MIHICTEPCTBO OCBITU I HAYKU YKPATHU
HAILIOHAJIBHUM ABIALIIMHUN YVHIBEPCUTET
dakyapTeT KiOepOe3neky 1 IporpaMHol IHKeHePIT
Kadenpa imkeHepii nporpaMHoro 3a0e3neyeHHs

“INOITYCTUTHU JO 3AXUCTY”
3aBimyBau kadeapu
Karepuna HECTEPEHKO

(migmmc) (iM’s1, Ipi3BHILIE)
“« 2023 p.

JTUIJIOMHA POBOTA

(ITIOACHIOBAJIbHA 3AIIMCKA)

BUITYCKHUKA OCBITHBOI'O CTYIIEHA MAT'ICTPA

Tema: “Be03acTOCYHOK 1JISl €JIEKTPOHHOI KOMepUil 3 BUKOPUCTAHHAM

Be030MpaHHs 3 ONTUMI30BAHUM IPOLIECOM 3YMTYBAHHA TOBapiB”

Buxkonasens: ct. rp. [11-221M(A) KoBanernko Liast IropoBuy
KepiBHuKk: K.T.H., loneHT Tepeuenko Jliaisg FOpiiBHa
HopmoxkonTponep: K.T.H., C.H.C., JIouleHT OnieHiH Muxaino BikTopoBuy

3acBiguyr0, IO Yy JUIIOMHIA poOOTi
HEMa€ 3alo3W4YeHb 3 TMpalb I1HIIHX
aBTOpiB 0€3 BI/MOBITHUX ITOCUJIAHb.

CryneHt

(mipmuc)

KUIB 2023

MINISTRY OF EDUCATION AND SCIENCE OF UKRAINE
NATIONAL AVIATION UNIVERSITY
Faculty of cybersecurity and software engineering
Software engineering department

“ADMIT TO DEFENCE”
Head of the department
Kateryna NESTERENKO

(signature) (name, surname)

“ 7 2023

MASTER’S THESIS

(EXPLANATORY NOTE)

OF A MASTER'S DEGREE GRADUATE

Topic: “An e-commerce web application using web scraping with an
optimized product reading process”

Performer: Student of the PI-221M(A) group, Kovalenko Illia
Ihorovych

Supervisor: Candidate of Technical Sciences, Associate Professor
Tereshchenko Lydia Yuriivna

Standard controller: Candidate of Technical Sciences, Senior Researcher,
Associate Professor, Olenin Mykhailo Viktorovych

KY1V 2023

HAILIOHAJIBHUM ABIALIIMHUN YVHIBEPCUTET

daxkyabTeT Ki0epOe3neKu 1 mporpamMHoi 1HXKeHepii
Kadenpa 1HKeHepii mporpaMHOro 3a0e3neueHHs
OcBiTHill cTyniHb MaricTp

CrneniajbHiCTh 121 InxeHepis mporpaMHOro 3abe3neueHHs

OcBiTHbO-IpOeciiina mporpama [HXXeHepis MPOrpaMHOTro 3a0e3MeUeHHs

3ATBEP/IKYIO
3aBiqyBau kadenpu
Karepuna HECTEPEHKO

(migmmuc) (iM’s1, Ipi3BHILIE)

“« > 2023 p.

3ABJIAHHASA
HA BUKOHAHHS JUIVIOMHOI po0oTH
Kosanenka [IropoBuya

1. Tema nummomHoi pobGotu: “Be03acTOCYHOK Ui €JEKTPOHHOI KOMepIli 3
BUKOPUCTAaHHSIM BEO30MpAaHHS 3 ONTUMI30BAHMM MIPOIIECOM 3YUTYBaHHS TOBapiB’.
3aTBeprKkeHa HakazoM pekTopa Big 29.09.2023 p. Ne 1994/cr.

2. Tepmin BukoHanHs po6otu: 3 02.10.2023 p. 10 31.12.2023 p.

3. BuxinmHi nani 70 poOOTH: Be03aCTOCYHOK JIJIsl €ICKTPOHHOI KOMEPITii.

4. 3MICT MOSCHIOBAJIBHOI 3AIIUCKU:

AHami3 BHUMOI [0 MPOTrpaMHOro 3a0e3leueHHs. 3arajbHl IOJIOJKEHHS,
3MICTOBHHMI ONHKC IIPEAMETHOI 00J1aCTi, 3MICTOBHHI aHaJII3 OPEAMETHOI 001aCTl,
aHani3 ycoimHauX | T-Ipo€ekTiB, aHaai3 BUMOL J0 MPOTPaMHOr0 3a0e3neueHHs,
IIOCTAHOBKA KOMILJIEKCY 3aBJIaHb MOAYJII0, BUCHOBKH I10 PO3JIIAY;
MopenroBaHHs Ta KOHCTPYIOBAaHHS IPOrpaMHOro 3a0€3meueHHs: MOAEITIOBAHHS
Ta aHajl3 IIPOrpaMHOI0 3a0e3leuYeHHs, OOIPYHTYBAHHS 3ac001B_PO3POOKH,
apxiTeKTypa 0a3u JaHHX, apxXIiTEeKTypa [OPOrpamMHOro 3a0e3lmeyeHHd,
KOHCTPVIOBAaHHSI IPOrPaMHOr0 3a0e3nedyeHHsl, aHaial3 Oe3eKn JaHUX, BUCHOBKH
110 PO3JALIY;

AHai3 SKOCTI Ta TeCTYBaHHS MPOrpaMHOro 3ade3neueHHs: aHam3 skoctl 113,
OIIMC TIPOLIECIB TECTYBAaHHS, ONKC KOHTPOJIBbHOIO MPHUKJIAAY, BHUCHOBKH IIO
posniny;

BrpoBapkeHHsT Ta CYOpOBII IPOrpaMHOIO 3a0e3leueHHs: PO3TOPTAaHHS
IPOrpaMHOr0 3a0e3meueHHs, po00Ta 3 MPOrpaMHUM 3a0€3IeYEeHHIM, BUCHOBKHU
10 PO3MILTY;

KepiBHUIITBO KOpHUCTYBaya: 3arajibHl BIJIOMOCTI, IMIJITOTOBKA JIO pOOOTH, poOoTa
3 JIOJIJATKOM, BUCHOBKH IO PO3JILIY.

5. Ilepenik 060B'I3KOBOT0 LTFOCTPATUBHOTO MaTepiainy (CaaiiB mpe3eHTalrii):

CxeMa CTPYKTYPHA BapPIaHTIB BUKOPUCTAHD |

Cxema 0a3u JaHuX;

Cxema CTPYKTYpPHA KJIACIB IIporpaMHoOro 336€3H€‘{6HHH;

Cxema CTPYKTYpHA KOMITOHCHTIB IIporpamMHoOro 3a0e3IIeYCHHS.

6. Kanennapuuii mian-rpadix

BiamiTka
No .
o/ 3aBaaHHs TepMmiH BUKOHAHHS po
BUKOHAHHS

1. Vi3romkenus texaiygoro 3asmanag 3 | 02.10.2023 — 18.10.2023
KEPIBHUKOM JUILJIOMHOT poOOTH

2. | BuBuenns pexomennoBanoi | 19.09.2023 — 23.09.2023
JiTepaTypu

3. Amnam3s ICHYIOUHX metodiB | 24.09.2023 — 30.09.2023
pPO3B’sI3aHHS 3314l

4, ITocranoBka Ta popmamizaris 3agadi | 01.10.2023 — 05.10.2023

5. Po3pobka iHpopmariiinoro | 06.10.2023 — 15.10.2023
3a0€e31e4YeHHs

6. AJroputMmizarlis 3ajaadi 16.10.2023 — 20.10.2023

7. OOrpyHTYBaHHS Bubopy | 21.10.2023 —27.10.2023
BUKOPHCTAHUX TEXHIYHUX 3aC001B

8. Po3pobxka nporpamuoro | 28.10.2023 —22.11.2023
3a0e31eyeHHs

Q. HanaromxkeHHst mporpamu 23.11.2023 — 25.11.2023

10. | Bukonanns rpadiunux qoxkymentis | 25.11.2023 — 31.11.2023

11. | Odopmiienns nosicaroBanbHOi | 01.12.2023 — 03.12.2023
3aMHUCKU

12. | 3aBepiieHHs HaIMCAHHS I13. | 04.12.2023 —10.12.2023
[TpoxomxeHHs HOPMOKOHTPOIJTIO.
Hpyk I13. OrtpumanHHa BIATYKY
kepiBHuKa. [linroroBka mpeseHTalrli
Ta JJOMOBIJII HA MEPeJT 3aXUCT

13. | Ilepem3axuct kBamip. pobotm. | 11.12.2023 —17.12.2023
OTprmaHHs peleHsli

14. | IlinroToBKa MOKyMEHTIB 10 3axucTy | 18.12.2023 —24.12.2023
Ta 371a4a ix cekperapro JIEK

15. | 3axucr kBamd. podbotu 25.12.2023 — 31.12.2023

7. lara Bumaui 3apganns: 02.10.2023 p.

KepiBHuk qumnioMHOi poOOTH: Jigis TEPEIITEHKO

(mimmc)

3aBJaHHS OPUIHSB 10 BUKOHAHHS:

(mmimmc)

(iM’s1, ipi3BHIIE)

[imnga KOBAJIEHKO

(iM’s1, Ipi3BHIIE)

NATIONAL AVIATION UNIVERSITY

Faculty of Cybersecurity and Software Engineering
Department Software Engineering

Education degree Master

Specialty 121 Software Engineering

Educational-professional program Software Engineering

APPROVED BY
Head of the department
Kateryna NESTERENKO

(signature) (name, surname)

(13 2 2023

Task
on executing the graduation work
Kovalenko Illia Ihorovych

1. Topic of the graduation work: “An e-commerce web application using web
scraping with an optimized product reading process”. Approved by the order of the
rector from 29.09.2023 p. Ne 1994/cr.

2. Terms of work execution: from 02.10.2023 to 31.12.2023

3. Source data of the work: an e-commerce web application.
4. Content of the explanatory note:

Analysis of software requirements: general requlations, comprehensive
description of the subject area, comprehensive analysis of the subject area,
analysis of successful IT projects, analysis of software requirements, setting the
set of module tasks, conclusions on the section;

Software modeling and design: software modeling and analysis, rationale for
development tools, database architecture, software architecture, description of
software architecture, data security analysis, conclusions on the section;
Quality analysis and software testing: software quality analysis, description of
testing processes, description of the test case, conclusions on the section;
Software implementation and maintenance: software deployment, working with
the software, conclusions on the section;

User guide: general information, preparation for work, working with the
application, conclusions on the section.

5. List of presentation mandatory slides:

Structural scheme of use cases;

Database schema;

Structural scheme of software classes;

Diagram of the structural components of the software.

6. Calendar schedule

Task Execution term Execution
mark
1. Coordination of the technical task 02.10.2023 — 18.10.2023
with the thesis supervisor
2. Study of recommended literature 19.09.2023 — 23.09.2023
3. Analysis of existing problem-solving | 24.09.2023 — 30.09.2023
methods
4. Formulation and formalization of the | 01.10.2023 — 05.10.2023
problem
5. Development of information support | 06.10.2023 — 15.10.2023
6. Algorithmization of the problem 16.10.2023 — 20.10.2023
7. Justification of the choice of the used | 21.10.2023 —27.10.2023
technical means
8. Software development 28.10.2023 — 22.11.2023
9. Debugging the program 23.11.2023 — 25.11.2023
10. | Execution of graphic documents 25.11.2023 — 31.11.2023
11. | Issuance of an explanatory note 01.12.2023 — 03.12.2023
12. | Completion of writing the software. 04.12.2023 - 10.12.2023
Passing standard control. Software
printing. Receiving feedback from the
supervisor. Preparation of a
presentation and a report for the
defense
13. | Preliminary defense of qualification 11.12.2023 — 17.12.2023
work. Receiving the review
14. | Preparation of documents for defense | 18.12.2023 —24.12.2023
and their submission to the secretary
15. | Defense of the qualification work 25.12.2023 — 31.12.2023

Date of issue of the assignment: 02.10.2023

Supervisor:

(signature)

Task accepted for execution:

(signature)

Lydia TERESHCHENKO

(name, surname)

lllia KOVALENKO

(name, surname)

PEDEPAT

[TosicHOBasibHA 3alMcKa JAUIUIOMHOTO MPOEKTY MAa€ YOTUPHU PO3AUIH, Y SIKUX
3HaxonuThes 13 Tabmuip, 54 pucynka ta 44 mxepena, 3aranom 101 cropinka.

JlurioMHMA TIPOEKT (DOKYCYETBhCSI Ha po3poOii BeO3aCTOCYHKY st
€JIEKTPOHHOI KOMeplii 3 BUKOPUCTAHHSIM Be0O30MpaHHS 3 ONTHUMI30BaHUM IPOLIECOM
3YUTYBAaHHS TOBapiB.

IIpeamer moc/riIzKeHHsI: METOM CTBOPEHHS 3aXUILEHUX BEO3aCTOCYHKIB.

O0'exT noc/iIzKeHHs1: Tpolec po3poOKU BEO3AaCTOCYHKY MJisi €JIEKTPOHHOT
KOMEpIIii 3 BUKOPUCTaHHSIM BeO30HMpaHHS 3 ONTUMI30BAaHUM MPOIIECOM 3YUTYBAaHHS
TOBapIB.

MeTta AUNIOMHOIO0 NMPOEKTY: CTBOPEHHS BE03aCTOCYHKY IJSl E€JIEKTPOHHOI
KOMEpIIi 3 BUKOPUCTAHHIM Be030MpaHHS 3 ONTHUMI30BAHUM IPOIECOM 3YUTYBAHHS
TOBapiB, a TAKOX 11A0JIOH KOHBEEPY 0OPOOKU 3aMOBJICHb Ta TUHAMIYHUHN 1HTEpEIiC.

VY nepumioMy po3auii OPOBOJUTHCS aHAI3 BUMOI JO IPOTPAMHOIO
3a0e3neUeHHs, MPEICTABIICHO 3arajbHUI 3MICT Ta OMUC MPEAMETHOI 00JIacTi, aHai3
ycmimHuX | T-po€ekTiB Ta BUMOr A0 MPOTPaMHOTO 3a0e3Me4eHHs, MOCTaHOBKa
3aBJIaHb JJII MOIYJIS.

Jpyruii po3ail MpUCBSIYEHUN MOJCIIOBAHHIO Ta CTBOPEHHIO MPOTPAMHOTO
3a0€e3Me4eHHs], BKIIOYAIOYM PO3POOKY apXIiTEeKTypu Ta CTPYKTypH Oazu JaHHX, a
TAKOX OTJIAJ apXITEKTypu mporpamMHoro 3a0e3mnedeHHs, npencraBienns UML-
Jiarpam.

VY TpeThoMy pO3AiTi PO3MIISIAAETHCS aHAITI3 SIKOCTI Ta TECTYBaHHS MPOrPAMHOTO
3a0€3MeUeHHs, BKJIIOYAIOYM PO3pOOKY IIJIaHy, OIIIHKY SIKOCTI MPOTPaMH, OIHC
MPOILIECiB TECTYBAHHSA Ta PE3yIbTAaTH TECTIB 3 TOJAHHSIM KOHTPOJIBHOTO MPUKIIATY.

YerBepTuili po3ai MPUCBSIYECHHN BOPOBAKEHHIO Ta CYHNPOBOKEHHIO
MPOrpaMHOr0 3a0€3MEUEHHs, ONHCYE PO3TOPTaHHA MPOTPaMHU Ta BUKOPHCTAHHS
porpaMHOro 3a0e3meueHHs pa3oM 3 y3aralbHeHUMH BUCHOBKaMHU.

VY m’sitoMy po3/iiIl IeTalbHO OMKMCAHO MTOKPOKOBI IHCTPYKITIT 11010 HaBIrarii ta

BUKOPHUCTAHHS MPOTpaMu JUHAMIYHOI €IEKTPOHHOI KOMEpIIii.

KJIFOUOBI CJIOBA: BEB3ACTOCYHOK, CMS, EJIEKTPOHHA
KOMEPLIIMHA IIJIAT®OPMA, BEB3BMPAHHS, IIIABJIOH KOHBEEPY
OBPOBKU 3AMOBIJIEHb, TPBOX-IITAPOBA APXITEKTYPA, AWS, DOCKER.

ABSTRACT

The explanatory note of the diploma project consists of four sections,
containing 13 tables, 54 figures, and 44 sources, totaling 101 pages.

The diploma project is focused on the development of an e-commerce web
application using web scraping with an optimized product reading process.

The subject of the research: methods of creating secure web applications.

The object of the research: the process of developing an e-commerce web
application using web scraping with an optimized product reading process.

The goal of the diploma project: the creation of an e-commerce web
application using web scraping with an optimized product reading process, along with
a base for an order processing conveyor framework and a dynamic interface.

The first section includes an analysis of software requirements, a general
overview and description of the subject area, an analysis of successful IT projects and
software requirements, the definition of tasks for the module, and general conclusions.

