

1

МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ

НАЦІОНАЛЬНИЙ АВІАЦІЙНИЙ УНІВЕРСИТЕТ

Факультет кібербезпеки і програмної інженерії

Кафедра інженерії програмного забезпечення

“ДОПУСТИТИ ДО ЗАХИСТУ”

Завідувач кафедри

 _______ Катерина НЕСТЕРЕНКО
 (підпис) (ім’я, прізвище)

“____”_____________2023 р.

ДИПЛОМНА РОБОТА
(ПОЯСНЮВАЛЬНА ЗАПИСКА)

ВИПУСКНИКА ОСВІТНЬОГО СТУПЕНЯ МАГІСТРА

Тема: “Вебзастосунок для електронної комерції з використанням

вебзбирання з оптимізованим процесом зчитування товарів”

Виконавець: ст. гр. ПІ-221М(А) Коваленко Ілля Ігорович

Керівник: к.т.н., доцент Терещенко Лідія Юріївна

Нормоконтролер: к.т.н., с.н.с., доцент Оленін Михайло Вікторович

Засвідчую, що у дипломній роботі

немає запозичень з праць інших

авторів без відповідних посилань.

Студент _____________
(підпис)

КИЇВ 2023

2

MINISTRY OF EDUCATION AND SCIENCE OF UKRAINE

NATIONAL AVIATION UNIVERSITY

Faculty of cybersecurity and software engineering

 Software engineering department

“ADMIT TO DEFENCE”

Head of the department

_______ Kateryna NESTERENKO
 (signature) (name, surname)

“____”_____________2023

MASTER’S THESIS
(EXPLANATORY NOTE)

OF A MASTER'S DEGREE GRADUATE

Topic: “An e-commerce web application using web scraping with an

optimized product reading process”

Performer: Student of the PI-221M(A) group, Kovalenko Illia

Ihorovych

Supervisor: Candidate of Technical Sciences, Associate Professor

Tereshchenko Lydia Yuriivna

Standard controller: Candidate of Technical Sciences, Senior Researcher,

Associate Professor, Olenin Mykhailo Viktorovych

KYIV 2023

3

НАЦІОНАЛЬНИЙ АВІАЦІЙНИЙ УНІВЕРСИТЕТ

Факультет кібербезпеки і програмної інженерії

Кафедра інженерії програмного забезпечення

Освітній ступінь магістр

Спеціальність 121 Інженерія програмного забезпечення

Освітньо-професійна програма Інженерія програмного забезпечення

 ЗАТВЕРДЖУЮ

 Завідувач кафедри

 _______ Катерина НЕСТЕРЕНКО
 (підпис) (ім’я, прізвище)

“___” _________ 2023 р.

ЗАВДАННЯ

на виконання дипломної роботи

Коваленка Іллі Ігоровича

1. Тема дипломної роботи: “Вебзастосунок для електронної комерції з

використанням вебзбирання з оптимізованим процесом зчитування товарів”.

Затверджена наказом ректора від 29.09.2023 р. № 1994/ст.

2. Термін виконання роботи: з 02.10.2023 р. до 31.12.2023 р.

3. Вихідні дані до роботи: вебзастосунок для електронної комерції.

4. Зміст пояснювальної записки:

⋅ Аналіз вимог до програмного забезпечення: загальні положення,

змістовний опис предметної області, змістовний аналіз предметної області,

аналіз успішних IT-проєктів, аналіз вимог до програмного забезпечення,

постановка комплексу завдань модулю, висновки по розділу;

⋅ Моделювання та конструювання програмного забезпечення: моделювання

та аналіз програмного забезпечення, обґрунтування засобів розробки,

архітектура бази даних, архітектура програмного забезпечення,

конструювання програмного забезпечення, аналіз безпеки даних, висновки

по розділу;

⋅ Аналіз якості та тестування програмного забезпечення: аналіз якості ПЗ,

опис процесів тестування, опис контрольного прикладу, висновки по

розділу;

⋅ Впровадження та супровід програмного забезпечення: розгортання

програмного забезпечення, робота з програмним забезпеченням, висновки

по розділу;

⋅ Керівництво користувача: загальні відомості, підготовка до роботи, робота

з додатком, висновки по розділу.

5. Перелік обов'язкового ілюстративного матеріалу (слайдів презентації):

4

⋅ Схема структурна варіантів використань;

⋅ Схема бази даних;

⋅ Схема структурна класів програмного забезпечення;

⋅ Схема структурна компонентів програмного забезпечення.

