Adopt Dijkstra to plan the global optimal path |

v
» Robot moves along the path [«
/""L‘>»
No __—Are there obstacles in
~——_therange of detection? — [Search
R the local
L Y target
__— Willtherobot ———_Y*S| and
~———collide with obstacles? — adopt A*
T~ to re-
—— v N plan a
—»[Robot moves one step forward] new path
,»/v*-_\
NQ ,_,,»/""/'15665 the rogét\‘*_\
—_reach the goal? —
v Yes
(End)

Figure 2.4 — Flow diagram of the rapid path planning algorithm

35

2.7. Algorithms for avoiding obstacles

To build trajectories in different situations, it is necessary to use different
algorithms:

o Deterministic environment with stationary obstacles — Dijkstra’s algorithm,
Algorithm A*;

o Non-deterministic environment — D* algorithm.

In addition, the algorithm can change due to various dynamic properties of the
moving object under consideration, for example, when considering problems of

constructing a trajectory for a wheeled and tracked robot.

2.7.1. Dijkstra’s algorithm

Dijkstra’s algorithm is currently one of the most popular algorithms for finding
the shortest path in a graph.

How the algorithm works [5]:

1. Building a map of the environment, also marking on it the initial position of the

robot and the target point (fig. 2.5)

unexplored
cells
) | B B T l cells from a
- i : - : closed list
bost > v t - robot initial
) sl el ¥R position

- target point

Figure 2.5 — An initial environmental map

36

2. Creating two lists of cells — open and closed. The open list initially contains
only the cell corresponding to the initial position of the robot, while the closed list
contains all cells containing obstacles (fig. 2.6).

unexplored
cells
. e) B Fe T] cells from a
Pt ' P T closed list
[a] >-]
It m i A - robot initial
- Y L) feN) el ol position

. target point

Figure 2.6 — An initial graphical display of the environment

3. Introducing the function [, which displays the distance from the initial cell
to the given one.

4. Sorting the open list in ascending order by function [. Taking the first cell
from this list as the cell in question.

5. Placing this point in a closed list. We consider all neighboring points that
do not belong to the closed list (fig. 2.7). Adding them to the open list. If one of the

points considered is the target, go to point 6, otherwise — to point 4.

' unexplored
cells
I [O B R I cells from a
] | closed list
i m
. L il robot initial
. position

e e e - target point

Figure 2.7 — Changing open and closed lists

37

6. Based on the data obtained, is building the initial trajectory.

2.7.2. Algorithm A* (A-star)

The “A*” algorithm is an improved modification of Dijkstra’s algorithm,

designed to more quickly find the optimal trajectory using heuristics. This paper

considers the heuristic function H = /(x — x,)% + (¥ — ¥,)2, Where x, y — coordinates
of the point under consideration, x_K, y_K — coordinates of the target point.

How the algorithm Works [1]:

1. Building a map of the environment, also marking on it the initial position
of the robot and the target point (fig. 2.5)

2. We create 2 lists of cells — open and closed. The open list initially contains
only the cell corresponding to the initial position of the robot, while the closed list
contains cells containing obstacles (fig. 2.6).

3. We introduce the function L = H + [, where H is a heuristic function, [is
the distance from the robot’s initial position to the current one, which displays the
minimum distance from the starting point to the target when constructing a trajectory
through a given point.

4. We sort the open list in ascending order of the function L. We take the first
cell from this list as the cell in question.

5. We place this point in a closed list. We consider all neighboring points that
do not belong to the closed list (fig. 2.7). Add them to the open list. If one of the
considered points is the target, go to point 6, otherwise — to point 4.

6. Based on the data obtained, build a trajectory.
2.7.3. Algorithm A* (A-star) for wheeled robots

Due to the limitations imposed on the ability to choose the direction of movement

of a wheeled mobile robot, six main directions of movement were identified (fig. 2.8).

38

To determine the location of the robot at the current time, it is only need to know the

coordinate corresponding to the upper left edge of the robot.