The second section is dedicated to software modeling and construction,
covering the development of software architecture and database structure, as well as
an overview of the software architecture. It includes UML diagrams and general
conclusions.

The third section discusses software quality analysis and testing, which
involves developing a plan, assessing software quality, describing testing processes,
presenting test results with a sample case, and general conclusions.

The fourth section focuses on software deployment and maintenance, providing
information about program deployment, software usage, and general conclusions.

The fifth section, the step-by-step instructions for navigating and utilizing the
dynamic e-commerce application are detailed.

KEYWORDS: WEB APPLICATION, CMS, E-COMMERCE PLATFORM,
WEB SCRAPING, BASE FOR ORDER PROCESSING, THREE-TIER
ARCHITECTURE, AWS, DOCKER.

TABLE OF CONTENTS

LIST OF ACRONYMS AND ABBREVIATIONS........coco i, 13
INTRODUGCTION ...ttt sttt sre e b e neesne s 14
1 ANALYSIS OF SOFTWARE REQUIREMENTS.......ccooiiiieeceee e 15
1.1 General regUIALIONSccviiieiiieiieie e 15
1.2 Comprehensive description of the subject area.........cccccevvvvviiiiniiii e, 15
1.3 Comprehensive analysis of the subject area..........c.cccocevvveviieiie e, 17
1.3.1 Definition of a content management SYStemM.........cccccovvvrieeriieniee e sie e, 17
1.3.2 E-commerce Platform.........ccoovoiiiiii i 19
1.3.3 WED SCraPINg....ccueeitieiiieiie et et sie e see st sttt e ae et nbe e te e sreesnne e ens 19
1.3.4 Platform Camundaccccoeiirieiieie e 20
1.4 Analysis of successSTul IT Projectsccovviiiiiicieccee e, 20
1.4.1 Analysis of known technical solUtionscccceeviiieiiiiie e, 20
1.4.2 Analysis of known software products...........ccccevveeiieiii i, 21
1.5 Analysis of software reqUIremMeNtsccccevieeiieiieesiee e 22
1.5.1 Additional software reqUIreMENtS.........ccccverueereerieeiieeie e 23
1.5.2 Data storage reqUIrEMENTS......c.veiieiie e iieeieeseesiee e sne e esreesreesreesnaeeneeens 24
1.5.3 Database software reqUIrEMENTSceivueerueereerieesie e e e see e 24
1.5.4 Software deployment reqUIrEMENESccoevveereerieesienie e, 25
1.5.5 Development of functional requIremMents...........ccccovvvvieeiivenieesiee e, 25
1.5.6 Development of non-functional requIrementsc.cccceeeeeveeveeviesie e, 29
1.6 Setting the set of MOdule tasksccceeiieiiiiie e, 29
CoNCIUSIONS ON the SECLIONviivieiiciiecie e sre e 30
2 SOFTWARE MODELING AND DESIGN.....ccciiiiiiiiiiieesiee e 31
2.1 Software modeling and analysisccccoviiiiiieiii i 31
2.2 Rationale for development tO0IS.........cooviiiiiiiiii e, 34
2.2.1 Software development ENVIFONMENTS.........coeviiriiiieriiie e, 34
2.2.2 Programming 1anguage CH.......cccooeiiiiiiinie e 34
2.2.3 ASP.NET Core frameworkcccoeiiiiiiecie e 35
2.2.4 MVC architecture Pattern.........ocooeiiieiine e 36
2.2.5 AWS cloud platform ... 36

2.2.6 DoCKer platformoooieii e 37

2.2.7 SIriPe PAYMENT SEIVICE ...evviiiieiie e iie et ee et et sae e reesreeenes 37
2.2.8 BUIMA FraMEWOIK.......cviiiiiiiieii et 39
2.2.9 VUE.JS TramMEWOIKeeivieiiii ettt 39
2.2.10 Microsoft SQL server database management Systemcccoccevvververieenne 39
2.2.11 HTML Agility Pack lBrary........cccccoeiiiieiceeeeses e 39
2.3 Database ArChIteCUIE........uv i 39
2.3.1 Building a domain model..........ccoooiiiriiiii e 40
2.3.2 ER dIAQIamM....ccuiiiiieie ettt e 41
2.3.3 Database SChEMAcccociiiiiie e 41
2.4 SOftware arChiteCtUIEooviiiiiee e 42
2.4.1 UML software diagramscccoiieiiieiieeiie e s 43
P o B U L oo T I o [o | U PSSP 44
2.4.1.2ClasS QHAGIAMccveiiieiie ettt e e ae e be e reeenes 45
2.4.1.3Business Process Model and Notation diagram...........cccceeevevevvernenennn 46
2.4.1.4S5eqUENCE dIagramc.cccveieerie et 46
2.4.1.5StaE AIAGIAM ...c.vieiiiiiie ettt e e e nreennes 48
2.4.1.6Component diagramcccverieiieiie e 49
2.4.2 Software architecture selection analysiscccoccvvvvevienii i 49
2.4.3 Description of software architeCturecccoovvieiie s 50
2.5 Description of software architeCture...........cccocveiieiii i 56
2.5.1 Implementation description of the main tasks of the software................... 60
2.5.2 Implementation of service registration 10giCcccccoevveeiiiiie e 61
2.6 Data SECUItY aNAIYSISccviiieeiee ettt 62
2.6.1 Authorization and authentiCationccocevvereiiienesie e, 62
Conclusions 0N the SECLIONcceiiiieiecee e 62
3 QUALITY ANALYSIS AND SOFTWARE TESTINGc.ccoceiviieireeeceeee e 63
3.1 Software quality analySIS.........ccooiiiiiiiiiiii e 63
3.2 Description Of teStING PrOCESSESovvieiirieeitiriie ittt 64
3.3 Description Of the teSt CASEccovviiiiiieie e 65
331 UNIEEESTING oottt 65
3.3.2 INteQration TESTING......ccoveieeiiiieiesie sttt ae e eesreens 67

3.3.3 SYSIEM LESTING ..veeveeiieciie et 68

3.3.4 FUNCLIONAL tESING ...c.veeviecie e 69
3.3.5 ACCEPLANCE tESTING ...vveivieeie e 73
3.3.6 User INterface teStING........ccvevverieiieiie e e 74
Conclusions 0N the SECLIONoiiiiie e 74
4 SOFTWARE IMPLEMENTATION AND MAINTENANCEc..cccooovviveiienenn, 75
4.1 Software deplOYMENTcccooiiiieie s 75
4.1.1 Overview of available software deployment methods............ccccoevverienne. 75
4.1.2 Server-side deploymMent.........ccoiiiiiiiiiienie e 76
4.1.3 Client-side deploymMeNtc.cooiiiiiiieieecc e e 76
4.1.4 Providing a secure communication channelcccoocoo e, 76
4.1.5 Working with the SOftWare..........ccccovveiieiicc e 77
CoNCIUSIONS ON the SECLIONveivieiiciieiecie e sre e 77
5 USER GUIDE........i ittt sttt nnesre s 78
5.1 General iNfOrmMationccviviiieiie e 78
5.2 Preparation fOr WOIKccoiiiiieiie e 79
5.2.1 System requirements for correct Operation............ccccevvveevveesieesieecieeesinen, 79
5.2.2 Software inStallation...........cccoiiiiiie e 79
5.2.3 Checking COrreCt OPerationccccevueiiueereesiie e e ereesee e see e e sree e 79
5.3 Working with the appliCationccccevieiiieiiesie e 79
ConCIUSIONS 0N the SECLIONveivieiiciiecieee e aesre e 87
(O] 0 Tod 1] [0 3 LS PRSPPI 89
REFERENGCESottt ettt et nneeneas 90
APPENDIX A Lo a e e e e aa e 94
APPENDIX Bttt sttt sttt ettt nbe s 101

12

file://Users/illia_nova/Desktop/Diploma/ФКПІ_2023_121а_Коваленко%20І.І.docx%23_Toc153297890

LIST OF ACRONYMS AND ABBREVIATIONS

Stripe — is a popular payment system and a service for money transactions
through an API service;

CMS — Content Management System;

CMA —is a graphical user interface subordinate to a CMS;

A CDA - is a graphical interface that provides internal content management
and delivery support services, subordinate to a CMS;

PHP — stands for Hypertext Preprocessor, a scripting programming language;

XML — Extensible Markup Language;

OOP - stands for Object-Oriented Programming;

CRUD - Create Read Update Delete, the 4 main data management functions of
“create, read, update, and delete”;

DB — Database;

OS — Operating System;

RAM — Random Access Memory;

SDLC - stands for Software Life Cycle;

CVV2 — Card Verification Value 2, a three-digit code for checking the validity
of the payment system card,;

MVC - stands for Model-View-Controller, an architectural pattern that divides
a program into three main components, a model, a view, and a controller;

AWS — Amazon Web Services;

HTTP — stands for Hypertext Transfer Protocol;

API — Application Programming Interface;

JSON - stands for JavaScript Object Notation, which is a text format for data
exchange between computers;

Token — is a software token that is issued to the user after successful

authorization and is the key to access services.

13

INTRODUCTION

Currently, e-commerce web applications for selling products are gaining
increasing popularity due to the rapid growth of commercial enterprises. This surge
has created a significant demand for e-commerce platforms, making them
indispensable in the modern e-commerce industry.

Typically, developing and managing web applications for commercial purposes
requires meticulous attention to detail. Every commercial business aspires to have its
personalized e-commerce platform that meets the needs and demands of its customers.

One of the possible solutions to content management challenges is the search
for a ready-made web application for selling products. However, this approach often
presents issues related to deployment complexity, unclear interfaces, automation of
product creation and order processing, as well as the high cost of independently
compiled software modules. It is important to note that even ready-made solutions
have their limitations and drawbacks.

Thus, the primary objective of this diploma project is to implement automation
of product creation processes through web scraping, create a base for developing a
framework for order processing, and create a dynamic user interface. This will help
minimize the shortcomings associated with existing solutions.

The tasks of this project include the development of a web application for
content management and product sales, utilizing network data retrieval from internet
stores, and implementing a base for an order processing conveyor framework.

Therefore, this diploma work aims to create a software application that not only
addresses the numerous shortcomings of existing alternatives but also introduces new

features to make it attractive in the e-commerce web applications market.

14

1 ANALYSIS OF SOFTWARE REQUIREMENTS

1.1 General regulations

E-commerce web applications for selling products have become a popular niche
for commercial companies in need of creating and utilizing e-commerce platforms.

Typically, the development of e-commerce web applications for commercial
purposes demands meticulous attention to implementation details, both from
developers and clients. Since each commercial business is unique and has its distinct
characteristics, its e-commerce platform must reflect these individual traits.

There are numerous approaches to address the challenges of creating and using
e-commerce web applications, often involving the search for ready-made web
applications. However, when using ready-made solutions, there can be both
advantages and risks that may impact the functioning of a commercial enterprise in
the long run. It is important to understand that even ready-made solutions have their
limitations and potential drawbacks.

Therefore, this work is aimed at analyzing and implementing innovations aimed
at improving the functionality of the e-commerce web application in this domain. In
summary, these innovations encompass the automation of product creation processes
through data retrieval from the network, the development of a base for an order

processing framework, and enhancements to the user interface.

1.2 Comprehensive description of the subject area

The e-commerce web application using web scraping with an optimized
product reading process allows users to create personalized e-commerce platforms
with built-in functionality and addresses the challenges of automating product
creation through data retrieval from internet stores. It also incorporates a base for an
order processing conveyor framework and dynamic design capabilities with style
variation. Additionally, the web application handles order payment transactions using
the “Stripe” technology.

15

@ Docebo_lntegration v Q search ((create v) @wHep A £ &

m Payments Balances Customers Products Reports Connect More v Test mode
Gross volume ~ Yesterday EUR Balance ~\ View

€0.00 €0.00 €0.00

3112 PM

Payouts View

Reports overview

Last 7days v @& Nov 24-Nov 30 comparedto Previous period Daily ¢ % Edit charts

Gross volume 0.0% Connect gross volume 0.0% Net volume from sales @ 0.0% New customers @ 0.0%

€0.00 €0.00 €0.00 €0.00 €0.00 €0.00 0 0

Fig. 1.1. Stripe dashboard

The participants in the web application include users representing the
application’s clients, as well as administrators and managers responsible for
application administration. The distribution of roles among users has been
implemented to ensure a clear delineation of responsibilities and to protect the
application from unauthorized access.

User convenience in the web application includes:

- An intuitive and dynamic user interface;

- The ability to view products with detailed descriptions;

- Adding products to a cart that is stored throughout the user’s session due
to built-in session storage;

- A convenient order payment process facilitated by the use of the “Stripe”
payment processing service;

- The option to change the application’s background.

Administrator convenience in the web application encompasses:
- A built-in administration panel consisting of two subpanels: “e-

commerce” and “administrator’s menu’;

16

- Functions for managing products, generating text files with product data
extracted from internet stores, operating the order processing conveyor framework,
and managing inventory and its items.

Thus, this work implements a unique e-commerce web application using web
scraping with an optimized product reading process, a base for an order processing

conveyor framework, and a dynamic user interface.

1.3 Comprehensive analysis of the subject area

The e-commerce web application using web scraping with an optimized
product reading process, as well as a base for an order processing conveyor
framework, encompasses the concept of CMS and its components. It also includes the
concept of an e-commerce platform and its types. These concepts will be further

explored for a more in-depth understanding of the environment.

® S lUI

DRUPAL f 1 MAGENTO
‘ f CONTENT MANMAGEMENT 5YSTEM m
de Lol Search WEBFLOW

|

WORDPRESS (SR

SITECORE

Fig. 1.2. CMS variety
1.3.1 Definition of a content management system

A content management system, or CMS, is software that allows users to create,

edit, collaborate, publish, and store digital content. Content in a CMS is stored in a

17

database and displayed in the software’s presentation layer based on a set of
templates.

A CMS consists of two components:

- Content management application or CMA: This is a graphical user
interface that enables users to design, create, modify, and delete website content
without the need for HTML expertise;

— Content Delivery Application or CDA: This comprises internal services
that provide support for content management and delivery.

Content management systems or web applications based on them have the
following features:

- Workflow processes, such as assigning permissions for content
management based on roles like authors, editors, and administrators;

- Content creation, including the ability for users to create and format
content;

- Content storage in a database, ensuring that content is consistently stored
in one place;

- Providing access to multiple users, with each CMS having unique user

permissions or defined roles such as editor, manager, author, or administrator [1].

CMA

1
e
/

4

Category

Template
Asset

Fig. 1.3. CMA and CDA interactions

18

1.3.2 E-commerce platform

An e-commerce platform is a comprehensive software solution that provides
internet stores with the means to manage their business. This type of service
encompasses the creation of e-commerce websites, inventory, and stock management
systems, as well as customer service infrastructure [2].

There are three main types of e-commerce:

- Business-to-Business (B2B): This involves internet sales from one
business to another, essentially wholesale trade;

- Business-to-Consumer (B2C): Currently, a significant portion of e-
commerce falls into this category as companies find it easy to target specific
consumers online, display their products on the internet, and offer consumers the
ability to make purchases without leaving their homes, thus saving time;

- Consumer-to-Consumer (C2C): This is a business model in which
consumers facilitate transactions for products or services between private individuals,

without the involvement of a primary business at any stage of the sale.
1.3.3 Web scraping

Network data retrieval, also known as “web scraping” is the process of
automated collection of structured web data, in other words, extracting information
from the web. This data is gathered and then exported in a format that is more
convenient for the user.

Typically, network data retrieval is carried out using software or libraries that
perform web scraping to extract specific pieces of information from various websites.
Some common use cases for web scraping include price monitoring, price analysis,

news tracking, lead generation, and market research, among many others [3].

19

Seed URL
List

If queue is empty,
or we've met some
BuldURL = Remove URL stopping criteria ...
queue from queue
+

Start Stop

Store page or

Fetch page -~~~ ~ [

Add new
links to the |
queue

Extract links
from page

Fig. 1.4. Abstract web scraping core functionality
1.3.4 Platform Camunda

The Camunda platform is a lightweight framework based on the Java
programming language. The development process consists of two parts: creating a
“flow process” in the specialized Camunda Modeler tool and writing “Java code” to
handle the steps of the process defined in the diagram. The platform provides
developers with REST APIs and specialized client libraries to create programs that

can interact with the remote workflow processing mechanism [4].

1.4 Analysis of successful IT projects
1.4.1 Analysis of known technical solutions

After analyzing the literature related to this subject area, it can be stated that
freely available ready-made e-commerce web applications have their advantages and
disadvantages.

This work aims to create the implementation of the e-commerce web
application, addressing specific shortcomings of existing e-commerce web
applications related to the automation of administrator actions. Specifically, the web
application introduces the functionality of network data retrieval from internet stores,
adds a base for an order processing framework, and provides a dynamic user

interface.