6. Календарний план-графік

№

з/п
Завдання Термін виконання

Відмітка

про

виконання

1. Узгодження технічного завдання з

керівником дипломної роботи

02.10.2023 – 18.10.2023

2. Вивчення рекомендованої

літератури

19.09.2023 – 23.09.2023

3. Аналіз існуючих методів

розв’язання задачі

24.09.2023 – 30.09.2023

4. Постановка та формалізація задачі 01.10.2023 – 05.10.2023

5. Розробка інформаційного

забезпечення

06.10.2023 – 15.10.2023

6. Алгоритмізація задачі 16.10.2023 – 20.10.2023

7. Обґрунтування вибору

використаних технічних засобів

21.10.2023 – 27.10.2023

8. Розробка програмного

забезпечення

28.10.2023 – 22.11.2023

9. Налагодження програми 23.11.2023 – 25.11.2023

10. Виконання графічних документів 25.11.2023 – 31.11.2023

11. Оформлення пояснювальної

записки

01.12.2023 – 03.12.2023

12. Завершення написання ПЗ.

Проходження нормоконтролю.

Друк ПЗ. Отримання відгуку

керівника. Підготовка презентації

та доповіді на перед захист

04.12.2023 – 10.12.2023

13. Передзахист кваліф. роботи.

Отримання рецензії

11.12.2023 – 17.12.2023

14. Підготовка документів до захисту

та здача їх секретарю ДЕК

18.12.2023 – 24.12.2023

15. Захист кваліф. роботи 25.12.2023 – 31.12.2023

7. Дата видачі завдання: 02.10.2023 р.

Керівник дипломної роботи: _________ Лідія ТЕРЕЩЕНКО
 (підпис) (ім’я, прізвище)

Завдання прийняв до виконання: _________ Ілля КОВАЛЕНКО
 (підпис) (ім’я, прізвище)

5

NATIONAL AVIATION UNIVERSITY

Faculty of Cybersecurity and Software Engineering

Department Software Engineering

Education degree Master

Specialty 121 Software Engineering

Educational-professional program Software Engineering

 APPROVED BY

Head of the department

_______ Kateryna NESTERENKO
 (signature) (name, surname)

“___” ____________ 2023

Task

on executing the graduation work

Kovalenko Illia Ihorovych

1. Topic of the graduation work: “An e-commerce web application using web

scraping with an optimized product reading process”. Approved by the order of the

rector from 29.09.2023 р. № 1994/ст.

2. Terms of work еxесutіоn: from 02.10.2023 to 31.12.2023

3. Source data of the work: an e-commerce web application.

4. Content of the explanatory note:

⋅ Analysis of software requirements: general regulations, comprehensive

description of the subject area, comprehensive analysis of the subject area,

analysis of successful IT projects, analysis of software requirements, setting the

set of module tasks, conclusions on the section;

⋅ Software modeling and design: software modeling and analysis, rationale for

development tools, database architecture, software architecture, description of

software architecture, data security analysis, conclusions on the section;

⋅ Quality analysis and software testing: software quality analysis, description of

testing processes, description of the test case, conclusions on the section;

⋅ Software implementation and maintenance: software deployment, working with

the software, conclusions on the section;

⋅ User guide: general information, preparation for work, working with the

application, conclusions on the section.

5. List of presentation mandatory slides:

⋅ Structural scheme of use cases;

⋅ Database schema;

⋅ Structural scheme of software classes;

⋅ Diagram of the structural components of the software.

6

6. Calendar schedule

Task Execution term
Execution

mark

1. Coordination of the technical task

with the thesis supervisor

02.10.2023 – 18.10.2023

2. Study of recommended literature

19.09.2023 – 23.09.2023

3. Analysis of existing problem-solving

methods

24.09.2023 – 30.09.2023

4. Formulation and formalization of the

problem

01.10.2023 – 05.10.2023

5. Development of information support 06.10.2023 – 15.10.2023

6. Algorithmization of the problem 16.10.2023 – 20.10.2023

7. Justification of the choice of the used

technical means

21.10.2023 – 27.10.2023

8. Software development 28.10.2023 – 22.11.2023

9. Debugging the program 23.11.2023 – 25.11.2023

10. Execution of graphic documents 25.11.2023 – 31.11.2023

11. Issuance of an explanatory note 01.12.2023 – 03.12.2023

12. Completion of writing the software.

Passing standard control. Software

printing. Receiving feedback from the

supervisor. Preparation of a

presentation and a report for the

defense

04.12.2023 – 10.12.2023

13. Preliminary defense of qualification

work. Receiving the review

11.12.2023 – 17.12.2023

14. Preparation of documents for defense

and their submission to the secretary

18.12.2023 – 24.12.2023

15. Defense of the qualification work 25.12.2023 – 31.12.2023

Date of issue of the assignment: 02.10.2023

Supervisor: _________ Lydia TERESHCHENKO
 (signature) (name, surname)

Task accepted for execution: _________ Illia KOVALENKO
 (signature) (name, surname)

7

РЕФЕРАТ

Пояснювальна записка дипломного проєкту має чотири розділи, у яких

знаходиться 13 таблиць, 54 рисунка та 44 джерела, загалом 101 сторінка.

Дипломний проєкт фокусується на розробці вебзастосунку для

електронної комерції з використанням вебзбирання з оптимізованим процесом

зчитування товарів.