P A
~N
=

Mo
\\\
/ N

Figure 2.8 — Possible directions of movement of a wheeled robot

=
A

Since the standard A* algorithm examines eight directions of possible movement,
and we consider only six, it needs to be changed.

Operating principle of the modified A* algorithm:

1. We build a map of the area, marking on it the initial position of the robot
and the target point (fig. 2.5). In this modification, the initial position of the robot will
correspond to the upper left cell belonging to the robot.

2. We create two lists of cells — opened and closed. The open list initially
contains only the cell corresponding to the robot’s initial position, while the closed list
contains cells containing obstacles. An initial graphical display of an open and closed
list is shown in fig. 2.6.

3. Let’s introduce the function L = H + [, where H is a heuristic function, [is
the distance from the initial position of the robot to the current one.

4. We sort the open list in ascending order of the function L corresponding to
the cell.

5. Take the first cell from the resulting list as the cell in question.

6. Consider six neighboring cells that can be reached in one iteration. If these
cells, as well as the cells necessary to make a movement from the previous cell to the
current one, do not belong to the closed list, then add them to the opened list, otherwise
—to the closed list (see fig. 2.9).

39

' unexplored

cells
> SR St EE R e j cells from an
Ll i il opened list
-
| | HIBIIESE i - 81 sl . cells from a
. closed list

MDA AEY - target point

Figure 2.9 — Changing opened and closed list

7. If there is a cell in the open list corresponding to the target point, then go to the
next point, otherwise we return to point 2.

8. Based on the data obtained, we build the desired trajectory.

2.7.4. Algorithm D* (D-star)

The robot can only move along a given grid, that is, at each new step it has four

different options for making a movement — up, down, left, right (fig. 2.10).

Figure 2.10 — Possible directions of movement

40

2.7.5. Algorithm D*

The “D*” algorithm is based on the use of the “A*” algorithm, which allows to build a
trajectory around obstacles that is optimal in terms of the path length.

How the algorithm works:

1. We build an initial map of the environment, marking on it the initial

position of the robot and the target point (Fig. 2.11).

Figure 2.11 — An anitial environmental map

2.Create a history list that stores information about all cells considered during
each trajectory construction. Using the “A*” algorithm, we build a trajectory from the
target point to the starting point (fig. 2.12), adding all the considered cells from the
history list. All elements of this list have the following characteristics:

a. Weight:
{x = 1,if the cell does not contain an obstacle x =
999999, if the cell contains an obstacle ;

b. Previous (k — 1) cell;

c. path length from target cell: p(k) = w(k) + p(k — 1) ;

d.current coordinates x u y.

41

3. The movement along the resulting trajectory from the starting point to the target
point is considered. At each step, a check is made (fig. 2.13): if the next cell of this
trajectory does not contain an obstacle and is not a target cell, move on; if it contains an

obstacle, we stop moving and go to step 4; if it is a target cell, we complete the

algorithm.

T

Figure 2.13 — Making a movement and checking the next point

4.1f at least one of the neighboring cells (k,,.,,) available in the history list and
updated distance from this cell to the target p(k,.,,) < p(k) + 3, then we go to step 5,
otherwise we make the current cell the initial position of the robot and go to step 2.

5.From the neighboring cells that satisfy the condition from step 4, select the one
whose distance from the target point is the smallest and go to step 6.

6.Using information about the previous cell known for each cell, we recursively

build a new trajectory passing through the cell obtained in step 5 and go to step 3.

2.8. Efficient Path Method

The effective path method presented in [11] makes it possible to optimize the
resulting trajectory in terms of length.
As a reference point, select the second bend of the trajectory obtained using one

of the considered algorithms. Representing the robot in the form of a circle describing

42

it. Denote the distance between the reference point and the current position of the robot

as R. Due to the dynamic limitations of the robot, R is limited from above and below:

2

. 1 .
{Rmax (vc) = (vc + At * va) * Tmax Rmin = Unmax * T, - E * Vp * Tb)

bmax max

Where v, — initial speed, ¥, — maximum robot acceleration, T,,,, — time path to
the nearest obstacle, T, — maximum braking time.