20

1.4.2 Analysis of known software products

The demand for content management systems or web applications for content
management is steadily increasing day by day. This growth is so significant that over
60% [5] of all websites today operate on various types of content management
systems or platforms, and web applications.

There are numerous ready-made content management systems for selling
products that have gained popularity among commercial businesses. Among such
products, we can mention WordPress, Drupal, Joomla, and Magento. Let’s explore
their definitions and features further.

WordPress is one of the most popular content management systems in the
world. Approximately 43.3% [6] of all websites on the internet are powered by
WordPress CMS. It is free to download and use, easy to learn, and search engine
optimized. Additionally, it includes thousands of available themes and plugins in one
repository, making it one of the most customizable platforms [7].

Drupal is an open-source content management system. It is written in the PHP
programming language and distributed under the GNU General Public License.
Drupal also includes modules, themes, JavaScript, CSS, and image files. This system
helps create various web projects using its template resource, which contributes to
convenient outcomes [8].

Joomla is a free content management system written in PHP and JavaScript.
Joomla CMS uses MySQL and MS SQL databases for data storage [9].

Magento is an e-commerce platform built on PHP and XML technologies. It is
a popular open-source content management system specialized in creating internet
stores. This CMS primarily utilizes PHP and Zend Framework technologies [10].

Below is Table 1.1 with a comparison of existing content management systems
and their drawbacks. This comparison was conducted based on a source that includes
an analysis of content management systems [11].

Table 1.1.

Comparison of existing content management systems

21

Characteristic WordPress Drupal Joomla Magento
Use Arbitrary Arbitrary Arbitrary Arbitrary
Number of free|> 4000 > 1000 > 2000 > 1000
templates

Number of free | >50000 > 37000 >7000 >3000
plugins

One-click Supports Supports Supports Supports
installation

Loading Time 5 minutes 10 minutes | 10 minutes 10 minutes

Table 1.1. (continue)

Documentation Present in | Present in | Present in | Present in
different English different English
languages languages

Security system | High level of | High level of | High level of | High level of

with “patches” security security security security

Language support | Present Present Present Present

Visual Editor There is a|There is a|No visual | There is a
partial visual | partial visual | editor complete
editor when | editor visual editor
buying a with plugins
plugin

Basket N/a N/a N/a Present

Price Missing Missing Missing Missing

1.5 Analysis of software requirements

The main goal of the developed software is to create an e-commerce web
application using web scraping with an optimized product reading process from

internet stores and a base for an order processing conveyor framework for global use.

22

Additionally, the software should feature an intuitive dynamic user interface and
implement a financial transaction service.

To achieve this goal, the software must meet the following requirements:

- Development using fundamental principles of object-oriented
programming (OOP) and modern programming patterns;

- Support for web standards and access control to the application through
user authentication and authorization methods with different roles;

- An administrator role responsible for CMS management and a client role
that can view products, the customer’s cart, and create and pay for orders;

- Implementation of an admin panel and manager for process and
application configuration management;

- Automation of product creation processes through network data retrieval
from internet stores and the establishment of a base for an order processing conveyor
framework;

- Implementation of personalized CRUD (Create, Read, Update, Delete)
operations for content management and data storage in the database;

- Calculation of the total price of products in an order;

— Integration of the “Stripe” financial transaction service with an improved
transaction interface;

- An intuitive and dynamic interface using Bulma and Vue.js program
solutions infrastructure, adaptable for computers, tablets, and mobile devices.

In summary, the main purpose of the software requirements is to develop high-

quality software that satisfies real customer needs within the budget.
1.5.1 Additional software requirements

To reduce the potential number of errors in the database, validation of user
information input forms and all financial transactions has been implemented.
Validation will contribute to the quality storage of data in the database table.

To distinguish between the administrative panel and the store menu, two menus

have been created: the “Store Menu” and the “Administrator Menu”. This solution

23

addresses the separation of functions between the store and the administration of the
e-commerce web application.

When creating a product, the price will be calculated with precision to the tenth
place and rounded during input. The application will include one administrator with a
default login and password, and the administrator will have the ability to create new
users in the administrative panel. Also, during the development status, the web
application will include default user data for order creation. The e-commerce web
application should have an authentication process based on sessions and cookie files
with a twenty-minute time limit.

To simplify the order processing process, it should be divided into three stages
of management and processing: order formation, order packaging, and order shipping.
In the future, the “Camunda” process automation technology will be integrated into
the order processing conveyor framework, and customers will have access to view

processing stages.
1.5.2 Data storage requirements

The data storage for the e-commerce web application using web scraping with
an optimized product reading process should be integrated into the project’s data
layer, along with the generation of migration folders. It should also ensure high-

performance data writing and be compatible with various operating systems.
1.5.3 Database software requirements

The requirements for the database software for the e-commerce web application
using web scraping with an optimized product reading process are as follows:

- Usage of operating systems like Linux, Windows;

- Recommended minimum of 4 CPU cores;

— 4 GB of RAM or more.

These requirements define the software requirements for the database. The
project’s data storage should maintain appropriate relationships between information

and data.

24

1.5.4 Software deployment requirements

To run and use this project, the following system and hardware requirements
are needed:

— Minimum 1 GB of RAM;

- Support for operating systems such as Windows, MacQOS, and Linux;

- Installed Visual Studio, preferably version 2016 or higher;

- At least 8 GB of physical memory;

— Processor frequency of 1 GHz or higher;

- Broadband internet connection.
1.5.5 Development of functional requirements

Based on the use case diagram presented in Fig. 2.11. titled “Structural scheme
of use cases” the following use cases and functional requirements for this web
application have been developed, as outlined in Table 1.2.

Table 1.2.

Application use cases and functional requirements

UC1.1.1 Use Case

Name Authorization

Description The administrator enters the username and password, then goes to

the administration panel

Participants Administrator

Prerequisites | The web application is running, authorization fails

Postconditions | The administrator is authorized in the application

UC1.1.2 Use Case

Name Authentication

Description For the duration of the usage session, the web app stores session
tokens stored in the app for 20 minutes

Participants Administrator, User

Prerequisites | Running web application

25

Postconditions

Saving authorized data for 20 minutes in the app

UC1.1.3 Use Case

Name

Access to the admin panel

Description

The administrator can go to the administrative panel

Participants

Administrator

Prerequisites

The web application is running, the administrator is authorized

Postconditions

Successful transition and access to the admin panel

UC1.1.4 Use Case

Name

View and edit products

Description

The administrator chooses to view, edit, create, and delete products

Table 1.2. (continue)

Participants

Administrator

Prerequisites

Running web application, access to the administrative panel

Postconditions

A page with the functionality of viewing and editing products is

displayed

UC1.1.5 Use Case

Name

Generating a product list file from internet stores

Description

The administrator generates a text file with a sheet of product data

read from internet stores

Participants

Administrator

Prerequisites

Running web application, access to the administrative panel

Postconditions

A page with the functionality for generating a product list file is

displayed

UC1.1.6 Use Case

Name

View and edit the order processing process

Description

The administrator has access to the order processing panel and its
editing

Participants

Admin access to the admin panel

Prerequisites

Running web application, access to the administrative panel

26

Postconditions

A page with order processing functionality is displayed

UC1.1.7 Use Case

Name

View and edit the number of products in stock

Description

The administrator selects viewing, editing, creating, and deleting

the quantity of products in the warehouse

Participants

Administrator

Prerequisites

Running web application, access to the administrative panel

Postconditions

A page with warehouse editing functionality is displayed

UC1.1.8 Use Case

Name

Creating new users

Table 1.2. (continue)

Description

The administrator creates new users in the application with naming

and access rights

Participants

Administrator

Prerequisites

Running web application, access to the administrative panel

Postconditions

A page with user creation functionality is displayed

UC1.1.9 Use Case

Name

Product Page View

Description

The user has access to view the product page

Participants

User

Prerequisites

Running web application, home page

Postconditions

Displayed product page

UC1.1.10 Use Case

Name

Editing a product in the cart

Description

The user adds, subtracts, removes items from the cart

Participants

User

Prerequisites

Running web application, cart page

Postconditions

The cart page is displayed, it is possible to edit it

UC1.1.11 Use Case

27

Name

Checkout

Description

The user fills in the fields of the order delivery address and pays

for the order on a new page

Participants

User

Prerequisites

Running web application, checkout pages

Postconditions

Order confirmation page displayed

UC1.1.12 Use Case

Name

Changing the background of the app

Description

Both actors can choose a personalized app background for the

product page

Table 1.2. (continue)

Participants

Administrator, User

Prerequisites

Running web application, home page, menu

Postconditions

The main page is displayed with a redesigned interface

Based on the use cases, functional requirements for the e-commerce web

application using web scraping with an optimized product reading process were

created and described. These requirements are listed in Table 1.2 and are subject to

the description section. It’s important to note that each requirement is assigned an

identification number, introduced in parallel with the use cases, and starts with the

prefix “REQ.”

As a result, using the discussed use cases and functional requirements, a

requirements traceability matrix was developed, which can be viewed in Fig. 1.5.

Functional requirements

REQ1.1.1 | REQ1.1.2 | REQ1.1.3 | REQL.1.4 | REQL.1.5 | REQ1.1.6 | REQL.1.7 | REQ1.1.8 | REQ1.1.9 | REQ1.1.10 | REQ1.1.11 [REQ1.1.12

Use cases

UCl.1.1

UC1.1.2

UC1.1.3

UCl1.1.4

UC1.1.5

UCl1.1.6

UC1.1.7

UC1.1.8

UC1.1.9

UC1.1.10

UC1.1.11

UC1.1.12

+
+ + + +

Fig. 1.5. Requirements tracing matrix

28

1.5.6 Development of non-functional requirements

To determine the quality attribute of the web application, the following non-
functional requirements were identified for the user who will deploy this application
locally:

- The software should work on the Windows operating system and
requires Microsoft Visual Studio version 2016 or higher;

- Supported server module operating systems are Linux, Windows,
MacQS;

- Support for all modern browsers for the client-side software;

- An internet connection is required.

1.6 Setting the set of module tasks

The purpose of the development is to create an e-commerce web application
using web scraping with an optimized product reading process, implement a base for
an order processing conveyor framework, and dynamic design, and handle financial
transactions in the administrative panel.

The goal of the development is to create a personalized e-commerce web
application with increased efficiency through the automation of product creation
processes using network data retrieval and the creation of a base for a working order
processing conveyor aimed at automating order acceptance and processing by the
administrator. The goal also includes creating a dynamic user interface to improve
user interaction with the web application and its administrative and user functionality.

To achieve the set goal, the following tasks need to be addressed:

- Implement authentication logic;

- Introduce authentication logic;

- Develop functionality for viewing and editing products;

- Develop functionality for generating products and their descriptions

taken from internet stores;

29

- Implement a base for a framework and template for the order processing
conveyor;

- Develop functionality for viewing and editing products in stock;

- Develop logic for creating new users based on roles;

- Implement logic for changing the application’s background;

- Add functionality for viewing products;

- Implement the ability to add products to the shopping cart;

- Develop logic for canceling the shopping cart;

- Introduce authentication logic throughout the entire session;

- Implement functions for handling financial transactions.

Conclusions on the section

Conclusions for this section include that after analyzing the requirements for
the software, the general principles, purpose, and scope of the software have been
detailed. In addition, existing modern solutions were analyzed in the “Analysis of
successful IT projects” section, highlighting their advantages and disadvantages.
Requirements for the software were analyzed, covering the software itself, data
storage, functional, and non-functional requirements. A requirements traceability

matrix was also created.

30

2 SOFTWARE MODELING AND DESIGN

To create an e-commerce web application using web scraping with an
optimized product reading process, the software development process was employed,
known as the Software Development Life Cycle (SDLC). SDLC is an iterative logical
process aimed at creating computer software to achieve a specific goal or task. It
establishes an international standard used for the development and improvement of
software products. It provides a structured set of actions to be followed during the
development, creation, and maintenance of high-quality software [12]. The diagram
of the SDLC life cycle is depicted in Fig. 2.1.

Requirement

/ A"alysis \

Deployment Planning

SDLC

Architectural
Design

\ . /

Development

Fig. 2.1. Diagram of the SDLC life cycle

Testing

The main objective of the software development process is to create an efficient

product. This project adheres to this process to achieve a successful outcome [13].

2.1 Software modeling and analysis

For users of the software, the following common processes are essential:
viewing the main product page, adding products to the shopping cart, processing and
paying for orders through the “Stripe” payment service, and the ability to change the

application’s background.

31

The stage of viewing the main product page involves actions by the user, who
launches the web application, lands on the product page, and can view product details.

The stage of adding a product to the shopping cart allows the user to select a
product and add it to the cart, review the cart’s contents, and edit the quantity of
items.

The stage of order processing and payment includes entering the user’s
personal information, making payment for the order through the “Stripe” service, and
completing the process.

Finally, the stage of changing the application’s background enables users to
change the background on the main page of the application using a dedicated button
in the toolbar.

At this stage, the user can change the application’s background. Additionally,
the general processes that the software administrator goes through include processes
of authorization and authentication, access to the administration panel, viewing and
editing products, processing orders, viewing and editing the quantity of products in
stock, creating new users, and all the processes available to users.

Sequential description of the authorization and authentication stage:

- On the first visit to the website, the administrator clicks on the “Log In”
button, which redirects them to a page for entering login credentials;

- Next, the administrator enters their login and password;

- After correctly filling in the required fields and clicking the “Log In”
button, the administrator returns to the main application page with an updated part of
the interface indicating access to the administration panel;

- In case of an urgent exit from the web application and re-entry, the
administrator can access it without losing data due to the authentication process.

At this stage, the administrator can authorize, thereby opening a new part of the
interface, the administration panel. Also, in case of exiting the web application and re-
entering, the administrator can access it without losing their role, thanks to the
authentication process.

Sequential description of accessing the administration panel:

32

— After authorization, on the main page in the admin tools panel, the
administrator has a link to the administration panel;

- By clicking on this link, the administrator is directed to a new page with
the administration panel;

- The administration panel includes tools for managing both the platform
itself and its users.

At this stage, the administrator can access the administration panel and have
access to two parts of the panel: platform administration and user administration.

Sequential description of viewing and editing products:

- After entering the administration panel, in the administration menu, the
administrator is presented with a sub-panel for viewing and editing products;

- By clicking on this sub-panel, the administrator dynamically switches to
the product editing panel;

- This panel includes an interface with functions for creating, viewing,
editing, and deleting products.

At this stage, the administrator can access the menu for viewing and editing
products and use its functions to manage products.

Sequential description of generating a text file and describing products from
internet stores:

- In the administration panel, the administrator selects a sub-panel for
generating text files of products;

- After clicking on this sub-panel, the administrator dynamically switches
to the product text file generation panel and can choose products from three Ukrainian
internet stores;

- After clicking the “Generate” button, the administrator receives a
generated text file with the listed products on their local system.

At this stage, the administrator can access the menu for generating text files of
products and use its functions to obtain product descriptions from internet stores.

Sequential description of order processing:

33

— In the platform menu, the administrator selects a sub-panel for order
processing;

- The sub-panel includes three order processing stages: pending,
packaging, and dispatch;

- The administrator can manually switch orders between these processing
stages until the order is completed.

At this stage, the administrator moves to the platform’s order processing sub-

panel, which includes a three-stage order processing system.

2.2 Rationale for development tools
2.2.1 Software development environments

Since the e-commerce web application using web scraping with an optimized
product reading process is developed in the C# programming language and ASP.NET
Core framework, the decision was made to use the integrated development
environment Visual Studio by Microsoft with the necessary plugins suitable for web
application development. Additionally, a range of technologies and processes listed

below in the sections were utilized.
2.2.2 Programming language C#

To develop an e-commerce web application, the decision was made to use the
C# programming language as the primary language in this implementation.

The C# is a modern, object-oriented language that allows for the creation of
secure and reliable programs, working in conjunction with .NET [14].

The choice of language is justified by the fact that C# is one of the most

versatile programming languages in the world.

34

2.2.3 ASP.NET Core framework

The software implemented on the ASP.NET Core platform is a high-
performance platform for creating modern applications with cloud support and open-
source code.

Among the advantages of this platform, the following aspects can be
highlighted:

- Support for multiple platforms, allowing ASP.NET Core applications to
work on various operating systems, eliminating the need to create separate programs
for each platform;

- Built-in “loC” container for automatic dependency management;

- Integration with modern user interface frameworks such as AngularJS,
ReactJS, Vue.js, Umber, Bootstrap, and Bulma [15]. The diagram of the ASP.NET
division is depicted in Fig. 2.2.

.NET Framework Windows

ASP.NET | | _ Windows

.NET Core 1.0

Linux

.NET Core

.NET Framework Mac

Windows

Fig. 2.2. Diagram of the ASP.NET division

As a result of utilizing these capabilities of the ASP.NET Core platform, the e-
commerce web application was developed, characterized by high performance, lower

system memory requirements, easy deployment, and convenient maintenance.

35

2.2.4 MVC architecture pattern

The e-commerce web application using web scraping with an optimized
product reading process built using an MV C pattern due to its high effectiveness.