Предмет дослідження: методи створення захищених вебзастосунків.

Об'єкт дослідження: процес розробки вебзастосунку для електронної

комерції з використанням вебзбирання з оптимізованим процесом зчитування

товарів.

Мета дипломного проєкту: створення вебзастосунку для електронної

комерції з використанням вебзбирання з оптимізованим процесом зчитування

товарів, а також шаблон конвеєру обробки замовлень та динамічний інтерфейс.

У першому розділі проводиться аналіз вимог до програмного

забезпечення, представлено загальний зміст та опис предметної області, аналіз

успішних IT-проєктів та вимог до програмного забезпечення, постановка

завдань для модуля.

Другий розділ присвячений моделюванню та створенню програмного

забезпечення, включаючи розробку архітектури та структури бази даних, а

також огляд архітектури програмного забезпечення, представлення UML-

діаграм.

У третьому розділі розглядається аналіз якості та тестування програмного

забезпечення, включаючи розробку плану, оцінку якості програми, опис

процесів тестування та результати тестів з поданням контрольного прикладу.

Четвертий розділ присвячений впровадженню та супроводженню

програмного забезпечення, описує розгортання програми та використання

програмного забезпечення разом з узагальненими висновками.

У п’ятому розділі детально описано покрокові інструкції щодо навігації та

використання програми динамічної електронної комерції.

8

КЛЮЧОВІ СЛОВА: ВЕБЗАСТОСУНОК, CMS, ЕЛЕКТРОННА

КОМЕРЦІЙНА ПЛАТФОРМА, ВЕБЗБИРАННЯ, ШАБЛОН КОНВЕЄРУ

ОБРОБКИ ЗАМОВЛЕНЬ, ТРЬОХ-ШАРОВА АРХІТЕКТУРА, AWS, DOCKER.

9

ABSTRACT

The explanatory note of the diploma project consists of four sections,

containing 13 tables, 54 figures, and 44 sources, totaling 101 pages.

The diploma project is focused on the development of an e-commerce web

application using web scraping with an optimized product reading process.

The subject of the research: methods of creating secure web applications.

The object of the research: the process of developing an e-commerce web

application using web scraping with an optimized product reading process.

The goal of the diploma project: the creation of an e-commerce web

application using web scraping with an optimized product reading process, along with

a base for an order processing conveyor framework and a dynamic interface.

The first section includes an analysis of software requirements, a general

overview and description of the subject area, an analysis of successful IT projects and

software requirements, the definition of tasks for the module, and general conclusions.

The second section is dedicated to software modeling and construction,

covering the development of software architecture and database structure, as well as

an overview of the software architecture. It includes UML diagrams and general

conclusions.

The third section discusses software quality analysis and testing, which

involves developing a plan, assessing software quality, describing testing processes,

presenting test results with a sample case, and general conclusions.

The fourth section focuses on software deployment and maintenance, providing

information about program deployment, software usage, and general conclusions.

The fifth section, the step-by-step instructions for navigating and utilizing the

dynamic e-commerce application are detailed.

KEYWORDS: WEB APPLICATION, CMS, E-COMMERCE PLATFORM,

WEB SCRAPING, BASE FOR ORDER PROCESSING, THREE-TIER

ARCHITECTURE, AWS, DOCKER.