If the robot can move unhindered in a straight line from the current position of the
robot to the reference point, then we change the trajectory, replacing the broken line
leading to the reference point with a straight line. Otherwise, we must find the shortest
possible curve along which the robot can move unhindered. To do this, consider the

robot at the current moment and when reaching the reference point (fig. 2.14).

Figure 2.14 — An efficient path method

To find the shortest trajectory, is need to consider the case when the robot moves
as close as possible to the obstacle, that is d = |[EP| = |0E* — OP| = W. Based on the

information received, using geometric calculations, a new polyline is found connecting

the current position of the robot with the reference point.
CONCLUSION

Algorithms for constructing trajectories in different situations are analyzed,

necessary for deterministic and non-deterministic environments.

43

It is concluded that it is impossible to create a universal robot movement
algorithm. The algorithm used will depend on the conditions and purpose of the robot in
each specific case.

A method of using the effective path method is shown to optimize the robot's
trajectory according to the criterion of the minimum route length for a deterministic and

non-deterministic environment.

44

SECTION 3

RESULTS OF SOFTWARE IMPLEMENTATION

Software has been developed in C# language that implements the considered
algorithms for constructing a trajectory to avoid obstacles.

A fragment of the program code is shown in the fig. 3.1-3.8

1 <?xml version="1.8" encoding="utf-8"2?>

2 <Project ToolsVersion="12.0" DefaultTargets="Build" xmlns="http://schemas.microsoft.com/developer/msbuild/2003">
3 <Import Project="$(MSBuildExtensionsPath)\$(NSBuildToolsVersion)\Microsoft.Common.props” Condition="Exists('$(MSBuildExtensionsPath)\$(MSBuildToolsVersion)
4 <PropertyGroup>

5 <Configuration Condition=" '$(Configuration)' == '' "sDebug</Configurations
6 <Platform Condition=" "$(Platform)’' == ' ">AnyCPU</Platform>

7 <ProjectGuid>{BC166F77-0@E8-4F49-8A07-0898C6D47153} </ProjectGuid>

8 <OutputType>WinExe</OutputType>

9 <AppDesignerFelder>Properties</AppDesignerFolder>

10 <RootNamespace>Motion_Control</RootNamespaces

11 <AssemblyName>Motion_Control</AssemblyName>

12 <TargetFrameworkVersion»v4.5</TargetFrameworkVersion>

13 <FileAlignment>512</FileAlignment>

14 </PropertyGroup>

15 <PropertyGroup Condition=" '$(Configuration)|$(Platform)’' == 'Debug|AnyCPU’ ">
16 <PlatformTarget>AnyCPU</PlatformTargets

17 <DebugSymbols>true</DebugSymbols>

18 <DebugType>full</DebugTypes

19 <Optimize>false</Optimize>

20 <OutputPath>bin\Debug'</OutputPath>

21 <DefineConstants>DEBUG; TRACE</DefineConstants>

22 <ErrorReport>prompt</ErrorReport>

23 <Warninglevel>4</Warninglevel>

24 </PropertyGroup>

25 <PropertyGroup Condition=" '$(Configuration)|$(Platform)’ == 'Release|AnyCPU’ ">
26 <PlatformTarget>AnyCPU</PlatformTarget>

27 <DebugType>pdbonly</DebugType>

28 <Optimize>true</Optimize>

29 <OutputPathsbin\Release\</OutputPath>

30 <DefineConstants>TRACE</DefineConstants>

31 <ErrorReport>prompt</ErrorReport>

32 <Warninglevel»d</Warninglevel>

33 </PropertyGroup>

Figure 3.1 — A fragment of the program code

45

54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
780
71
72
73
74
75
76
77
78
79
86
81
82

this.button2 = new System.Windows.Forms.Button();

this.labelld = new System.Windows.Forms.Label();

this.velocityl = new System.Windows.Forms.NumericUpDown();

this.labell5 = new System.Windows.Forms.Label();