Model-View-Controller, or MVC, is an architectural pattern that divides a
program into three main components: model, view, and controller. Each of these
components is designed to handle specific aspects of software development. MVC is
often used to create scalable and expandable projects [16]. The interaction of the

components of the MVC design pattern is depicted in Fig. 2.3.

view [Controllers

Fig. 2.3. Diagram of the interaction of MVC template components

The three components of the MVC software design pattern can be described as
follows:

- The model manages data and business logic and does not directly interact
with the user;

- The view describes the program’s external appearance;

- The controller acts as an intermediary between the model and the view. It
receives data from the user, passes it to the model, receives the processed result, and

passes it to the view.
2.2.5 AWS cloud platform

Amazon Web Services, known as AWS, is a comprehensive remote computing
service that provides a variety of online services through cloud storage. AWS
encompasses more than 200 products and services. Accessing Amazon Web Services
Is done through HTTP, using the REST architectural style and SOAP protocol,
typically for older systems, and JSON for newer ones [17].

36

2.2.6 Docker platform

For the e-commerce web application, Docker technology was implemented to
facilitate the deployment of the software. Docker is an open-source platform for
containerization.

The Docker platform utilizes containers, which are implemented through
process isolation and virtualization built into the Linux kernel. These capabilities
allow multiple components of an application to share resources of a single host
operating system instance, much like a hypervisor enables multiple virtual machines
to share the CPU, memory, and other resources of a single physical server [18]. The

docker system architecture scheme is depicted in Fig. 2.4.

S _
docker build .. {--- Docker daemon] pr
’ < TP éi_'_:,
\‘ ..'.' =~ ~ d
~
\
e

7

, |
-1)
docker pull j| | Containers e \.\ Images j—

docker run —f '_\ g NGIMX
. . /
)
' /
~, s /
aA'

WAL

AN

Fig. 2.4. Docker system architecture scheme

As a result, container technology offers all the functionality and benefits of

virtual machines, including application isolation and cost-effective scalability.
2.2.7 Stripe payment service

To facilitate convenient and efficient management of financial transactions in
this software, the Stripe service has been implemented. Stripe is a payment service
provider that business owners can use to accept various forms of payments, including
credit cards, direct purchases, and deferred payments. It’s important to note that Stripe

charges a commission for each transaction.

37

As a payment processor, Stripe allows business owners to accept and process
payments from credit and debit cards. Additionally, by using Stripe, companies can
accept payments via mobile wallets and make immediate purchases, subsequently
paying for the goods or services. Stripe also supports payments in various currencies
through its built-in service called “Stripe Payments”, which processes payment data.

The operation of this software involves the following steps:

- The client provides information about their card;

- Card data is encrypted by the Stripe payment gateway;

- Stripe forwards this data to the acquiring bank for transaction processing
on behalf of the seller, with Stripe acting as the seller. This means that Stripe users do
not need to create a seller account;

- Payment data is sent to the card-issuing bank (the bank that issued the
card) of the cardholder through the credit card network, such as Visa or Mastercard;

- The card-issuing bank approves or declines the transaction;

- The transaction result signal is sent back to the client through Stripe;

- After the card-issuing bank of the cardholder completes its approval, the
user can transfer funds from Stripe to their bank account, and Stripe users can receive
payouts after transaction processing.

The stripe payment gateway system design is depicted in Fig. 2.4.

p-= g - e
«— Stripe P — T @
’H‘ EFI — .m 5 I

Customer Merchant

Acquirer Card Network/Scheme Issuer

Fig. 2.5. Stripe payment gateway system design

Users will pay Stripe a certain fee for processing each transaction. The amount
of these fees depends directly on the type of transaction; for example, each payment

may cost 2.9% of the item’s price [19].

38

2.2.8 Bulma framework

To create the user interface for the project, we implemented the Bulma
framework. Bulma is a free CSS solution based on the Flexbox layout. Thanks to
Bulma, we have access to a wide range of built-in features, greatly simplifying the

CSS coding process [20].
2.2.9 Vue.Js framework

Also, to create the user interface, we implemented the Vue.js framework. It’s a
user interface framework written in JavaScript. It’s built on HTML, CSS, and
JavaScript and provides a declarative programming model that helps streamline user
interface development. Vue.js uses a virtual DOM. Instead of making changes directly
to the DOM, a copy of it is created, represented as JavaScript data structures. As a
result, the final changes are updated to the real DOM [21]. This is a significant

optimization advantage.
2.2.10 Microsoft SQL server database management system

To manage the software, SQL Server is used — it is a relational database
management system, developed by Microsoft. It is based on SQL, which is a standard
programming language for interacting with relational databases. SQL Server is
associated with Transact-SQL or T-SQL from Microsoft, which includes a set of

special programming constructs [22].
2.2.11 HTML Agility Pack library

To implement the logic of fetching products from internet stores, the HTML
Agility Pack library was used — it is a syntactic HTML parser that creates a DOM
structure for reading and writing and supports common XPATH or XSLT. This is a
NET library that allows analyzing HTML files “offline”. The syntactic parser is very
tolerant of HTML [23].

2.3 Database Architecture

39

For the e-commerce web application using web scraping with an optimized

product reading process, domain models were built, an ER diagram was developed,

and a database schema was implemented.

Generally, the better the database architecture is developed, the faster the

program can retrieve and process the necessary amount of data.

2.3.1 Building a domain model

The domain model is a type of metadata that consists of multiple tables [24].

To gain a clear understanding of the domain of the e-commerce web application

using web scraping with an optimized product reading process, an entity table (and

inter-project entities) for the domain was created. You can view it below as Table 2.1.

Table 2.1.
All domain entities in the database
Essence Attribute
Customer First name, last name, mail, phone number, required address,
Information optional address, city, zip code, order date
Order Order code, order link, stripe service token link, first name,

last name, email, phone number, required address, optional

address, city, zip code, order date, order status

Composition of

orders

Warehouse code, order code, quantity of goods

Product or Product

Product code, naming, specification, price, warehouses

Product in cart

Product code, product name, warehouse code, price, quantity

Warehouse

Warehouse code, description, quantity, product code, order

warehouse

Warehouse on hold

Pending warehouse code, session token code, warehouse

code, quantity, expiration date

40

2.3.2 ER diagram

When developing the database for the e-commerce web application, an entity-
relationship diagram representing the relationships between sets of entities stored in
the database was implemented. An entity is an object, a data component, and a set of
entities is a collection of similar entities [25].

In Fig. 2.6., you can see the ER diagram of the subject area.

The warehouse is waiting Storage Warehouse/Order Order

Fig. 2.6. ER diagram of the subject area
2.3.3 Database schema

To create an architecturally correct database for the e-commerce web
application, a database schema was designed.
For this software, a simplified database schema or data logical model was

created. In Fig. 2.7., you can see the simplified database schema of the domain.

StorehousesOnHolds p0——C+H Storehouses [O—0< OrderStorehouses po——0H Orders

i

Products

Fig. 2.7. Simplified database schema

Additionally, data logical model was generated for this web application. It is
presented in Fig. 2.8. and Fig. 2.9. under the title “Database schema”,

41

StorehousesOnHolds]
gl 1d Storehouses 2 OrderStorehouses Orders
e esonTokenld ? 1d 9 Orderld §
essionToken P
oo Description ¥ Storehouseld OrderReference
torehousel
o Quantity Quantity StripeTokenReference
t
uantly Productld Name
DateOfExpiry Surname
Email
PheneNumber
B RequiredAddress
Products OptienalAddress
2 Id City
Naming PostalCode
Specification OrderDate
Price Status
Fig. 2.8. Database schema — first part
AspNetUserClaims
AspNetUserRoles ? 1d
O] e
¥ Userld AspNetUsers Userld
¥ Roleld 7 d ClaimType
UserName Claimvalue
% NormalizedUserName
AspNetRol Email
spNetRoles "
= NormalizedEmail AspNetUserTokens
EmailConfirmed P Userd
MName
PasswordHash ® LoginProvider
NormalizedName
SecurityStamp ¥ Name
ConcurrencyStamp 5 o
ConcurrencyStamp Value
PhoneMumber
% PhaneNumberConfirmed
AspNetRoleClaims TwoFactorEnabled o AspNetUserLogins
T 1d LockoutEnd ¥ LoginProvider
Roleld LockoutEnabled T Providerkey
ClaimType AccessFailedCount ProviderDisplayName
Claimvalue Userld

Fig. 2.9. Database schema — second part

As a result, a database schema was created, which represents the structure of
the database system, providing a logical representation of the entire database and
supported by the database management system. It defines how data is organized, and
their relationships, and formulates all the constraints that need to be applied to the
data [26].

2.4 Software architecture

This software has been divided into six projects, which use a three-layer
architecture, and two projects for implementing testing layers, which will be
discussed in the fourth section. Thus, DAL, BL, and PL layers have been
implemented. The flexibility of this approach adheres to SOLID principles.

42

Specifically, the DAL and BL layers are divided into class libraries, each of
which is intended for the interfaces of the respective logic layer. These interfaces
establish a connection between the DAL and BL layers.

You can see the architecture of the e-commerce web application using web

scraping with an optimized product reading process in Fig. 2.10.

&] Solution 'GenericStore.Ul' (6 of & projects)
[GenericStore.BLIMPL

P& GenericStore. DAL ABSTRACT

D & GenericStore. DAL IMPL

] Genericstore.Entities

[
[
I & Genericstore.Models

I & & GenericStore.Ul

Fig. 2.10. E-commerce web application architecture using web scraping with an
optimized product reading process

Moving on to the consideration of each project, the first in logic is
GenericStore.Entities — this is a class library that includes all database entities,
intermediate entities, and everything related to them.

GenericStore.Models is a class library that embodies data transfer objects.

GenericStore.DAL.IMPL is a class library responsible for the logic of the data
access layer.

GenericStore.DAL.ABSTRACT is a class library responsible for the logic of
the interfaces of the data access layer.

GenericStore.BL.IMPL is a project that is responsible for logic and
implementing services.

GenericStore.Ul is a project that is responsible for the graphical user interface
of the application and implements the MV C architecture, with models stored as entity
data and used to process parts of the code. Moreover, the views generated in this
software can be in the form of HTML code or JSON response format. Controllers are

used to combine view and model components and are applied for data processing.
2.4.1 UML software diagrams

During the development of the architecture of this software, it was essential to
use UML, which stands for Unified Modeling Language. In other words, UML is a

modern approach to modeling and documenting software. It is a popular method for
43

modeling business processes and is based on schematic representations of software
components. By using UML, it becomes easier to understand potential flaws or errors
In the software or business processes.

Two main categories encompass all other types of UML diagrams: structural
and behavioral. Based on their names, some UML diagrams analyze and depict the
structure of an application or process, while others describe the behavior of the
application, its actors, and components [27].

As a result, a series of UML diagrams were created and integrated into this e-

commerce web application.
2.4.1.1 Use case diagram

UML uses case diagrams to model the behavior and requirements of an
application. They describe high-level functions and the scope of the web application.
These diagrams also define interactions between the application and its actors. Use
cases and actors describe what the application does and how participants use it, but
not how the application works internally. In other words, a use case diagram describes
the “action” rather than the “process of creating action logic” [28].

Typically, developing use case diagrams is part of the project modeling stages.
The main goals of creating use case diagrams during the process include:

- Specifying the application’s context;

- Capturing the application’s requirements;

- Verifying the application’s architecture.

A diagram of the use cases of the subject area is shown in the in Fig. 2.11.

under the title “Structural scheme of use cases”.

44

—
/Vicw and \\
\, edit products
e B
Authorization ol
.~ and Authentication <<dncludess =
i o/ - e

Processing of order kY

; et <dnClugdepo -+
Managing the _2-_'_1'-1-"""‘”
. admin pa”i// T e xejncludes>
N o N e, B — Viewing and
1 "7** - editing the number
; Camciudes> \ of products in stock
Administrator —

3\ new users //

e
Extends \
Mamlenance of persor’h _;(//P roc eed *m , ent of)

*information of the user, i 1 from the

____—/—/
Extends
— User
[/NOM‘C ation of Order \ // Authentication
order payment i)
payment // of orders
ation
_—__//’

Extends

s access to execute user actions

Fig. 2.11. Structural scheme of use cases

As a result, this diagram can be referenced throughout the entire development

process.
2.4.1.2 Class diagram

The e-commerce web application using web scraping with an optimized
product reading process cannot be done without a class diagram, just like any other
properly formed architectural solution.

The class diagram is used to illustrate and create a functional representation of
classes in the software application. It serves as a vital resource throughout the
software development lifecycle [29].

The diagram of the classes of the subject area is shown in the appendix B, in
Fig. B.1., under the title “Structural scheme of software classes”.

Therefore, class diagrams are one of the most important types of UML

diagrams and are crucial in software development.

45

2.4.1.3 Business Process Model and Notation diagram

To model the primary client-side business processes of the web application, a

model diagram, and Business Process Model and Notation (BPMN) notation were

introduced. This diagram is depicted in Fig. 2.12.

f ot return
" Al Cormectly entered
o Des r foduct ™ personal dala Y
/ M Add : Managing and - Order ; s
ditng he_.... + process F >—3{ | Onder payrent
: PR -
H v
G| cornec —
i
E ot returm IF ot return, Ny
Chackin T
o gl nIJU'U\-ls{F)
Order recaived.
I ™ 'S
k-3
g - N
= - ==
= v
=8) \
3

Fig. 2.12. Diagram of the model and notation of the business processes of the

application

2.4.1.4 Sequence diagram

Sequence diagrams are interaction diagrams that provide a detailed description
of how operations are executed. They capture interactions between objects [30].

A diagram of the application authorization sequence is shown in Fig. 2.13.

Forgot

Login Page

Sequence Diagram (Login/Registration)
;(N

Password

Verefication

Database

Authenticate

Page

User/Trainer/Admin

] Forgot your password
Login to page

Checking Login Details

Check Authenticity for access

Access Authorization

W Sending Login Details

—
Create
session in DB

—

Invalid Login

Allow user to access to other pages

Logout from the app

Destroy session and tokens

Login in a site

Fig. 2.13. Application authorization sequence diagram

The purpose of a sequence diagram is to:

Model high-level interactions between active objects;

Allow user to see
another pages

46

— Model interactions between object instances that implement a use case.

Fig. 2.14. shows a diagram of the sequences of the entity update process in the
application.

Servipel Database
Repository

User

MemberController

Ul (Swagger)

post .

UpdateAsync()

UpdateAsync()

UpdateAsynci()

return UpdateAsync()

return UpdateAsync(id, member)

return UpdateAsync(id, member)

return swagger answer

Fig. 2.14. Entity-update process sequence diagram

In Fig. 2.15, you can see a diagram of the sequence of the general logic of the

USer process.

The main window
User : Goods Ordler
with goods

Browse products P |
retumn
¥ RN e v o N
Chooss & produc e
* »
return .
B T T TSNS e emmmmssssssssssssese————— Checxing for suficient,
: quantity of goods
H Makea an order ‘
-
:I.‘_)
Checking the
correciness of the order :
' I
: retum \
- SRS Y | BN <l L o SRR sy LR e b b ——a i maa __.)
___________________ 1.
&
Checking the correctnesa of
antering the Lsar's perscaal data

Fig. 2.15. Diagram of the sequence of the general logic of the user process

47

2.4.1.5 State diagram

A state diagram is a tool for describing the behavior of a program, taking into
account all possible states of an object. This behavior is represented and analyzed
through a series of events that occur in one or more possible states. Each diagram
represents objects and tracks their different states throughout the entire application
[31].

It is worth noting separately the status diagram for the process of adding goods

and paying for the order, shown in Fig. 2.16.

add product

add product /\ payment
view cart N\ processing
The basket
The basket is empty
is not empty
>

clear of goods

Fig. 2.16. Status diagram for the order payment process

It is also worth noting the state diagram for the CRUD process of entities,

shown in Fig. 2.17.

finish / delete,

. finish { edit
finigh / creale
ik
Manage the entity Create an Create an entity
aniry! enter the rowle of the Est 0ty iy antry/ clicked the create button
da/ choose what to do dof croate
i exili go along the chosen route exit! when creating returm
_ Edit entity
entryl clicked the et buticn
Edit entity —
do edit
. exlt) when editing, retun
Delete an enity .
Enl’,‘-' chcked the delete button
Delete an entity

ol dalesa —

exitf return when deleted

!

X
Fig. 2.17. State diagram for entity crud process

48

2.4.1.6 Component diagram

The component diagram breaks down the developed web application into
various levels of functionality. Each component is responsible for a specific purpose
within the entire application and interacts with other elements [32].

The component diagram for the MVC process of the main entities of the e-
commerce web application is shown in in Fig. 2.18. under the title “Structural

diagram of software components”.