10

TABLE OF CONTENTS

LIST OF ACRONYMS AND ABBREVIATIONS ... 13

INTRODUCTION .. 14

1 ANALYSIS OF SOFTWARE REQUIREMENTS .. 15

1.1 General regulations ... 15

1.2 Comprehensive description of the subject area .. 15

1.3 Comprehensive analysis of the subject area ... 17

1.3.1 Definition of a content management system ... 17

1.3.2 E-commerce platform.. 19

1.3.3 Web scraping ... 19

1.3.4 Platform Camunda .. 20

1.4 Analysis of successful IT projects .. 20

1.4.1 Analysis of known technical solutions ... 20

1.4.2 Analysis of known software products ... 21

1.5 Analysis of software requirements ... 22

1.5.1 Additional software requirements ... 23

1.5.2 Data storage requirements ... 24

1.5.3 Database software requirements ... 24

1.5.4 Software deployment requirements .. 25

1.5.5 Development of functional requirements .. 25

1.5.6 Development of non-functional requirements .. 29

1.6 Setting the set of module tasks ... 29

Conclusions on the section .. 30

2 SOFTWARE MODELING AND DESIGN ... 31

2.1 Software modeling and analysis ... 31

2.2 Rationale for development tools ... 34

2.2.1 Software development environments .. 34

2.2.2 Programming language C# .. 34

2.2.3 ASP.NET Core framework ... 35

2.2.4 MVC architecture pattern .. 36

2.2.5 AWS cloud platform ... 36

11

2.2.6 Docker platform .. 37

2.2.7 Stripe payment service .. 37

2.2.8 Bulma framework .. 39

2.2.9 Vue.js framework .. 39

2.2.10 Microsoft SQL server database management system 39

2.2.11 HTML Agility Pack library ... 39

2.3 Database Architecture ... 39

2.3.1 Building a domain model .. 40

2.3.2 ER diagram .. 41

2.3.3 Database schema ... 41

2.4 Software architecture .. 42

2.4.1 UML software diagrams ... 43

2.4.1.1 Use case diagram .. 44

2.4.1.2 Class diagram ... 45

2.4.1.3 Business Process Model and Notation diagram 46

2.4.1.4 Sequence diagram .. 46

2.4.1.5 State diagram .. 48

2.4.1.6 Component diagram ... 49

2.4.2 Software architecture selection analysis ... 49

2.4.3 Description of software architecture ... 50

2.5 Description of software architecture ... 56

2.5.1 Implementation description of the main tasks of the software 60

2.5.2 Implementation of service registration logic .. 61

2.6 Data security analysis ... 62

2.6.1 Authorization and authentication .. 62

Conclusions on the section .. 62

3 QUALITY ANALYSIS AND SOFTWARE TESTING 63

3.1 Software quality analysis .. 63

3.2 Description of testing processes ... 64

3.3 Description of the test case ... 65

3.3.1 Unit testing .. 65

3.3.2 Integration testing .. 67

12

3.3.3 System testing ... 68

3.3.4 Functional testing .. 69

3.3.5 Acceptance testing .. 73

3.3.6 User interface testing... 74

Conclusions on the section .. 74

4 SOFTWARE IMPLEMENTATION AND MAINTENANCE 75

4.1 Software deployment .. 75

4.1.1 Overview of available software deployment methods 75

4.1.2 Server-side deployment ... 76

4.1.3 Client-side deployment ... 76

4.1.4 Providing a secure communication channel ... 76

4.1.5 Working with the software .. 77

Conclusions on the section .. 77

5 USER GUIDE ... 78

5.1 General information .. 78

5.2 Preparation for work ... 79

5.2.1 System requirements for correct operation ... 79

5.2.2 Software installation.. 79

5.2.3 Checking correct operation ... 79

5.3 Working with the application ... 79

Conclusions on the section .. 87

Conclusions .. 89

REFERENCES ... 90

APPENDIX А .. 94

APPENDIX B ... 101

file://Users/illia_nova/Desktop/Diploma/ФКПІ_2023_121а_Коваленко%20І.І.docx%23_Toc153297890

13

LIST OF ACRONYMS AND ABBREVIATIONS

Stripe – is a popular payment system and a service for money transactions

through an API service;

CMS – Content Management System;

CMA – is a graphical user interface subordinate to a CMS;

A CDA – is a graphical interface that provides internal content management

and delivery support services, subordinate to a CMS;

PHP – stands for Hypertext Preprocessor, a scripting programming language;

XML – Extensible Markup Language;

OOP – stands for Object-Oriented Programming;

CRUD – Create Read Update Delete, the 4 main data management functions of

“create, read, update, and delete”;

DB – Database;

OS – Operating System;

RAM – Random Access Memory;

SDLC – stands for Software Life Cycle;

CVV2 – Card Verification Value 2, a three-digit code for checking the validity

of the payment system card;

MVC – stands for Model-View-Controller, an architectural pattern that divides

a program into three main components, a model, a view, and a controller;

AWS – Amazon Web Services;

HTTP – stands for Hypertext Transfer Protocol;

API – Application Programming Interface;

JSON – stands for JavaScript Object Notation, which is a text format for data

exchange between computers;

Token – is a software token that is issued to the user after successful

authorization and is the key to access services.

14

INTRODUCTION

Currently, e-commerce web applications for selling products are gaining

increasing popularity due to the rapid growth of commercial enterprises. This surge

has created a significant demand for e-commerce platforms, making them

indispensable in the modern e-commerce industry.

Typically, developing and managing web applications for commercial purposes

requires meticulous attention to detail. Every commercial business aspires to have its

personalized e-commerce platform that meets the needs and demands of its customers.

One of the possible solutions to content management challenges is the search

for a ready-made web application for selling products. However, this approach often

presents issues related to deployment complexity, unclear interfaces, automation of

product creation and order processing, as well as the high cost of independently

compiled software modules. It is important to note that even ready-made solutions

have their limitations and drawbacks.

Thus, the primary objective of this diploma project is to implement automation

of product creation processes through web scraping, create a base for developing a

framework for order processing, and create a dynamic user interface. This will help

minimize the shortcomings associated with existing solutions.

The tasks of this project include the development of a web application for

content management and product sales, utilizing network data retrieval from internet

stores, and implementing a base for an order processing conveyor framework.

Therefore, this diploma work aims to create a software application that not only

addresses the numerous shortcomings of existing alternatives but also introduces new

features to make it attractive in the e-commerce web applications market.