this.velocity2 = new System.Windows.Forms.NumericUpDown();
((System.ComponentModel.ISupportInitialize)(this.pictureBoxl)).BeginInit();
((System.ComponentModel.ISupportInitialize)(this.velocityl)).BeginInit();
((System.ComponentModel.ISupportInitialize) (this.velocity2)).BeginInit();
this.SuspendLayout();

i

// pictureBoxl

i

this.pictureBoxl.BorderStyle = System.Windows.Forms.BorderStyle.FixedSingle;
this.pictureBoxl.Location = new System.Drawing.Point(598, 37);
this.pictureBoxl.Margin = new System.Windows.Forms.Padding(7, 6, 7, 6);
this.pictureBoxl1l.Name = "pictureBoxl”;

this.pictureBoxl1.5ize = new System.Drawing.Size(321, 185);
this.pictureBoxl.TabIndex = 24;

this.pictureBoxl.Tab5top = false;

1/

// label9

1/

this.label9.AutoSize = true;

this.label9.location = new System.Drawing.Point(551, 18);
this.label9.Margin = new System.Windows.Forms.Padding(7, 8, 7, @);
this.label9.Name = "label9™;

this.label9.Size = new System.Drawing.Size(58, 13);

this.label9.TabIndex = 25;

this.label9.Text = “{ x1 ; y1)";

Figure 3.2 — A fragment of the program code

46

W0 s ;W B W p

[T R R R o T e e e e R T = =
T R B N < e o T e LT T T T V2 T S UV NPy Sy

using System;

using System.Collections.Generic;
using System.CompenentModel;
using System.Data;

using System.Drawing;

using System.Ling;

using System.Text;

using System.Threading.Tasks;

using System.Windows.Forms;

namespace Motion_Control

{
public partial class AddRectangle : Form
{
public AddRectangle()
1
InitializeComponent();
3

public string X1
1

get { return textXl.Text; }
set { textXl.Text = value; }

public string X2
{

get { return textX2.Text; }
set { textX2.Text = walue; T

public string X3

Figure 3.3 — A fragment of the program code

47

54
55
56
57
58
59
15}
61
62
63
64
65
66
67
68
69
78
71
72
73
74
75
76
77
78
79
80
81
82

this.button2 = new System.Windows.Forms.Button();

this.labelld = new System.Windows.Forms.Label();

this.velocityl = new System.Windows.Forms.MNumericUpDown();

this.labell5 = new System.Windows.Forms.Label();

this.velocity2 = new System.Windows.Forms.NumericUpDown();

{ (System.ComponentModel .ISupportInitialize) (this.pictureBoxl)).BeginInit();
{ (System.ComponentModel . ISupportInitialize)(this.velocityl))}.BeginInit();
((System.ComponentModel . ISupportInitialize) (this.velocity2)).Beginlnit();
this.SuspendlLayout();

I

// pictureBoxl

1/

this.pictureBoxl.BorderStyle = System.Windows.Forms.BorderStyle.FixedSingle;
this.pictureBoxl.location = new System.Drawing.Point(598, 37);
this.pictureBox1.Margin = new System.Windows.Forms.Padding(7, 6, 7, &);
this.pictureBoxl.Name = "pictureBoxl";

this.pictureBox1.5ize = new System.Drawing.Size(321, 185);
this.pictureBox1.TabIndex = 24;

this.pictureBoxl.TabStop = false;

I

// label9

I

this.label9.AutoSize = true;

this.label%.lLocation = new System.Drawing.Point(551, 18);
this.label%.Margin = new System.Windows.Forms.Padding(7, @, 7, @);
this.label9.Name = "label9";

this.label%.5ize = new System.Drawing.Size(50, 13);

this.label9.TabIndex = 25;

this.label9.Text = " x1 ; y1 }";

Figure 3.4 — A fragment of the program code

48

57
58
59
60
bl
b2
63
b4
b5
bb
b7
68
69
79
7
12
73
14
75
76
1
78
19
80
81
82
83
34
85
86
87
88

mimetype: application/x-microsoft.net.object.bytearray.basebd

value

-

: The object must be serialized into a byte array
: using a System.ComponentModel.TypeConverter

: and then encoded with basebd encoding.