Bun

Koutponep

OHOBMTH NepernAn

Mongene
Mapwpyt
Koxtponep
—_— S?Muaﬂewa 3aMoB/NeHE CRUD
CRUD aanuT AnA 3aMoBneHHA FamoBneHs

OHoBUTH NE p\ernﬂﬂ

MaplpyTt
e g cons
CRUD sanut ans CRUD

Cxnapy Cknany
OHOBKTI negernAn
Kopuctysay/ Mapupyt
AnmiHicTparop [~—m—7—— Tosapy _?g;;ggnep Toeap
ul
CRUD 3anut anA Tosapy CRUD

Toeapy

GenericStore B[

illi

OHoBUTI NEpernan

Mappyr
—_— Kowumky Egiﬁ?ynep e
ul CRUD sanut anA Kownky EE CRUD

Kowuky

Fig. 2.18. Structural diagram of software components

2.4.2 Software architecture selection analysis

This section analyzes the choice of architecture for implementing the e-
commerce web application. There are two fundamental software architectures:

— Monolithic architecture — the use of a single general module;

— Microservices architecture — a set of independent, separately deployable
services.

After analyzing the monolithic architecture, the advantages and disadvantages
were reviewed and described in Table 2.2.

Table 2.2 — Advantages and disadvantages of monolithic architecture

Advantages Disadvantages

Convenience in writing | As the project grows, significant portions of code may

49

need editing, even with minor changes

Fast interaction between | Complexity in dissecting and comprehending long-

project parts standing projects, like a 20-year-old monolith

Interconnectedness Learning the entire system takes a lot of time

After analyzing the microservice architecture, we reviewed and described it in
Table 2.3.

Table 2.3 — Advantages and disadvantages of microservice architecture

Advantages Disadvantages

Reliability and security Complex test writing

Scalability and distribution | Costly maintenance — each microservice requires its

own server

Minimal business logic per | Network overhead and round-the-clock code churn

microservice

Therefore, after exploring various architectural options with all their advantages
and disadvantages, a decision was made to implement a monolithic architecture for
this e-commerce web application. The choice was justified by the single-module logic
of the architecture and its ease of understanding and implementation, as opposed to

microservices architecture.
2.4.3 Description of software architecture

Based on the architecture of the web application in Fig. 2.12. and the diagram
of classes shown in the appendix B, in Fig. B.1. under the title “Structural scheme of
software classes™. It is worth considering and describing the architecture of the e-
commerce web application for the sale of products under the project name
“GenericStore”.

Referring to a three-layer architecture, the software includes
GenericStore.DAL.IMPL, GenericStore. DAL.ABSTRACT, GenericStore.BL.IMPL,

and GenericStore.Ul. Each of the layers and its inclusions is responsible for a separate

50

part of the functionality. In the future, each layer of the logic of this software will be
considered.

Let’s take a look at the GenericStore.Entities project, which implements entities
and their fields used to store data in the database. The content of the entities is shown
in Fig. 2.109.

P GenericStore.Entities
<& Dependencies
¥ @& Enums
» @ C# ClientInformation.cs

» @ C* Ordercs

» & Cf Product.cs
» o C* ProductinCart.cs

[:

[

[

[

P & ¢ OrderStorehouse.cs
[

[

P & C* Storehouse.cs

[

i C* StorehouseCnHoeld.cs

Fig. 2.19. GenericStore.Entities project, entities in the project

The details of each e-commerce web application entity for selling products are

shown in Table 2.4.

Table 2.4.
Detailed description of application database entities
Class field Description Type
Order

Id Order code Integer

Table 2.4. (continue)
OrderReference Order link String
StripeTokenReference | Stripe token link String
Name Customer name String
Surname Customer’s last name String
Email Customer mail String
PhoneNumber Customer phone number String
RequiredAddress Customer address required String
Optional Address Optional customer address String

51

City Customer city String

PostalCode Postal code of the customer String

OrderDate The date of the customer’s order DateTime

Status Customer order status OrderStatus

OrderStorehouses Link to warehouse ICollection

<OrderStorehouse>

OrderStorehouse

Orderld Warehouse code Integer, Order

Storehouseld Order code Integer, Storehouse
Quantity Quantity of goods Integer
Product

Id Product code Integer
Naming Name of the product String
Specification Product specification String
Price The price of the product Decimal
Storehouses Warehouses ICollection

<Storehouse>

Storehouse
Id Warehouse code Integer
Description Product description in stock String
Table 2.4. (continue)

Quantity Quantity of goods in stock Integer
Productld Product code Integer, Product
OrderStorehouses Warehouse/Order ICollection

<OrderStorehouse>

StorehouseOnHold

Id Warehouse code pending Integer

SessionTokenld

Warehouse session token code

String

52

Storehouseld Warehouse code Integer, Storehouse

Quantity Quantity of goods in stock Integer

DateOfExpiry Token expiration date DateTime

Next, we will examine the GenericStore.Models project, which includes entities

implemented with the DTO (Data Transfer Object) pattern, used for data transfer

between the e-commerce web application’s logic. The GenericStore.Models project is
depicted in Fig. 2.20.

4 G [GenericStore.Models

b i Dependencies

Fig. 2.20. GenericStore.Models project, DTO entities

The description of DTO entities in the GenericStore.Models project is
discussed and presented in Table 2.5. These DTO entities are essential for interaction
between the internal logic, the database, and the user interface. These entities are
organized into various directories, each implementing different aspects of the creation
logic.

Table 2.5.
Detailed description of DTO entities for data transfer

DTO entity directory Description

53

CartDTO Recycle bin entity in DTO to execute the assigned

functionality of the application recycle bin

OrdersAdminDTO DTO entities for performing order-related

functionality for administrators

OrdersDTO DTO entities for executing order-related functionality

from the user’s perspective

ProductsAdminDTO DTO entities for product-related functionality from the

administrator’s perspective

ProductsDTO A collection of DTO entities for executing product-

related functionality from the user’s perspective

StorehouseAdminDTO A collection of DTO entities for performing

warehouse-related functionality with administrator

privileges

Next, the first layer to consider, which is directly responsible for data access,
includes projects named GenericStore.DAL.IMPL and
GenericStore. DAL.ABSTRACT. They provide simplified access to data stored in the
database.

The class library GenericStore.DAL.IMPL includes classes for initializing
database entities and managing them using the “Manager” template. It is in this
project that the database is initialized along with the migrations folder. The
architecture and content of the GenericStore.DAL.IMPL class library are depicted in
Fig. 2.21.

4 & [c# GenericStore.DAL.IMPL
- Dependencies
» o Il Migrations
» @ CF GenencStoreDbContext.cs

» 6 C* ProductManager.cs

[
[
[
I & € OrderManager.cs
[
[

» & C* StorehouseManager.cs
Fig. 2.21. GenericStore.DAL.IMPL project, part of the logic

54

To implement this layer, the “Manager” template was used, which, in turn, is a
branch of the “Repository” template. The class library GenericStore.DAL.IMPL is
detailed in Table 2.6, which describes the layer itself and the classes included in it.

Table 2.6.
Detailed description of the GenericStore.DAL.IMPL project and its classes designed

to store data in a database

Project or layer | Class Description and purpose of the class
name

GenericStore.DAL | GenericStoreDb This class includes all the provided
IMPL Context entities of the e-commerce web

application and initializes the
connection between the program and

the database

GenericStore.DAL | OrderManager This class manages and handles the
AMPL entities of orders between the program

and the database

GenericStore.DAL | ProductManager This class manages the entities of
AMPL products between the program and the
database

GenericStore.DAL | StorehouseManager | This class handles the entities of
AMPL warehouses between the program and

the database

Next, we move on to the second project, GenericStore. DAL.ABSTRACT,
which encompasses the implementation of data access layer interfaces. The project’s

structure can be seen in Fig. 2.22.

55

I GenencStore. DAL ABSTRACT
-5 Dependencies
» & € DecimalPricebxtensions.cs
c# |OrderManager.cs

c# |SessionControlManager.cs

[
[
[
I & € |ProductManager.cs
[
[

c# |StorehouseManager.cs

Fig. 2.22. GenericStore. DAL.ABSTRACT project, part of abstractions

The class library GenericStore.DAL.ABSTRACT plays a fundamental role in
facilitating communication and data/method transfer among other projects and layers.
It is responsible for flexible interaction between projects. A detailed description of
this class library is provided in Table 2.7.

Table 2.7.

Detailed description of the GenericStore. DAL.ABSTRACT project

Project/layer name | Class Description and purpose of the

class

GenericStore.DAL | DecimalPriceExtensions | This class is a static extension that

ABSTRACT performs the function of converting
and formatting the price into a
string

GenericStore.DAL | I0rderManager Responsible for abstracted

ABSTRACT shopping cart functionality and
ensures the flexibility of methods

GenericStore.DAL | IProductManager Implements abstracted product

ABSTRACT functionality

GenericStore.DAL | ISessionControlManager | Incorporates abstracted session

ABSTRACT control functionality

GenericStore.DAL | IStorenouseManager Realizes abstracted warehouse

ABSTRACT functionality

2.5 Description of software architecture

56

We should consider the detailed creation of the business logic for the e-
commerce web application using web scraping with an optimized product reading
process. The business logic consists of the GenericStore.BL.IMPL project, which
includes the core logic and application services. The structure of this project can be
seen in Fig. 2.23.

4 GenericStore. BL.IMPL
P o Dependencies
4 [CartServices
P & o AddClientinformation.cs
P & c# AddToCart.cs
P & C* GetCart.cs
I & ©¢ GetClientInformation.cs
P & ¢ GetOrder.cs
I & € Remo
[= Orderfdn
P& ¢ GetOr
P & € GetOrders.cs
P & = Updat

[OrderServices

c# GetOrder.cs
[= ProductAdminServices
» & €% CreatePro
c# DeleteProduct.cs
c* GetProduct.cs
c# GetProducts.cs

[= ProductServices
c* GetProduct.cs

[Store

€ GetStorel
c# UpdateStorehouse.cs

P & ¥ Service.cs

Fig. 2.23. GenericStore.BL.IMPL project, part of the logic

The GenericStore.BL.IMPL class library serves as the core logic of the e-
commerce web application. It is responsible for implementing and utilizing the logic
and functionality presented in the presentation layer. The structure of the business
logic is divided into directories for convenience and flexibility in usage and future
application enhancements. This approach of splitting classes to implement a clearly
defined functionality is known as the “Single Responsibility Principle” and adheres to
SOLID principles. A detailed description of the class library is provided in Table 2.8.
This table contains all the project logic that will be integrated into the application’s

presentation layer.

57

Table 2.

Detailed description of the GenericStore.BL.IMPL project

8.

Class name Method name with | Description of the method
parameters
Service — Serves as a service attribute for
all business logic classes
CartServices
AddClient DoAction Adding customer’s personal
Information (ClientinformationDTO information with session tokens
request) in mind
AddProduct DoAction Adding a product to the
ToCart (CartStorehouseQtyDTO | customer’s cart with session
request) tokens in mind
GetCart DoAction() Viewing the cart with session
tokens in mind
GetClient DoAction() Retrieving customer’s personal
Information information with session tokens
in mind
GetOrder DoAction() Retrieving order-specific
Information personal information for the
customer with session tokens in
mind
RemoveProduct DoAction Removing a product from the
FromCart (CartStorehouse QtyDTO | cart with session tokens in mind
request)
OrderAdminServices
GetOrder DoAction(int id) Retrieving customer’s personal
Information information at the administrator

level

58

Table 2.8. (continue)

GetOrders DoAction(int status) Retrieving the status of
Information customer orders at the
administrator level
UpdateOrder DoActionAsync(int id) Updating customer orders
Information at the administrator level
OrderServices
CreateOrder DoAction (request) Ta | Creating an order at the
Entity CreateOrderReference() | user level
GetOrder DoAction(string Getting order information
Information reference) at the user level
ProductAdminServices
CreateProduct DoAction (CreateProduct | Creating a new product at
Entity RequestDTO request) the administrator level

DeleteProduct

DoAction(int id)

Deleting a product at the

Entity administrator level
GetProductEntity DoAction(int id) Getting a product
GetProducts DoAction() Getting a list of products
UpdateProduct DoAction Updating a product at the
Entity (UpdateProduct administrator level
RequestDTO request)
ProductServices
GetProduct DoAction(string name) | Getting a product at the
user level
GetProducts DoAction() Getting a list of products
StorehouseAdminServices
CreateStorehouse DoAction Creating a new warehouse

(CreateStorehouse

RequestDTO request)

at the administrator level

59

Table 2.8. (continue)

DeleteStorehouse DoAction(int id) Deleting from the
warehouse at the

administrator level

GetStorehouse DoAction() Getting product
information at the
warehouse as an

administrator

UpdateStorehouse DoAction Updating the warehouse at
(UpdateRequestDTO the administrator level

request)

The user interaction layer, characterized by the presentation, is implemented as
part of the software execution for this work within the software module called
“GenericStore.UI”. This project embodies the visual part of the web application and
includes various classes and directories related to the user interface logic. Within this
layer, specifically in the “wwwroot” directory, CSS and JS code for the application is
located. Additionally, there are application controllers and user interface pages
implemented using the “Razor Pages” technology.

The application also includes a session control manager, validation logic, a
shopping cart component, and a visual model for creating login and password for
authentication. The web application also includes classes such as “Program”,
“RegisterOfServices”, “Startup”, and “Dockerfile” that allow containerization of the

entire web application.
2.5.1 Implementation description of the main tasks of the software

The task of generating a text file with lists of products from internet stores is
implemented in the presentation layer of the “GenericStore.Ul” project. To
accomplish this task, a file with graphic content and interaction with task logic was

created, along with a class for implementing the logic of generating the file and

60

extracting data. Extracting data from other websites requires the use of the HTML
Agility Pack library, which includes convenient classes and methods for this purpose.

The order processing framework task is implemented in the business logic and
presentation layers and involves a three-stage dynamic order processing process for
customers. This functionality is available only to administrators.

The task of creating a dynamic user interface is implemented in the presentation
layer of the application and has two main aspects. The first aspect is the dynamism of
processes, pages, and interface elements. The second aspect is the ability to
dynamically change the interface background, including changing the color to
“random,” dynamic gradient, and adaptive black with the option to save the state in
the local computer storage.

The task of conducting financial transactions is implemented in the presentation
layer of the application and includes retrieving customer data and processing order

payments through the “Stripe” API service.
2.5.2 Implementation of service registration logic

Within the scope of the review of service registration logic, which involves
creating the “Service” class with the implementation of the abstract class “Attribute”
from the “Reflection” library. This class, in turn, represents a late-binding process
achieved by passing type metadata and reading it using the “Reflection” library.

Each class located in the business logic layer is marked with a significant
attribute called “Service.” In the presentation layer, there is a class called
“RegisterOfServices,” which automates the processing of services marked specifically
with the “Service” attribute.

As a result, the method of the “RegisterOfServices” class is called in the initial
application class named “Startup”, thereby injecting all services into the
“AddTransient” method, which, in turn, adds the service to the application upon each

new project initialization.

61

2.6 Data security analysis
2.6.1 Authorization and authentication

To ensure the security of the application’s data, a class, interface, and session
management methods called “SessionControlManager” were developed and
implemented. These methods handle the addition and removal of session tokens
within a session by adding and converting tokens into JSON code. Sessions also have
a timer set to thirty minutes from the moment of creation and automatically delete
themselves when the time expires, thereby removing stored session data.
Additionally, for data security, an authentication process was developed and
implemented using the “ldentityUser” and “Claim” classes, which directly provide

data for authentication, validate it, and store it in the database.

Conclusions on the section

Therefore, this section provides a detailed description of software modeling and
construction. It describes in detail the general processes that users and administrators
of the software must undergo. The necessary development tools are reviewed and
justified, including a description of the database architecture with entity descriptions,
schemas, and database diagrams. The software architecture is also described,
including necessary UML diagrams and a description of the software architecture
with tables of classes and methods implemented in the project, along with an analysis
of the choice of software architecture. The software was designed and implemented
with consideration for dependency injection methods. The construction of the
software is also discussed, including a description of the implementation of the core
tasks of the software and the implementation of service registration logic. Finally, a
security analysis of data is conducted, including a section that discusses the

authentication and authorization processes in the project.

62

3 QUALITY ANALYSIS AND SOFTWARE TESTING

3.1 Software quality analysis

The quality of software is defined as a research area that describes the desired
attributes of software products [33]. In turn, software testing is a necessary process for
evaluating and verifying the software product’s compliance with the specified
requirements and expected functionality, which should not be omitted during
development. Software testing aims to minimize errors, reduce development costs,
and enhance the productivity of the web application [34].

During the testing of the web application, a testing logic was developed, which
uses the testing pyramid. The testing pyramid typically operates at three levels:

— unit tests;

- integration tests;

— end-to-end tests.

Unit tests cover the web application services located in the
GenericStore.BL.IMPL class library is shown in Fig. 2.18. Services are crucial
components of the application that need to be tested, and understanding their logic is
essential. This approach helps identify errors at an early stage of development.

Integration tests cover most of the web application controllers located in the
GenericStore.Ul class library. Controllers are important for integration testing
because they interact between architectural layers and act as mediators between them.
Black-box testing, which doesn’t require knowledge of the internal implementation, is
used for integration testing.