15

1 ANALYSIS OF SOFTWARE REQUIREMENTS

1.1 General regulations

E-commerce web applications for selling products have become a popular niche

for commercial companies in need of creating and utilizing e-commerce platforms.

Typically, the development of e-commerce web applications for commercial

purposes demands meticulous attention to implementation details, both from

developers and clients. Since each commercial business is unique and has its distinct

characteristics, its e-commerce platform must reflect these individual traits.

There are numerous approaches to address the challenges of creating and using

e-commerce web applications, often involving the search for ready-made web

applications. However, when using ready-made solutions, there can be both

advantages and risks that may impact the functioning of a commercial enterprise in

the long run. It is important to understand that even ready-made solutions have their

limitations and potential drawbacks.

Therefore, this work is aimed at analyzing and implementing innovations aimed

at improving the functionality of the e-commerce web application in this domain. In

summary, these innovations encompass the automation of product creation processes

through data retrieval from the network, the development of a base for an order

processing framework, and enhancements to the user interface.

1.2 Comprehensive description of the subject area

The e-commerce web application using web scraping with an optimized

product reading process allows users to create personalized e-commerce platforms

with built-in functionality and addresses the challenges of automating product

creation through data retrieval from internet stores. It also incorporates a base for an

order processing conveyor framework and dynamic design capabilities with style

variation. Additionally, the web application handles order payment transactions using

the “Stripe” technology.

16

Fig. 1.1. Stripe dashboard

The participants in the web application include users representing the

application’s clients, as well as administrators and managers responsible for

application administration. The distribution of roles among users has been

implemented to ensure a clear delineation of responsibilities and to protect the

application from unauthorized access.

User convenience in the web application includes:

 An intuitive and dynamic user interface;

 The ability to view products with detailed descriptions;

 Adding products to a cart that is stored throughout the user’s session due

to built-in session storage;

 A convenient order payment process facilitated by the use of the “Stripe”

payment processing service;

 The option to change the application’s background.

Administrator convenience in the web application encompasses:

 A built-in administration panel consisting of two subpanels: “e-

commerce” and “administrator’s menu”;

17

 Functions for managing products, generating text files with product data

extracted from internet stores, operating the order processing conveyor framework,

and managing inventory and its items.

Thus, this work implements a unique e-commerce web application using web

scraping with an optimized product reading process, a base for an order processing

conveyor framework, and a dynamic user interface.

1.3 Comprehensive analysis of the subject area

The e-commerce web application using web scraping with an optimized

product reading process, as well as a base for an order processing conveyor

framework, encompasses the concept of CMS and its components. It also includes the

concept of an e-commerce platform and its types. These concepts will be further

explored for a more in-depth understanding of the environment.

Fig. 1.2. CMS variety

1.3.1 Definition of a content management system

A content management system, or CMS, is software that allows users to create,

edit, collaborate, publish, and store digital content. Content in a CMS is stored in a

18

database and displayed in the software’s presentation layer based on a set of

templates.

A CMS consists of two components:

 Content management application or CMA: This is a graphical user

interface that enables users to design, create, modify, and delete website content

without the need for HTML expertise;

 Content Delivery Application or CDA: This comprises internal services

that provide support for content management and delivery.

Content management systems or web applications based on them have the

following features:

 Workflow processes, such as assigning permissions for content

management based on roles like authors, editors, and administrators;

 Content creation, including the ability for users to create and format

content;

 Content storage in a database, ensuring that content is consistently stored

in one place;

 Providing access to multiple users, with each CMS having unique user

permissions or defined roles such as editor, manager, author, or administrator [1].

Fig. 1.3. CMA and CDA interactions

19

1.3.2 E-commerce platform

An e-commerce platform is a comprehensive software solution that provides

internet stores with the means to manage their business. This type of service

encompasses the creation of e-commerce websites, inventory, and stock management

systems, as well as customer service infrastructure [2].

There are three main types of e-commerce:

 Business-to-Business (B2B): This involves internet sales from one

business to another, essentially wholesale trade;

 Business-to-Consumer (B2C): Currently, a significant portion of e-

commerce falls into this category as companies find it easy to target specific

consumers online, display their products on the internet, and offer consumers the

ability to make purchases without leaving their homes, thus saving time;

 Consumer-to-Consumer (C2C): This is a business model in which

consumers facilitate transactions for products or services between private individuals,

without the involvement of a primary business at any stage of the sale.

1.3.3 Web scraping

Network data retrieval, also known as “web scraping” is the process of

automated collection of structured web data, in other words, extracting information

from the web. This data is gathered and then exported in a format that is more

convenient for the user.

Typically, network data retrieval is carried out using software or libraries that

perform web scraping to extract specific pieces of information from various websites.

Some common use cases for web scraping include price monitoring, price analysis,

news tracking, lead generation, and market research, among many others [3].