<xsd:schema id="root" xmlns="" xmlns:xsd="http:/ /ww.u3.org/2001/XMLSchema" xmlns:msdata="urn:schemas-microsoft-com:xml-msdata”

<xsd:import namespace="http://www.w3.org/XML/1998/namespace” />

<xsd:element name="root" msdata:IsDataSet="true"»

<xsd:complexType>

<xsd:choice maxOccurs="unbounded">

W oo~ @ N R WM

e
[l <

(xsd:element name="metadata"»

<xsd: complexTypes

(xsd:sequence>

<xsd:element name="value" type="xsd:string" min0ccurs="9" />
¢[xsd:sequenced
¢xsd:attribute name="name" use="required" type="xsd:string" />
¢xsd:rattribute name="type" type="xsd:string" />
¢xsd:attribute name="mimetype" type="xsd:string" />

{xsd:attribute ref="xml:space" />

¢/xsd:complexType>
¢/xsd:elements
<xsd:element name="assembly”>

<xsd:complexTypes

{xsd:attribute name="alias" type="xsd:string" />

¢xsd:rattribute name="name" type="xsd:string" />

</xsd:complexTypes
¢/xsd:element>
<xsd:element name="data">»

<xsd:complexTypes

{xsd:sequenced
<xsd:element name="value" type="xsd:string" minOccurs="@" msdata:Ordinal="1" />

<xsd:element name="comment" type="xsd:string" minOccurs="@" msdata:Ordinal="2" /»

Figure 3.5 — A fragment of the program code

using System;

using System.Collections.Generic;
using System.Ling;

using System.Threading.Tasks;

using System.Windows.Forms;

namespace Motion_Control

{

static class Program

{

SAF <summary >

Figure 3.6 — A fragment of the program code

49

6 # User-specific files
7 *.s5u0

8 *.user

9 *.userosscache

10 *.sln.docstates

11

12 # User-specific files (MonoDevelop/Xamarin Studio)
13 *.userprefs

14

15 # Build results

16 [Dd]ebug/

17 [Dd]ebugPublic/

13 [Rrlelease/

19 [Rr]eleases/

20 x64/

21 %86/

22 bld/

23 [Bo]in/

24 [0o]bi/

25 [L1]og/

Figure 3.7 — A fragment of the program code

Examples of the operation of this software and the results obtained during the

comparison of the studied algorithms are shown.

3.1. Building an obstacle map

An example of constructing a grid map obtained using the created software (Fig.
15):
| Ll

—— -
e

- available cells cells with obstacles | obstacles

Figure 3.1. — An example of a grid map

50

3.2. Implementation of the considered algorithms

This section presents the key points in the operation of the following algorithms:

Dijkstra’s algorithm (Fig. 3.2);
Algorithm A* (Fig. 3.3);
Algorithm D* (Fig. 3.4-3.8).

Figure 3.2 — Trajectory construction using Dijkstra’s algorithm

Figure 3.3 — Trajectory construction using the A* algorithm

51

Figure 3.4 — The robot builds an initial trajectory in a non-deterministic

environment

Figure 3.5 — While moving, the robot finds an obstacle in the next step

52

Figure 3.6 — The robot avoids an obstacle using a neighboring point from the

history list

Figure 3.7 — While moving, the robot finds an obstacle in the next step

53

Figure 3.8 — The robot avoids an obstacle by constructing a new trajectory.

3.3. Comparison of accuracy and speed of algorithms

Based on the data obtained using software that implements these algorithms, we
can conclude that the “A*” algorithm in most cases builds a trajectory around obstacles
in a shorter time than Dijkstra’s algorithm (fig. 3.9). The length of the resulting path is

the same for the algorithms.

200
TO0

GO0

GO0

400 O algarithm A"
Dijkstra’s

300 algorithm

200

10

Ex.1 Ex.2 Ex.3 Ex.4
Figure 3.9 — Comparison of the running time of Dijkstra’s algorithm and the A*

algorithm.

Using the developed software that implements the operation of the D*, A* and

LPA* algorithms in a non-deterministic environment, the operating time of these

54

algorithms was compared in different situations. The information obtained is shown in
fig. 3.10 (time is in milliseconds).