To test the project, the xUnit, Moq, AutoFixture,
Microsoft. AspNetCore.Hosting, Microsoft. AspNetCore.TestHost, and
System.Net.Http libraries are used. The xUnit library serves as a testing tool [35]. The
Moq library is used for creating artificial objects and simulating functionality [36].
Additionally, the AutoFixture library simplifies the creation of objects of various

types and improves the safety of unit tests.

63

In conclusion, software testing plays a vital role in creating and implementing

various levels of tests.

3.2 Description of testing processes

To implement proper testing of the e-commerce web application, a testing
pyramid approach is employed.

The foundation of the automated testing pyramid primarily consists of unit
tests, followed by integration tests, system tests, functional tests, acceptance tests,
and, as the final stage, user interface tests. The structure of the automated testing

pyramid for this software is depicted in Fig. 3.1.

Acceptance
testing

Functionaijtesting|

System testing

Integration testing

. Modular testing

Fig. 3.1. Pyramid of automated software testing

This software undergoes a sequence of different types of tests, such as:

— Unit testing, which verifies whether each software module works
correctly;

— Integration testing, which ensures that all software components interact
cohesively and correctly;

— System testing, which thoroughly tests the integrated software product

for compliance with all requirements;

64

— Functional testing, which checks the modeling of business scenarios
according to functional requirements and performs functional verification using
black-box tests;

— Acceptance testing, which verifies whether the entire application
functions correctly;

— User interface testing, which checks the graphical user interface of the
software [37].

3.3 Description of the test case

To implement effective testing for the e-commerce web application, the testing
pyramid concept was employed. Therefore, this section implements each testing stage
as depicted in Fig. 3.1.

As each testing stage is reviewed and implemented, the e-commerce web
application using web scraping with an optimized product reading process becomes
progressively more covered by tests, which will subsequently help in detecting errors

more efficiently.
3.3.1 Unit testing

Unit testing is a method of software testing where individual blocks and
components of the software code are tested separately. Its goal is to confirm that each
unit of the code functions correctly [38].

To implement unit testing, testing technologies that isolate test components
from the logic of other parts of the program were used. Libraries like xUnit and Moq
were employed for creating unit tests. Consequently, a separate project named
GenericStore.UnitTests was created for this purpose. A part of the structure of this

project is illustrated in Fig. 3.2.

4 + I GenericStore.UnitTests
P @ Dependencies

4 i [m# BlLTests

4 & CartServices

P+ ¢ AddClientlnformationTest.cs

Fig. 3.2. Project structure for unit testing GenericStore.UnitTests
65

As mentioned earlier, xUnit and Moq libraries were used for unit testing, and a
dedicated project was created for this purpose.

As an example of unit testing, consider the test class from the section
responsible for handling client information, named “AddClientInformationTest”. This
class includes a constructor with initial objects that are initialized and the actual test
method. The implementation of the unit test “AddClientinformationTest” is shown in
Fig. 3.3.

GenericStore.UnitTests.BLTests.CartServices

ckedRepository;

ntrolManager>();
service = mockedRepository.Object);
fixture =

DoAction_EntityCreated()
dto - fixture.Create<Client.
service.DoActio

mockedRepository.Verify(x => x.AddClientInformation(It.IsAny<ClientInformation>()}));

Fig. 3.3. AddClientInformationTest unit class test

The constructor includes a “mock” repository and manager interface and
initializes the tested class, service, and object from the Fixture library, which allows
artificially initializing objects from the project’s source code. After describing the
constructor, the implementation of the unit test “AddClientinformationTest” follows.
For this software, this test includes creating an “artificial” entity and testing it using
the xUnit and Moq libraries.

After writing a unit test, it’s important to run it to check for errors, as shown in
Fig. 3.4.

41@1|®o| B-lEa T £

4 (@ GenericStore UnitTests (1) 105 ms Tests in group: 1
4 @ GenericStore.UnitTests.BLTests.CartServi... 105 ms © Total Duration: :

] @ Paszed (1) 105 ms
4 @ Medium > 100 ms (1) 105 ms
4 @ netcoreapp3.1 (1) 105 ms

4 (@ No Traits (1) 105 ms

4 @ < Local Windows Environmen... 105 ms

@ DoAction_EntityCreated 105 ms

Outcomes
@ 1 Passed

Fig. 3.4. Successfully completed unit test
66

As a result, unit tests were created to effectively check for errors during the
development of the e-commerce web application using web scraping with an

optimized product reading process.
3.3.2 Integration testing

Integration testing is a type of testing designed to check the interaction and
combinations of various modules [39]. To create integration tests, a separate project
was created using the xUnit, TestHost, and Test.Sdk libraries, named

“GenericStore.IntegrationTests”. The structure of this project is shown in Fig. 3.5.

4 + [Gen ericstore.Integration Tests

I+ & Dependencies

4 & [Util
[+ + C* BaseTlestFixture.cs
b+ c* FakeDblnitializer.cs

+ €% CartControllerTests.cs

Fig. 3.5. Part of structure of the project for integration testing

GenericStore.IntegrationTests

As mentioned earlier, the creation of integration tests involves the use of the
xUnit, TestHost, and Test.Sdk libraries, so a project utilizing these libraries was
created. This project includes a directory with two necessary initialization classes.
The first class, called “BaseTestFixture” contains objects such as “TestServer”,
“GenericStoreDbContext”, “HttpClient”, and “FakeDblnitializer”. These objects are
initialized in the class’s constructor as they are required for creating basic test
fixtures. A fixture, in turn, helps save the system’s state to a file and then restore it. It
also initializes the fake database in its constructor. The second class, named
“FakeDblnitializer,” contains a static method “Initialize,” which initializes the fake
“GenericStoreDbContext” database. “FakeDblnitializer” serves as an artificial
database that is initialized along with the fixtures.

Using the example of the “ProductsControllerTests” an integration test for a
products controller, one can see how these tests are created. This class includes a

67

constructor with objects for initialization and the actual test. The implementation of

the “ProductsControllerTests” integration test can be seen in Fig. 3.6.

Task Get_EndpointsReturnSuccessAndCorrectContentType(

client = _factory.CreateClient();

response = client.GetAsync(url);

essStatusCode();
html; charset=utf-28", response.Content.Headers.ContentType.ToString());

Fig. 3.6. Integration class-test ProductsControllerTests

Overall, this integration test checks the correctness of URL returns when the

controller is in operation.

As the final stage of an integration test, it needs to be executed to check for
errors, as shown in Fig. 3.7.

Test Duration Traits Error Message Group Summary
(3 @ AddClientinformationTest (1) 101 ms AddcClientinformationTest
El @ ProductsControllerTests (3) 3.2 sec Tests in group: 1
4 @ GenericStore.IntegrationTests (3) 3.2 sec (O Total Duration: 181 ms

El GenericStore.IntegrationTests (3 3.2 sec
()] grationTests (3) 2 se Outcomes

@ Passed (3) 3.2 sec @ 1 Passed

Fig. 3.7. Successfully completed integration test

Therefore, these integration tests were created to verify the logic of controllers

during the development of the e-commerce web application.
3.3.3 System testing

System testing is a level of testing that involves the comprehensive testing of an
integrated software product to ensure compliance with all requirements. Its main
purpose is to evaluate and identify possible inconsistencies between the developed
application and its initial objectives [40].

As a result, during the development of the e-commerce web application using
web scraping with an optimized product reading process, thorough checks of all
pages, blocks, and user interface modules were conducted. This helped identify

several errors that were corrected during the development process.

68

3.3.4 Functional testing

Functional testing is a type and level of software testing that verifies the
application’s compliance with functional requirements. The main goal of functional
tests is to check each function of the software application using appropriate input and
output data to ensure compliance with functional requirements [41].

To implement functional testing, the functional requirements of the application
were used, which can be found in Table 1.3.

Functional tests from the user’s perspective of the application are provided in
Table 3.1.

Table 3.1.

Functional testing by the application user

Test 1

Purpose of the test

Checking the main product page

Input

User’s personal data, user’s credit card data

Description of the test

Filling out the personal information window, then filling
out the user’s credit card information window and

clicking on “Pay”

Expected result

A successful monetary transaction must take place

Actual result

Successful monetary transaction

Test 2

Purpose of the test

Checking for Adding Items to Cart

Initial state

Open the page with a detailed product description

Input

Description of the test

Add one or several items to the cart

Expected result

The cart should be filled with the specified quantity of

items

Actual result

The cart is filled with the specified quantity of items

69

Table 3.1. (continue)

Test 3

Purpose of the test

Payment order confirmation

Initial state The page for entering personal information is open,
followed by the page for entering credit card information
for order payment by the user

Initial state The main page with a list of all products is open

Input —

Description of the test

As a user, review how the products are displayed on the

main page

Expected result

The main page for viewing products should be displayed

Actual result

The main page for viewing products is displayed

Mixed functional testing, both on the part of the user and on the part of the

application administrator, is shown in Table 3.2.

Table 3.2,

Mixed functional testing by the user and the application administrator

Test 1

Purpose of the test

Checking for changing the application background

Initial state

Open page

Input

Description of the test

Click the change background button in the application

menu panel

Expected result

After clicking the button, the background should change

Actual result

After clicking the button, the background has changed

Test 2

Purpose of the test

Authentication check

Initial state

Open page

Input

Application token

70

Table 3.2. (continue)

Description of the test | Add products to the shopping cart or log in as an

administrator and reload the website

Expected result After reloading the website, the previous actions should

be restored, preserved

Actual result After reloading the website, the previous actions’ data

has been restored and preserved

Functional testing by the application administrator is shown in Table 3.3.

Table 3.3
Functional testing by the administrator
Test 1
Purpose of the test Authentication verification
Initial state Open page
Input Administrator credentials

Description of the test | Filled fields of the authorization page

Expected result Successful authorization should occur
Actual result Successful authorization

Test 2
Purpose of the test Administrative panel access check
Initial state Open page
Input —

Description of the test | On the main page, there should be a button in the menu

for accessing the admin panel

Expected result There should be a button for accessing the admin panel
Actual result A button for accessing the admin panel is present

Test 3
Purpose of the test Checking product viewing and editing

Initial state Open administrative panel

71

Table 3.3. (continue)

Input

Input data into the fields

Description of the test

Open the product sub-panel, create and save a product

Expected result

The product should be viewable, editable, deletable, and

savable

Actual result

The product is viewable, editable, deletable, and savable

Test 4

Purpose of the test

Checking proper generation of the product list file

Initial state

Open the administrative panel

Input

Input the required link into the field

Description of the test

Open the file generation sub-panel, enter the necessary
data into the field, and click the file generation button to

the local system

Expected result

A generated and entered product list file should be

present in the local “Downloads” directory

Actual result

A successfully generated and entered product list file is

present in the local “Downloads” directory

Test 5

Purpose of the test

Checking order processing viewing and editing

Initial state

Open the administrative panel

Input

Input data into the fields

Description of the test

Open the order processing sub-panel, edit a possible

order

Expected result

The order should be viewable and processed

Actual result

The order is viewable and has been processed

Test 6

Purpose of the test

Checking product quantity viewing and editing

Initial state

Open the administrative panel

Input

Input data into the fields

72

Table 3.3. (continue)

Description of the test | Open the product inventory sub-panel, create and save a

product in inventory

Expected result The product in inventory should be viewable, editable,

deletable, and savable

Actual result The product in inventory is viewable, editable, deletable,
and savable
Test 7
Purpose of the test Checking the creation of new users
Initial state Open the administrative panel
Input Input data into the fields

Description of the test | Open the new user creation sub-panel, create and save

one user
Expected result A user should be created
Actual result A user has been created

3.3.5 Acceptance testing

User Acceptance Testing (UAT) is one of the final stages of software
development. Its purpose is to test the software in real-world scenarios to determine if
it meets its intended objectives [42]. After completing all the aforementioned levels of
testing, User Acceptance Testing was performed. It involved checking the e-
commerce web application to ensure the correct delivery of results in various
scenarios.

As a result, several issues were identified and addressed, including an error
during the payment process, which was promptly rectified, as well as an issue in the

order processing.

73

3.3.6 User interface testing

User Interface Testing is a type of software testing that evaluates the graphical
user interface of the software. Its goal is to ensure the functionality of the application
by examining interfaces, pages, and user interface elements such as menus, buttons,
and icons, in accordance with specifications [43]. After implementing this testing,
several interface-related issues were discovered, such as dynamic menu and block
changes when resizing the screen and dynamic button states during user interaction.

These issues were corrected during the application’s development.

Conclusions on the section

This section analyzed the software testing process and described the results of
the assessments conducted. A description of the software’s acceptance test case was
provided, encompassing all levels of testing, including unit testing, integration testing,
system testing, functional testing, user acceptance testing, user interface testing, and
their incorporation into the project. During the execution of these testing types, the
necessary tests were conducted, with unit testing covering 100% of the web
application’s services and integration testing covering the majority of controllers.
Functional testing was also conducted from both the user and administrator
perspectives, as well as mixed functional testing. Several issues were identified during
testing, all of which were successfully rectified.

As a result of the testing, it was confirmed that the program operates as

specified. Thus, the developed web application is ready for use.

74

4 SOFTWARE IMPLEMENTATION AND MAINTENANCE

4.1 Software deployment

The e-commerce web application using web scraping with an optimized
product reading process consists of two parts: server-side and client-side. Before
providing a detailed description of these components, let’s explore the available

software deployment methods.
4.1.1 Overview of available software deployment methods

There are numerous methods for deploying software in production, both in
terms of implementation and user access. Therefore, choosing the right deployment
strategy is a crucial aspect of the software development lifecycle.

Let’s review the available software deployment methods for the user, along
with explanations:

— Standard deployment: The user obtains the necessary project directory
and deploys it on their local system through any download method;

— Docker-based deployment: Users can deploy the project using
containerization technology if they have the project directory;

— AWS services deployment: Users can access only the graphical interface
of the project remotely by utilizing a link to the project’s main page, concealing the
project’s logic from them.

Additionally, let’s consider deployment methods that can be used for editing
processes and code of this e-commerce web application when needed:

— Standard deployment;

— Recreate: Version A is terminated, and then version B is launched;

— Rolling deployment: Version B is gradually deployed and replaces
version A;

— Shadow: Version B receives real traffic alongside version A and does not
affect the response [44].

75

After thoroughly examining various software deployment methods, the decision
was made to use standard deployment for reviewing the structure, code, and graphical
interface. Deployment through AWS services are used to access only the graphical

part of the project.
4.1.2 Server-side deployment

To deploy the server side of the web application, you need to:

— Install Visual Studio 2016 and above with the necessary settings for
ASP.NET Core platform and C# programming language;

- Install Microsoft SQL Server 2016 and above;

— Open the project with the server-side part in the aforementioned IDE;

— Migrate the database structure to the DBMS;

— Launch the GenericStore.Ul project via Internet Information Services
(11S).

4.1.3 Client-side deployment

For deploying the client-side of the web application, you need to:
— Install Visual Code for working with the program’s code;
— Open the folder with the client-side project and run the GenericStore.Ul

project.
4.1.4 Providing a secure communication channel

Regardless of the chosen deployment method, this software ensures a secure
communication channel between the client and server parts of the program. Within
the selected software architecture and specified interaction protocols to establish a
secure communication channel, the HTTPS protocol has been used, which includes
data encryption performed using an SSL certificate in compliance with protocol

standards.

76

4.1.5 Working with the software

Detailed step-by-step instructions for working with the server and client parts

are given in the next section.

Conclusions on the section

In this section, we described the software deployment process, including an
overview of available deployment methods, server-side and client-side deployment,
and system requirements for deploying the web application. We also discussed
providing a secure communication channel and provided a reference to the “User

guide” section.

77

5 USER GUIDE

5.1 General information

The e-commerce web application using web scraping with an optimized

product reading process, along with a base for an order processing conveyor

framework and a dynamic interface is utilized for browsing and managing a

personalized e-commerce platform.

The software features a dynamic, simple, and user-friendly interface.

User-side client functionalities include:

viewing products;

adding products to the cart;

canceling the cart;

order authentication;

order payment;

receiving a payment confirmation message;

changing the background.

Administrator-side user functionalities include:

authorization;

authentication;

viewing and editing products;

generating a text file and description of products from internet stores;
processing the order processing conveyor framework;

viewing and editing the quantity of products in stock;

creating new users;

changing the background.

78

5.2 Preparation for work
5.2.1 System requirements for correct operation

For the successful operation of this application from the user's perspective, the
following requirements must be met:

— availability of a computer, tablet, or mobile device;

— availability of an internet browser;

— access to the necessary website link;

— internet access.

For the successful operation of this application from the user and administrator
perspective, the following requirements must be met:

— availability of a computer, tablet, or mobile device;

— availability of administrator credentials for authorization;

— availability of an internet browser;

— access to the necessary website link;

— internet access.
5.2.2 Software installation

To start working with the program, both the client and the administrator need to

launch the website using the provided link.
5.2.3 Checking correct operation

To check the proper functioning of the web application, users can use the
application's website link. If everything works without errors, and the site and
database data of the web application are displayed and editable, then everything is

working correctly.