20

Fig. 1.4. Abstract web scraping core functionality

1.3.4 Platform Camunda

The Camunda platform is a lightweight framework based on the Java

programming language. The development process consists of two parts: creating a

“flow process” in the specialized Camunda Modeler tool and writing “Java code” to

handle the steps of the process defined in the diagram. The platform provides

developers with REST APIs and specialized client libraries to create programs that

can interact with the remote workflow processing mechanism [4].

1.4 Analysis of successful IT projects

1.4.1 Analysis of known technical solutions

After analyzing the literature related to this subject area, it can be stated that

freely available ready-made e-commerce web applications have their advantages and

disadvantages.

This work aims to create the implementation of the e-commerce web

application, addressing specific shortcomings of existing e-commerce web

applications related to the automation of administrator actions. Specifically, the web

application introduces the functionality of network data retrieval from internet stores,

adds a base for an order processing framework, and provides a dynamic user

interface.

21

1.4.2 Analysis of known software products

The demand for content management systems or web applications for content

management is steadily increasing day by day. This growth is so significant that over

60% [5] of all websites today operate on various types of content management

systems or platforms, and web applications.

There are numerous ready-made content management systems for selling

products that have gained popularity among commercial businesses. Among such

products, we can mention WordPress, Drupal, Joomla, and Magento. Let’s explore

their definitions and features further.

WordPress is one of the most popular content management systems in the

world. Approximately 43.3% [6] of all websites on the internet are powered by

WordPress CMS. It is free to download and use, easy to learn, and search engine

optimized. Additionally, it includes thousands of available themes and plugins in one

repository, making it one of the most customizable platforms [7].

Drupal is an open-source content management system. It is written in the PHP

programming language and distributed under the GNU General Public License.

Drupal also includes modules, themes, JavaScript, CSS, and image files. This system

helps create various web projects using its template resource, which contributes to

convenient outcomes [8].

Joomla is a free content management system written in PHP and JavaScript.

Joomla CMS uses MySQL and MS SQL databases for data storage [9].

Magento is an e-commerce platform built on PHP and XML technologies. It is

a popular open-source content management system specialized in creating internet

stores. This CMS primarily utilizes PHP and Zend Framework technologies [10].

Below is Table 1.1 with a comparison of existing content management systems

and their drawbacks. This comparison was conducted based on a source that includes

an analysis of content management systems [11].

Table 1.1.

Comparison of existing content management systems

22

Characteristic WordPress Drupal Joomla Magento

Use Arbitrary Arbitrary Arbitrary Arbitrary

Number of free

templates

> 4000 > 1000 > 2000 > 1000

Number of free

plugins

> 50000 > 37000 >7000 >3000

One-click

installation

Supports Supports Supports Supports

Loading Time 5 minutes 10 minutes 10 minutes 10 minutes

Table 1.1. (continue)

Documentation Present in

different

languages

Present in

English

Present in

different

languages

Present in

English

Security system

with “patches”

High level of

security

High level of

security

High level of

security

High level of

security

Language support Present Present Present Present

Visual Editor There is a

partial visual

editor when

buying a

plugin

There is a

partial visual

editor

No visual

editor

There is a

complete

visual editor

with plugins

Basket N/a N/a N/a Present

Price Missing Missing Missing Missing

1.5 Analysis of software requirements

The main goal of the developed software is to create an e-commerce web

application using web scraping with an optimized product reading process from

internet stores and a base for an order processing conveyor framework for global use.

23

Additionally, the software should feature an intuitive dynamic user interface and

implement a financial transaction service.

To achieve this goal, the software must meet the following requirements:

 Development using fundamental principles of object-oriented

programming (OOP) and modern programming patterns;

 Support for web standards and access control to the application through

user authentication and authorization methods with different roles;

 An administrator role responsible for CMS management and a client role

that can view products, the customer’s cart, and create and pay for orders;

 Implementation of an admin panel and manager for process and

application configuration management;

 Automation of product creation processes through network data retrieval

from internet stores and the establishment of a base for an order processing conveyor

framework;

 Implementation of personalized CRUD (Create, Read, Update, Delete)

operations for content management and data storage in the database;

 Calculation of the total price of products in an order;

 Integration of the “Stripe” financial transaction service with an improved

transaction interface;

 An intuitive and dynamic interface using Bulma and Vue.js program

solutions infrastructure, adaptable for computers, tablets, and mobile devices.

In summary, the main purpose of the software requirements is to develop high-

quality software that satisfies real customer needs within the budget.

1.5.1 Additional software requirements

To reduce the potential number of errors in the database, validation of user

information input forms and all financial transactions has been implemented.

Validation will contribute to the quality storage of data in the database table.

To distinguish between the administrative panel and the store menu, two menus

have been created: the “Store Menu” and the “Administrator Menu”. This solution

24

addresses the separation of functions between the store and the administration of the

e-commerce web application.