2500—|-"""' - e
|
2000 + —— _
I — _
1500 + — .
| -) @D
1000+ B CILPA®
|
s00 - A
|
0 =

Situation 1

Situation 2

Situation 3

Figure 3.10 — Comparison of running time of algorithms in a non-deterministic

environment.

55

CONCLUSION

° A navigation system is presented that allows a moving object to
autonomously build an optimal path length to avoid obstacles from the starting point to
the target point.

° The considered algorithms have been researched and implemented in
software. Some results of the software are shown.

° A comparative analysis of the operating time of the algorithms was carried
out.

° A navigation system is considered that allows you to apply the obtained

theoretical information in practice.

56

REFERENCES

1. A* Pathfinding Algorithm. [Electronic resource]. — URL:
https://www.baeldung.com/cs/a-star-algorithm

2. Alferov G. V., Malafeyev O. A. The robot control strategy in a domain
with dynamical obstacles // Lecture Notes in Computer Science, 2003. Ne35. C. 4-23.

3. An architecture for a robot hierarchical system. [Electronic resource]. —
URL.: https://nvipubs.nist.gov/nistpubs/Legacy/SP/nbsspecialpublication500-23.pdf

4. All You Need To Know About Obstacle Detection Sensor. [Electronic
resource]. — URL.: https://dreamvu.com/all-you-need-to-know-about-obstacle-detection-
sensor/

5. Dijkstra's Shortest Path Algorithm - A Detailed and Visual Introduction.
[Electronic resource]. — URL: https://www.freecodecamp.org/news/dijkstras-shortest-
path-algorithm-visual-introduction/

6. Dissanayake M.W.M.G., Newman P., Clark S., Durrant-Whyte H.F.,
Csorba M. A. Solution to the Simultaneous Localisation and Map Building (SLAM)
Problem // Australian Centre for Field Robotics Department of Mechanical and
Mechatronic Engineering The University of Sydney NSW, 2006. C 1-14.

7. Kalman filter: simple words about digital mathematics. [Electronic
resource]. — URL: https://mp-lab.ru/filtr_kalmana_dlya nachinayushchih/

8. Lee T-L., Wu C-J. Fuzzy motion planning of mobile robots in unknown
environments // Journal of Intelligent and Robotic Systems, 2003. Vol. 37 (2), P. 177-
191.

9. Montaner M. B., Ramirez-Serrano A. Fuzzy knowledge-based controller
design for autonomous robot navigation//Expert Systems with Applications, 1998. Vol.
14 (1-2), P. 179-186.

10. Obstacle Avoidance Based on Stereo Vision Navigation System.
[Electronic resource]. — URL.:
https://journal.umy.ac.id/index.php/jrc/article/viewFile/17977/8265

57

https://www.baeldung.com/cs/a-star-algorithm
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nbsspecialpublication500-23.pdf
https://dreamvu.com/all-you-need-to-know-about-obstacle-detection-sensor/
https://dreamvu.com/all-you-need-to-know-about-obstacle-detection-sensor/
https://www.freecodecamp.org/news/dijkstras-shortest-path-algorithm-visual-introduction/
https://www.freecodecamp.org/news/dijkstras-shortest-path-algorithm-visual-introduction/
https://mp-lab.ru/filtr_kalmana_dlya_nachinayushchih/
https://journal.umy.ac.id/index.php/jrc/article/viewFile/17977/8265

11. Optimal and efficient path planning for partially-known environments A
Stentz - Robotics and Automation, 1994. P. 3310-3317.

12. Stereo vision. [Electronic resource]. - URL.:
https://link.springer.com/article/10.1007/s42452-020-2815-z
13. SLAM algorithm. [Electronic resource]. - URL.:

https://medium.com/@nahmed3536/the-types-of-slam-algorithms-356196937e3d

58

https://link.springer.com/article/10.1007/s42452-020-2815-z
https://medium.com/@nahmed3536/the-types-of-slam-algorithms-356196937e3d