5.3 Working with the application

To begin using the web application, users, both clients and administrators, need
to visit the generated link.

79

This link is created using AWS services such as EC2, RDS and their instances.
Upon launching the web application, users will see the main page of the site,

which includes the main menu and the product list, as depicted in Fig. 5.1.

CHANGE BACKGROUND CART $0 ADMIN LOGIN

iPhone X $ 800.99 iPhone 12 Pro § iPhone Xr $ 600.99 iPhone 13 Pro §
iPhone X, 256 GB 1,000.99 iPhone Xr, 128 GB 1,200.99

iPhone 12 Pro, 512 GB iPhone 13 Pro, 512 GB

!
Low on Quantity Low on Quantity Out of Quantity
iPhone 11 § 888.99 iPhone 11 Pro Max $ Gift Card $ 1,000.00
iPhone 11, 216 GB 1,080.99 1000 $ - Gift Card

iPhone 11 Pro Max, 216
GB

Copy Rights at GenericStore, Admin Login

Fig. 5.1. Initial, main page of the application

On the main page, the user from the client side has access to a menu that
includes the ability to click on the application's logo to return to the main page, the
background change functionality, the shopping cart functionality, and administrator
login.

Reviewing the application menu reveals the background change functionality,
which includes:

— changing the background to a “random color”;

— changing the background to a dynamic background;

— changing the background to a “dark’ background mode.

The options for changing the background are shown in Fig. 5.2.

W s CHANGE BACKGROUND CART $0

RANDOM BACKGROUND

DYNAMIC COLOR - DIIA

T i
}D TOGGLE DARK-MODE 1“
mes

80

Fig. 5.2. Main menu, background change options

By clicking on the first “random background” option, the app's background
takes on a “random” RGB color. The process of changing the color is shown in Fig.
5.3.

CHANGE BACKGROUND CART $0 ADMIN LOGIN

iPhone X $ 800.99 iPhone 12 Pro $ iPhone Xr $ 600.99 iPhone 13 Pro §
iPhone X, 256 GB 1,000.99 iPhone Xr, 128 GB 1,200.99
iPhone 12 Pro, 512 GB iPhone 13 Pro, 512 GB

Fig. 5.3. The process of changing the color from the “random color” option

By clicking on the second option “dynamic color — Diia”, the background of the

application becomes dynamic. The dynamic color process is shown in Fig. 5.4.

CHANGE BACKGROUND CART $0 (ADMIN LOGIN))

iPhone X $ 800.99 iPhone 12 Pro $ iPhone Xr $ 600.99 iPhone 13 Pro $
iPhone X, 256 GB 1,000.99 iPhone Xr, 128 GB 1,200.99
iPhone 12 Pro, 512 GB iPhone 13 Pro, 512 GB

Fig. 5.4. Dynamic color process from the “dynamic color action” option

Clicking on the third option “toggle dark-mode” changes the application’s
background to dark mode. The dark mode background replacement process is shown

in Fig. 5.5. This mode is stored in the local storage of the site.

CHANGE BACKGROUND CART $0 ﬂ' ADMIN LOGIN \

iPhone X $ 800.99 iPhone 12 Pro $ iPhone Xr $ 600.99 iPhone 13 Pro $

iPhone X, 256 GB 1,000.99 iPhone Xr, 128 GB 1,200.99
iPhone 12 Pro, 512 GB iPhone 13 Pro, 512 GB

81

Fig. 5.5. The process of replacing the background with dark mode from the

“toggle dark-mode” option

Clicking on a product allows the user to navigate to the detailed product page,
which includes photos, a detailed description, model, quantity, and an "approve"
button to add the product to the shopping cart. The detailed product description page

Is shown in Fig. 5.6.

P <
W Store CHANGE BACKGROUND CART $0 (ADMIN LOGIN)

iPhone X

iPhone X, 256 GB

There are many variations of passages of Lorem Ipsum
available, but the majority have suffered alteration in some
form, by injected humour, or randomised words which don't look
even slightly believable. If you are going to use a passage of
Lorem Ipsum, you need to be sure there isn't anything
embarrassing hidden in the middle of text. All the Lorem Ipsum
generators on the Internet tend to repeat predefined chunks as
necessary,

Model ellow v

Quantity

Fig. 5.6. Detailed product description page

By selecting the product model and quantity and clicking the "approve" button,
the user is taken to the shopping cart page, where the selected product is already
present. If the user wishes to purchase additional items, they can exit the cart by
clicking the "buy more" button and continue selecting items, as the cart is saved

throughout the session. The cart page is shown in Fig. 5.7.

W s CHANGE BACKGROUND CART $800.99 (ADMIN LOGIN)

l iPhone X o [5500 99
Remove

Let me buy some more

Fig. 5.7. Shopping cart page

Clicking the “checkout” button takes the user to the personal information input

page for the order, which includes fields for entering information and a reduced image

82

of the product, quantity, characteristics, and price. The page for entering user personal

information is shown in Fig. 5.8.

CHANGE BACKGROUND CART $800.99 (’ADM\N LOGIN\‘,\

a
Kovalenko @ Qty: 1 Size: 8 Price: $ 800.99
Phone Number

Fig. 5.8. User’s personal information entry page

Clicking the “Submit your information” button takes the user to the order

payment page. The order payment page is shown in Fig. 5.9.

W SW CHANGE BACKGROUND CART $800.99 (:ADMIN LOGIN:)
Payment Cart
| iPhone X
Qty: 1 Size: 8 Price: $ 800.99

Fig. 5.9 — Order payment page

Clicking the “pay” button takes the user to the successful order payment page.

The successful order payment page is shown in Fig. 5.10.

Fig. 5.10. Page of successful payment of the order

83

Clicking the “return home” button allows the user to return to all the above-
mentioned options or wait for their order. Now, let’s move on to the administrator’s
perspective. On the main page, Fig. 5.1, the administrator has the option to use the
“admin login” button. Clicking on this button takes the administrator to the

authorization page. The administrator authorization page is shown in Fig. 5.11.

Qeaeu’c S;’cvze CHANGE BACKGROUND (ADMIN LOGIN)

Login Form

Username:
Admin

Password:

Fig. 5.11. Administrator authorization page

Clicking the “login” button allows the administrator to access the administrator

panel page, administration. The administration panel page is shown in Fig. 5.12.

Administrator Panel
ECOMMERCE MENU Add New Product

Product
rocuets Id Product Price

Product Scraping Extension
8 iPhone X 800.99 Edit Remove
Order Management

9 iPhone 12 Pro 100099 Edit Remove
Storehouse

10 iPhone Xr 600.99 Edit Remove
ADMINISTRATOR'S MENU

. 11 iPhone 13 Pro 120099 Edit Remove
Configure Users

12 iPhone 11 888.99 Edit Remove
Back to Main Page

13 iPhone 11 Pro Max 108098 Edit Remove

14 Gift Card 1000 Edit Remove
© 2022 - GenericStore.Web

Fig. 5.12. Admin authorization page, and product management page

Upon reaching the administration panel page, the administrator has two sub-
panels, including the “e-commerce menu” and the “administrator’s menu”. Each sub-

panel has its functionality, dynamically displayed when clicked.

84

The first subpanel of the “e-commerce menu” includes functionality for
managing products, generating a file of product listings from well-known internet
stores, a base for order processing conveyor framework, and inventory management.

The product management functionality is depicted in Fig. 5.10. This feature
allows adding, viewing, editing, and deleting products within the application.

The functionality for generating a file of product listings from well-known
internet stores is illustrated in Fig. 5.13. It is implemented using the HTML Agility
Pack library for network data retrieval. This page includes a field with available
websites for reading, a field for entering the link to an available internet product, and

a button for generating a file to the local system or computer.

Administrator Panel

Options to scrape:

Products Select store
Preduct Scraping Extension

Order Management Input your url, with products list page

Storehouse

Configure Users .
Submit

Back to Main Page

© 2022 - GenericStore.Web

Fig. 5.13. Page for generating a product list file from well-known internet

stores

The functionality of the operational order processing conveyor framework is
depicted in Fig. 5.14. It allows for a three-stage order processing process, including
the statuses of pending, packaging, and order shipment. The page displays the order

code and the customer’s email.

Administrator Panel

Pending Packed Shipped

Products
Product Scraping Extension
Order Management

Storehouse

Configure Users

Back to Main Page

Fig. 5.14. Working order processing pipeline frame page

85

The inventory management functionality is illustrated in Fig. 5.15. It lists the
inventory of created items, and clicking on one of them opens a dynamic panel for

adding the quantity of items with characteristics to the inventory.

Administrator Panel

iPhane X, 256 GB vellow o pelete New
Products
iPhone 12 Pro, 512 GB Storehouse
Product Scraping Extension Purple 10 Delete
iPhone Xr, 128 GB . .
Order Management 5 Size / Any extra info
Delete

iPhane 13 Pro, 512 GB Blue 100
Storehouse
10
iPhone 11, 216 GB

Update Product:
iPhone 11 Pro Max, 216 peate Froducts

Configure Users
GB

Back to Main Page 1000 § - Gift Card

©® 2022 - GenericStore.Web

Fig. 5.15. Warehouse management page

The second sub-panel, “Administrator’s Menu” is depicted in Fig. 5.10. It
consists of a page for creating a new user with the role of a manager, shown in Fig.

5.16. The button for returning to the main application page is displayed in Fig. 5.10.

Administrator Panel
il

Products
Product Scraping Extension
Order Management

Storehouse

Configure Users

Back to Main Page

© 2022 - GenericStore.Web

Fig. 5.16. Warehouse management page
Returning to Fig. 5.1, you can observe that some products have icons of yellow
and red colors. These icons, in the case of yellow, indicate that the product is running
low in stock, with fewer than 11 units remaining.
If the icon color is red, it signifies that the product is out of stock. These icons

can be seen in Fig. 5.17.

86

Low on Quantity Out of Quantity

iPhone 11 Pro Max Gift Card $
$1,080.99 1,000.00

iPhone 11 Pro Max, 1000 $ - Gift Card
216 GB

Fig. 5.17. Icons of the status of goods in the warehouse

Additionally, while filling the shopping cart with items, the cart menu generates
a dynamic sum of all added products. The dynamic change in the cart’s total can be

observed in Fig. 5.18.

W S CHANGE BACKGROUND CART $2081.98 SIGN OUT

iPhone 12Pro ' = siowo

iPhone 11 ProMax ' = si1os09

Remove

Let me buy some more

Fig. 5.18. Icons of product status in stock

Conclusions on the section

The user guide provides comprehensive instructions for navigating the dynamic
e-commerce application. Users, both clients and administrators should meet system
requirements, including a device with internet access. Installation is straightforward,

requiring the launch of the provided link.

87

Upon accessing the application, users encounter a user-friendly interface. For
clients, functionalities encompass product viewing, cart management, and order
processes. Administrators enjoy additional capabilities, such as product and inventory
management.

Visual cues, like colored icons, convey stock statuses efficiently. In summary,
the guide systematically explains how to use and manage the e-commerce platform,

ensuring a seamless experience for all users.

88

CONCLUSIONS

During the development of this diploma project, several improvements were
considered and implemented for the e-commerce web application using web scraping
with an optimized product reading process, addressing various shortcomings in
existing implementations and introducing several innovations.

The introduced innovations include the automation of product creation
processes through web data scraping, the restructuring of the order processing
conveyor framework, and the implementation of a dynamic user interface.

One of the key features of this project is the ability to automatically generate
product lists and descriptions obtained from internet stores for the application’s
administrator. Additionally, a functional order processing framework and dynamic
user interface were developed.

In the “Analysis of software requirements” section, a comprehensive analysis
of the subject area, software requirements based on successful IT projects, and their
significance in this project are presented.

In the “Software modeling and design” section, the architecture of the web
application and its database are designed and examined from a software perspective.
It also presents class libraries, classes, and methods that define the application’s logic.

The “Quality analysis and software testing” section analyzes application quality
indicators, describes testing processes, and reviews a test case for the web application.

In the “Software implementation and maintenance” section, the deployment
process and usage of the web application are explained.

In the “User guide” section, the step-by-step instructions for navigating and
utilizing the dynamic e-commerce application are detailed.

The result of this diploma project is a fully functioning e-commerce web
application using web scraping with an optimized product reading process, which
includes several innovations that address the shortcomings of existing solutions. This
application can be easily expanded and supplemented with new unique features to

meet various application needs.

89

REFERENCES

1. CMS [Electronic resource]. — 2023. — Mode of access to the resource:

https://www.techtarget.com/searchcontentmanagement/definition/content-

management-system-CMS.

2. E-commerce platform [Electronic resource]. — 2023. — Mode of access to the

resource: https://sendpulse.com/support/glossary/ecommerce-platform.

3. Web scraping [Electronic resource]. — 2023. — Mode of access to the resource:

https://www.zyte.com/learn/what-is-web-scraping/.

4. Camunda [Electronic resource]. — 2023. — Mode of access to the resource:

https://docs.camunda.org/manual/7.17/.

5. CMS statistics [Electronic resource]. — 2023. — Mode of access to the resource:

https://www.envisagedigital.co.uk/wordpress-market-share/.

6. WordPress stats [Electronic resource]. — 2023. — Mode of access to the resource:

https://Kinsta.com/knowledgebase/what-is-wordpress/.

7. WordPress [Electronic resource]. — 2023. — Mode of access to the resource:

https://www.namecheap.com/wordpress/what-is-wordpress/.

8. Drupal [Electronic resource]. — 2023. — Mode of access to the resource:

https://www.drupal.org/about.

9. Joomla [Electronic resource]. — 2023. — Mode of access to the resource:

https://www.techopedia.com/definition/3276/joomla.

10.Magento [Electronic resource]. — 2023. — Mode of access to the resource:

https://www.commonplaces.com/blog/what-is-magento/.

11.CMS comparison [Electronic resource]. — 2023. — Mode of access to the resource:

https://blog.templatetoaster.com/open-source-cms/.

12.Software development process [Electronic resource]. — 2023. — Mode of access to

the resource: https://www.techopedia.com/definition/16431/software-development.

13.SDLC [Electronic resource]. — 2023. — Mode of access to the resource:

https://www.indeed.com/career-advice/career-development/what-is-software-

development.

14.Programming language C# [Electronic resource]. — 2023. — Mode of access to the

90

https://www.techtarget.com/searchcontentmanagement/definition/content-management-system-CMS
https://www.techtarget.com/searchcontentmanagement/definition/content-management-system-CMS
https://sendpulse.com/support/glossary/ecommerce-platform
https://www.zyte.com/learn/what-is-web-scraping/
https://docs.camunda.org/manual/7.17/
https://www.envisagedigital.co.uk/wordpress-market-share/
https://kinsta.com/knowledgebase/what-is-wordpress/
https://www.namecheap.com/wordpress/what-is-wordpress/
https://www.drupal.org/about
https://www.techopedia.com/definition/3276/joomla
https://www.commonplaces.com/blog/what-is-magento/
https://blog.templatetoaster.com/open-source-cms/
https://www.techopedia.com/definition/16431/software-development
https://www.indeed.com/career-advice/career-development/what-is-software-development
https://www.indeed.com/career-advice/career-development/what-is-software-development

resource: https://www.techopedia.com/definition/26272/c-sharp.
15.ASP.NET Core framework [Electronic resource]. — 2023. — Mode of access to the

resource: https://www.tutorialsteacher.com/core/aspnet-core-introduction.

16.MVC template [Electronic resource]. — 2023. — Mode of access to the resource:

https://www.tutorialspoint.com/mvc framework.htm.

17.AWS service [Electronic resource]. — 2023. — Mode of access to the resource:

https://www.techopedia.com/definition/26426/amazon-web-services-aws.

18.Docker platform [Electronic resource]. — 2023. — Mode of access to the resource:

https://docs.docker.com/get-started/overview/.

19.Stripe service [Electronic resource]. — 2023. — Mode of access to the resource:

https://www.nerdwallet.com/article/small-business/what-is-stripe.

20.Bulma framework [Electronic resource]. — 2023. — Mode of access to the resource:

https://devmountain.com/blog/why-bulma-css-could-be-your-new-favorite-

framework.
21.Vue.js framework [Electronic resource]. — 2023. — Mode of access to the resource:

https://www.altexsoft.com/blog/engineering/pros-and-cons-of-vue-js/.

22.Microsoft SQL Server [Electronic resource]. — 2023. — Mode of access to the
resource: https://www.sglservertutorial.net/getting-started/what-is-sql-server/.

23.HTML Agility Pack library [Electronic resource]. — 2023. — Mode of access to the
resource: https://html-agility-pack.net/.

24.Subject area of the database [Electronic resource]. — 2023. — Mode of access to the

resource: https://www.orbitanalytics.com/subject-area-modeling/.