When creating a product, the price will be calculated with precision to the tenth

place and rounded during input. The application will include one administrator with a

default login and password, and the administrator will have the ability to create new

users in the administrative panel. Also, during the development status, the web

application will include default user data for order creation. The e-commerce web

application should have an authentication process based on sessions and cookie files

with a twenty-minute time limit.

To simplify the order processing process, it should be divided into three stages

of management and processing: order formation, order packaging, and order shipping.

In the future, the “Camunda” process automation technology will be integrated into

the order processing conveyor framework, and customers will have access to view

processing stages.

1.5.2 Data storage requirements

The data storage for the e-commerce web application using web scraping with

an optimized product reading process should be integrated into the project’s data

layer, along with the generation of migration folders. It should also ensure high-

performance data writing and be compatible with various operating systems.

1.5.3 Database software requirements

The requirements for the database software for the e-commerce web application

using web scraping with an optimized product reading process are as follows:

 Usage of operating systems like Linux, Windows;

 Recommended minimum of 4 CPU cores;

 4 GB of RAM or more.

These requirements define the software requirements for the database. The

project’s data storage should maintain appropriate relationships between information

and data.

25

1.5.4 Software deployment requirements

To run and use this project, the following system and hardware requirements

are needed:

 Minimum 1 GB of RAM;

 Support for operating systems such as Windows, MacOS, and Linux;

 Installed Visual Studio, preferably version 2016 or higher;

 At least 8 GB of physical memory;

 Processor frequency of 1 GHz or higher;

 Broadband internet connection.

1.5.5 Development of functional requirements

Based on the use case diagram presented in Fig. 2.11. titled “Structural scheme

of use cases” the following use cases and functional requirements for this web

application have been developed, as outlined in Table 1.2.

Table 1.2.

Application use cases and functional requirements

UC1.1.1 Use Case

Name Authorization

Description The administrator enters the username and password, then goes to

the administration panel

Participants Administrator

Prerequisites The web application is running, authorization fails

Postconditions The administrator is authorized in the application

UC1.1.2 Use Case

Name Authentication

Description For the duration of the usage session, the web app stores session

tokens stored in the app for 20 minutes

Participants Administrator, User

Prerequisites Running web application

26

Postconditions Saving authorized data for 20 minutes in the app

UC1.1.3 Use Case

Name Access to the admin panel

Description The administrator can go to the administrative panel

Participants Administrator

Prerequisites The web application is running, the administrator is authorized

Postconditions Successful transition and access to the admin panel

UC1.1.4 Use Case

Name View and edit products

Description The administrator chooses to view, edit, create, and delete products

Table 1.2. (continue)

Participants Administrator

Prerequisites Running web application, access to the administrative panel

Postconditions A page with the functionality of viewing and editing products is

displayed

UC1.1.5 Use Case

Name Generating a product list file from internet stores

Description The administrator generates a text file with a sheet of product data

read from internet stores

Participants Administrator

Prerequisites Running web application, access to the administrative panel

Postconditions A page with the functionality for generating a product list file is

displayed

UC1.1.6 Use Case

Name View and edit the order processing process

Description The administrator has access to the order processing panel and its

editing

Participants Admin access to the admin panel

Prerequisites Running web application, access to the administrative panel

27

Postconditions A page with order processing functionality is displayed

UC1.1.7 Use Case

Name View and edit the number of products in stock

Description The administrator selects viewing, editing, creating, and deleting

the quantity of products in the warehouse

Participants Administrator

Prerequisites Running web application, access to the administrative panel

Postconditions A page with warehouse editing functionality is displayed

UC1.1.8 Use Case

Name Creating new users

Table 1.2. (continue)

Description The administrator creates new users in the application with naming

and access rights

Participants Administrator

Prerequisites Running web application, access to the administrative panel

Postconditions A page with user creation functionality is displayed

UC1.1.9 Use Case

Name Product Page View

Description The user has access to view the product page

Participants User

Prerequisites Running web application, home page

Postconditions Displayed product page

UC1.1.10 Use Case

Name Editing a product in the cart

Description The user adds, subtracts, removes items from the cart

Participants User

Prerequisites Running web application, cart page

Postconditions The cart page is displayed, it is possible to edit it

UC1.1.11 Use Case

28

Name Checkout

Description The user fills in the fields of the order delivery address and pays

for the order on a new page

Participants User

Prerequisites Running web application, checkout pages

Postconditions Order confirmation page displayed

UC1.1.12 Use Case

Name Changing the background of the app

Description Both actors can choose a personalized app background for the

product page

Table 1.2. (continue)

Participants Administrator, User

Prerequisites Running web application, home page, menu

Postconditions The main page is displayed with a redesigned interface

Based on the use cases, functional requirements for the e-commerce web

application using web scraping with an optimized product reading process were

created and described. These requirements are listed in Table 1.2 and are subject to

the description section. It’s important to note that each requirement is assigned an

identification number, introduced in parallel with the use cases, and starts with the

prefix “REQ.”