25.Concept and description of ER diagram [Electronic resource]. — 2023. — Mode of

access to the resource: https://www.smartdraw.com/entity-relationship-diagram/.

26.Database schema [Electronic resource]. — 2023. — Mode of access to the resource:

https://www.tutorialspoint.com/dbms/dbms data schemas.htm.

27.UML software diagrams [Electronic resource]. — 2023. — Mode of access to the

resource: https://www.tutorialspoint.com/uml/uml standard diagrams.htm.

28.Use case diagram [Electronic resource]. — 2023. — Mode of access to the resource:

https://www.visual-paradigm.com/quide/uml-unified-modeling-language/what-is-

91

https://www.techopedia.com/definition/26272/c-sharp
https://www.tutorialsteacher.com/core/aspnet-core-introduction
https://www.tutorialspoint.com/mvc_framework.htm
https://www.techopedia.com/definition/26426/amazon-web-services-aws
https://docs.docker.com/get-started/overview/
https://www.nerdwallet.com/article/small-business/what-is-stripe
https://devmountain.com/blog/why-bulma-css-could-be-your-new-favorite-framework
https://devmountain.com/blog/why-bulma-css-could-be-your-new-favorite-framework
https://www.altexsoft.com/blog/engineering/pros-and-cons-of-vue-js/
https://www.sqlservertutorial.net/getting-started/what-is-sql-server/
https://html-agility-pack.net/
https://www.orbitanalytics.com/subject-area-modeling/
https://www.smartdraw.com/entity-relationship-diagram/
https://www.tutorialspoint.com/dbms/dbms_data_schemas.htm
https://www.tutorialspoint.com/uml/uml_standard_diagrams.htm
https://www.visual-paradigm.com/guide/uml-unified-modeling-language/what-is-use-case-diagram/

use-case-diagram/.

29.Class diagram [Electronic resource]. — 2023. — Mode of access to the resource:

https://www.microtool.de/en/knowledge-base/what-is-a-class-diagram/.

30.Sequence diagram [Electronic resource]. — 2023. — Mode of access to the resource:

https://www.visual-paradigm.com/quide/uml-unified-modeling-lanquage/what-is-

sequence-diagram/.

31.State diagram [Electronic resource]. — 2023. — Mode of access to the resource:

https://www.techopedia.com/definition/16446/state-diagram.

32.Component diagram [Electronic resource]. — 2023. — Mode of access to the

resource: https://www.lucidchart.com/pages/uml-component-diagram.

33.Software quality [Electronic resource]. — 2023. — Mode of access to the resource:

https://asq.org/quality-resources/software-quality.

34.Software testing [Electronic resource]. — 2023. — Mode of access to the resource:

https://u-tor.com/topic/software-quality-defined-and-measure.

35.xUnit [Electronic resource]. — 2023. — Mode of access to the resource:

https://xXunit.net/.

36.Moq [Electronic resource]. — 2023. — Mode of access to the resource:

https://docs.microsoft.com/en-us/shows/visual-studio-toolbox/unit-testing-moag-

framework.
37.Types of tests [Electronic resource]. — 2023. — Mode of access to the resource:

https://www.kaizenko.com/what-is-the-testing-pyramid/.

38.Concept and description of unit testing [Electronic resource]. — 2023. — Mode of

access to the resource: https://www.guru99.com/unit-testing-quide.html.

39.Concept and description of integration testing [Electronic resource]. — 2023. —

Mode of access to the resource: https://www.quru99.com/integration-testing.html.

40.Concept and description of system testing [Electronic resource]. — 2023. — Mode

of access to the resource: https://www.guru99.com/system-testing.html.

41.Concept and description of functional testing [Electronic resource]. — 2023. —
Mode of access to the resource: https://www.guru99.com/functional-testing.html.

42.Concept and description of acceptance testing [Electronic resource]. — 2023. —

92

https://www.microtool.de/en/knowledge-base/what-is-a-class-diagram/
https://www.visual-paradigm.com/guide/uml-unified-modeling-language/what-is-sequence-diagram/
https://www.visual-paradigm.com/guide/uml-unified-modeling-language/what-is-sequence-diagram/
https://www.techopedia.com/definition/16446/state-diagram
https://www.lucidchart.com/pages/uml-component-diagram
https://asq.org/quality-resources/software-quality
https://u-tor.com/topic/software-quality-defined-and-measure
https://xunit.net/
https://docs.microsoft.com/en-us/shows/visual-studio-toolbox/unit-testing-moq-framework
https://docs.microsoft.com/en-us/shows/visual-studio-toolbox/unit-testing-moq-framework
https://www.kaizenko.com/what-is-the-testing-pyramid/
https://www.guru99.com/unit-testing-guide.html
https://www.guru99.com/integration-testing.html
https://www.guru99.com/system-testing.html
https://www.guru99.com/functional-testing.html

Mode of access to the resource: https://www.panaya.com/blog/testing/what-is-uat-

testing/.
43.Concept and description of Ul testing [Electronic resource]. — 2023. — Mode of

access to the resource: https://www.gquru99.com/qui-testing.html.

44.Concept and detailed description of software deployment methods [Electronic
resource]. — 2023. - Mode of access to the resource:

https://thenewstack.io/deployment-strategies/.

93

https://www.panaya.com/blog/testing/what-is-uat-testing/
https://www.panaya.com/blog/testing/what-is-uat-testing/
https://www.guru99.com/gui-testing.html
https://thenewstack.io/deployment-strategies/

Listing of some parts of the app source code
GenericStore.Entities/ClientInformation.cs

using System;

namespace GenericStore.Entities

{

public class Clientinformation
{
public string Name { get; set; }
public string Surname { get; set; }
public string Email { get; set; }
public string PhoneNumber { get; set; }

public string RequiredAddress { get; set; }
public string Optional Address { get; set; }
public string City { get; set; }

public string PostalCode { get; set; }
public DateTime OrderDate { get; set; }

GenericStore.Entities/Order.cs

using System;
using System.Collections.Generic;

using GenericStore.Entities.Enums;

APPENDIX A

94

APPENDIX A (CONTINUE)

namespace GenericStore.Entities

{

public class Order

{
public int I1d { get; set; }
public string OrderReference { get; set; }
public string StripeTokenReference { get; set; }

public string Name { get; set; }

public string Surname { get; set; }
public string Email { get; set; }

public string PhoneNumber { get; set; }

public string RequiredAddress { get; set; }
public string Optional Address { get; set; }

public string City { get; set; }
public string PostalCode { get; set; }
public DateTime OrderDate { get; set; }

public OrderStatus Status { get; set; }

public ICollection<OrderStorehouse> OrderStorehouses { get; set; }

GenericStore.Entities/OrderStorehouse.cs

namespace GenericStore.Entities

{

95

APPENDIX A (CONTINUE)
public class OrderStorehouse

{
public int Orderld { get; set; }

public Order Order { get; set; }

public int Storehouseld { get; set; }

public Storehouse Storehouse { get; set; }

public int Quantity { get; set; }

GenericStore.Entities/Product.cs

using System.Collections.Generic;

namespace GenericStore.Entities

{

public class Product

{
public int Id { get; set; }
public string Naming { get; set; }
public string Specification { get; set; }

public decimal Price { get; set; }

public ICollection<Storehouse> Storehouses { get; set; }

96

APPENDIX A (CONTINUE)

GenericStore.Entities/ProductInCart.cs

namespace GenericStore.Entities

{

public class ProductInCart

{
public int Productld { get; set; }

public string ProductName { get; set; }
public int Storehouseld { get; set; }
public decimal Price { get; set; }

public int Quantity { get; set; }

GenericStore.Entities/Storehouse.cs

using System.Collections.Generic;

namespace GenericStore.Entities

{

public class Storehouse

{
public int Id { get; set; }
public string Description { get; set; }
public int Quantity { get; set; }

public int Productld { get; set; }

97

APPENDIX A (CONTINUE)
public Product Product { get; set; }

public ICollection<OrderStorehouse> OrderStorehouses { get; set; }

GenericStore.Entities/StorehouseOnHold.cs

using System;
namespace GenericStore.Entities

{

public class StorehouseOnHold

{
public int I1d { get; set; }

public string SessionTokenld { get; set; }

public int Storehouseld { get; set; }

public Storehouse Storehouse { get; set; }

public int Quantity { get; set; }
public DateTime DateOfExpiry { get; set; }

GenericStore.UnitTests/BLTests/CartServices/AddClientInformationTest.cs
using AutoFixture;

using GenericStore.BL.IMPL.CartServices;

98

APPENDIX A (CONTINUE)

using GenericStore. DAL.ABSTRACT;
using GenericStore.Entities;

using GenericStore.Models.CartDTO,;
using Mogq;

using Xunit;

namespace GenericStore.UnitTests.BL Tests.CartServices

{

public class AddClientInformationTest

{
private Mock<ISessionControlManager> mockedRepository;
private AddClientinformation service;

private Fixture fixture;

public AddClientInformationTest()

{
mockedRepository = new Mock<ISessionControlManager>();
service = new AddClientInformation(mockedRepository.Object);

fixture = new Fixture();

[Fact]
public void DoAction_EntityCreated()
{
var dto = fixture.Create<ClientInformationDTO>();
service.DoAction(dto);
mockedRepository.Verify(x =>
x.AddClientInformation(lt.IsAny<ClientInformation>()));

99

APPENDIX A (CONTINUE)

GenericStore.Models/OrdersDTO/CreateOrderRequestDTO.cs

using System;
using System.Collections.Generic;
namespace GenericStore.Models.OrdersDTO

{
public class CreateOrderRequestDTO

{
public string StripeTokenReference { get; set; }
public string Sessionld { get; set; }

public string Name { get; set; }

public string Surname { get; set; }
public string Email { get; set; }

public string PhoneNumber { get; set; }

public string RequiredAddress { get; set; }
public string Optional Address { get; set; }
public string City { get; set; }

public string PostalCode { get; set; }
public DateTime OrderDate { get; set; }

public List<StorehouseDTO> Storehouses { get; set; }

100

APPENDIX A (CONTINUE)

GenericStore.Models/OrdersDTO/GetOrderResponseDTO.cs

using System;

using System.Collections.Generic;

namespace GenericStore.Models.OrdersDTO

{
public class GetOrderResponseDTO

{
public string OrderReference { get; set; }

public string Name { get; set; }

public string Surname { get; set; }
public string Email { get; set; }

public string PhoneNumber { get; set; }

public string RequiredAddress { get; set; }
public string Optional Address { get; set; }
public string City { get; set; }

public string PostalCode { get; set; }
public DateTime OrderDate { get; set; }

public IEnumerable<ProductDTO> Products { get; set; }

public string TotalPrice { get; set; }

101

APPENDIX A (CONTINUE)

GenericStore.Models/OrdersDTO/ProductDTO.cs

namespace GenericStore.Models.OrdersDTO

{
public class ProductDTO

{
public string Naming { get; set; }
public string Specification { get; set; }
public string Price { get; set; }
public int Quantity { get; set; }

public string StorehouseDescription { get; set; }

GenericStore.Models/OrdersDTO/StorehouseDTO.cs

namespace GenericStore.Models.OrdersDTO

{
public class StorehouseDTO

{
public int Storehouseld { get; set; }

public int Quantity { get; set; }

102

APPENDIX B

ACCOUSLACIIN 8L ovaber CanCaemoter OresConmater ProfuContrsier StoreneUsL onTOl e
¥ spinhcionidmager Srinkissgeriemyler [r— [P—— Dt rerSarecas, GeFrotacaltty | LAcerfirst * GatStaense]F o Sences] SetSiawhasie. lctorRarst
e e P * Chon 1. FroSaencas | DalCrcareeemiton) At Rakl Butroe v e, o anous] SuPidsEmty | IASor s - ¥ s
-+ Logout) TasksiAcssahsat- - BurFaguConsseeeniTFromSunias] GRICST) ORI - 0 [Froertances) : 0¥ - "
- QU F R F 1T Om] AN oA kit [; Do -
Uit o ot
L o
- _SEINN MR U
[FegsiarirSarvices | oo " -
CramsSiorsncus DutataSionetours Catsicrmse Useetn Sheratse [. |
3 _ihralaatage. IS i [e———— ity PotatMang B T — o
- CresteSiomspea SorecuL TGS - DS e saanag) « Gatsemasena Paatuctitnage | = UpcstaSioent cene Sorshousbdnzager]
 berchont [Bowie |
. Tasirts S —
) i8] 4] M [¥] |
o e e - & i
CramefroduciEntiy DebetsProgucrary GaProduErtny GeProducniEntiy psaePrnchiciEniy
_precuciiarager Friciarager T T —r— [T re———— * rodstimage Prosititnage [r———
+ ErusiaFToErn PTEaLC g - DawsTrc i oo RG] e] - SetFreous e Frasauanage UpCaaFTEaLCIE e B
- = Daschosin Tesvests + DoAmOT; 1o - Duschen] Easmirati P R hiee D TOx
‘ ‘ * ‘ ‘ '
[GerPesoct GProqus
_orerkanager (Croerkdansper w _orerhdanaper Kedsanager [T e—— LTy —— ¥ _trerianager IOrmerrge E .
* CarOrr ooy Crteanager) = IO v Cr Mg « Uz tame ot harraton [CrwMazager) kit - * Prodocitarmger IProducitage P ——
» D = BN [ENRAR N » Dasctenint Tashemts - ENIUCHIE N T B Sr n . o - 1S AR 1L = Daschesl) Esumratna O nEOT0x
DA L P DT Tass a0 - Dacssninng: TaskcPrader v
DecmatiTicet s e
il + CoameDnsRammcel g (? ?
Mt |+ setprcesg et s |- . = -
Adgpiodecriecat aecan Hasrensprcaduct
[T —— T _ann Mgt kot Convearage 3 _sespaniinage Srionloanbianie T Tr——— _bisorNansplr 125 enLonmn [-
P — ¥ (ST AW AP — R — PR — ¥ _ERRMaer (Sortaasa e >
P e o e—— - CoAcSon() IEnsmarsbie-JetCatRupamecTd= = Dasctes] ChastrtzrrateeDTO « Decton) GaisesRarsCTa P e ——
» DateboniC iSaehesRCHOTD] Taikebonis - +
T + DeActonCanGhmshasmsCRTo) Tass iace
Sesgonlomomanags T *
r—r—— r
- KW Tt Frg FSana s ContoManage ICriatAmager 1Pracu: Menager e
- wseeToun e - [T ———— - Ensea Pt Tk [—
— - N Aot O TCan: sse Ao Tasss CoktaProntm Tasest Tasmre
PR = v - OBy St < TR Dot Fung<0rtes TReset| [Evemsratia- Thuset - UpcsFroI Pt Tageat e e Ll o) Ta
JP— . Thesats - GO TRestm, FunseOede, Tesues) TResut - G PoobscE < TRegul it Furc<Foodect. TRssut| Theset e T
- - . . - d - Gt Proacfirhare- - BaTonegRTh e THE t
Pr—— - AEsrmekm s brigTatar] o FRIE Ao TR Fng. Fmg-Crier TReser=1 TRsn Trmut~{srng, FaneFrocksd TREms®-1 TRemt . . s T
- CelCat S TR it ProductiCan. TRISIE-| Esaminatia = TRasels - i Chsiicfrmben oo Chwiskarestion - CresteCroeriTrder Tankemt~ TRusst TR - BrreaF mredtieedrhzo] ik
B]
- GelieetatenSusi: Chmsbmasn 5 Senesia
5 - S - Er i e b
y S - PSS ORI, I g T
o
Gonric StereDoC 0T raerbasape Pricactisager St
-« Frtecs: CoBeteProuts _mComiet GenercarnnDoConit # _doontes GanescEmelnCome #_chCome GevscEmenCame
s ottt » Crbaranage: Sevescoisate St * ProtuchiusagesiSasarc SoaCsCocba] - Stwrzumtarag Derer S CeCorters
° i Feee = ConmnCn: Taikerie - Crastabrodstpo Taste - CruteSTe e SRl Tkt
* DUSPRTHSAANE. DRSO - T Rasut - Func<Oroe Dows, Funcang, TRusut-| Thasut - Pt Pt Taskante - DA ik
B + G DnIe Sy Sat < TREsst- roaStane. Func<Oroer, TResur>| Erusease Taams - GBI 0 TR . Fund<F1sguc. TRwues: TResul - EROURI TR T O
B 4 Fencatrger TResst | TRas ~ GaFIR T Mame- TR T, Fung<Procuct TReset| TRess - BeEhORSITE ST S
-+ CriaeiCrestng Wadeuscer v + GeDrcEy R swicn TRasS s, Funceroe, TRasuts| TResst « GHFISa T et TRALt. Erumacasie« TRaE = FuiStomsceeOnhoiint. . sreg Trek
* AckarcaCrerint) Taskeasts * DwbwPeatacint] Task=rt - ozt Fromasrg Tk
 CrcarRaterercal catsiatreg ! et - P prad Tl Tk
(r - Lo s L1 3t st Taiainds

Fig. B.1. Structural scheme of software classes

101