As a result, using the discussed use cases and functional requirements, a

requirements traceability matrix was developed, which can be viewed in Fig. 1.5.

Fig. 1.5. Requirements tracing matrix

29

1.5.6 Development of non-functional requirements

To determine the quality attribute of the web application, the following non-

functional requirements were identified for the user who will deploy this application

locally:

 The software should work on the Windows operating system and

requires Microsoft Visual Studio version 2016 or higher;

 Supported server module operating systems are Linux, Windows,

MacOS;

 Support for all modern browsers for the client-side software;

 An internet connection is required.

1.6 Setting the set of module tasks

The purpose of the development is to create an e-commerce web application

using web scraping with an optimized product reading process, implement a base for

an order processing conveyor framework, and dynamic design, and handle financial

transactions in the administrative panel.

The goal of the development is to create a personalized e-commerce web

application with increased efficiency through the automation of product creation

processes using network data retrieval and the creation of a base for a working order

processing conveyor aimed at automating order acceptance and processing by the

administrator. The goal also includes creating a dynamic user interface to improve

user interaction with the web application and its administrative and user functionality.

To achieve the set goal, the following tasks need to be addressed:

 Implement authentication logic;

 Introduce authentication logic;

 Develop functionality for viewing and editing products;

 Develop functionality for generating products and their descriptions

taken from internet stores;

30

 Implement a base for a framework and template for the order processing

conveyor;

 Develop functionality for viewing and editing products in stock;

 Develop logic for creating new users based on roles;

 Implement logic for changing the application’s background;

 Add functionality for viewing products;

 Implement the ability to add products to the shopping cart;

 Develop logic for canceling the shopping cart;

 Introduce authentication logic throughout the entire session;

 Implement functions for handling financial transactions.

Conclusions on the section

Conclusions for this section include that after analyzing the requirements for

the software, the general principles, purpose, and scope of the software have been

detailed. In addition, existing modern solutions were analyzed in the “Analysis of

successful IT projects” section, highlighting their advantages and disadvantages.

Requirements for the software were analyzed, covering the software itself, data

storage, functional, and non-functional requirements. A requirements traceability

matrix was also created.

31

2 SOFTWARE MODELING AND DESIGN

To create an e-commerce web application using web scraping with an

optimized product reading process, the software development process was employed,

known as the Software Development Life Cycle (SDLC). SDLC is an iterative logical

process aimed at creating computer software to achieve a specific goal or task. It

establishes an international standard used for the development and improvement of

software products. It provides a structured set of actions to be followed during the

development, creation, and maintenance of high-quality software [12]. The diagram

of the SDLC life cycle is depicted in Fig. 2.1.

Fig. 2.1. Diagram of the SDLC life cycle

The main objective of the software development process is to create an efficient

product. This project adheres to this process to achieve a successful outcome [13].

2.1 Software modeling and analysis

For users of the software, the following common processes are essential:

viewing the main product page, adding products to the shopping cart, processing and

paying for orders through the “Stripe” payment service, and the ability to change the

application’s background.

32

The stage of viewing the main product page involves actions by the user, who

launches the web application, lands on the product page, and can view product details.

The stage of adding a product to the shopping cart allows the user to select a

product and add it to the cart, review the cart’s contents, and edit the quantity of

items.

The stage of order processing and payment includes entering the user’s

personal information, making payment for the order through the “Stripe” service, and

completing the process.

Finally, the stage of changing the application’s background enables users to

change the background on the main page of the application using a dedicated button

in the toolbar.

At this stage, the user can change the application’s background. Additionally,

the general processes that the software administrator goes through include processes

of authorization and authentication, access to the administration panel, viewing and

editing products, processing orders, viewing and editing the quantity of products in

stock, creating new users, and all the processes available to users.

Sequential description of the authorization and authentication stage:

 On the first visit to the website, the administrator clicks on the “Log In”

button, which redirects them to a page for entering login credentials;

 Next, the administrator enters their login and password;

 After correctly filling in the required fields and clicking the “Log In”

button, the administrator returns to the main application page with an updated part of

the interface indicating access to the administration panel;

 In case of an urgent exit from the web application and re-entry, the

administrator can access it without losing data due to the authentication process.

At this stage, the administrator can authorize, thereby opening a new part of the

interface, the administration panel. Also, in case of exiting the web application and re-

entering, the administrator can access it without losing their role, thanks to the

authentication process.

Sequential description of accessing the administration panel:

33

 After authorization, on the main page in the admin tools panel, the

administrator has a link to the administration panel;

 By clicking on this link, the administrator is directed to a new page with

the administration panel;

 The administration panel includes tools for managing both the platform

itself and its users.

At this stage, the administrator can access the administration panel and have

access to two parts of the panel: platform administration and user administration.

Sequential description of viewing and editing products:

 After entering the administration panel, in the administration menu, the

administrator is presented with a sub-panel for viewing and editing products;

 By clicking on this sub-panel, the administrator dynamically switches to

the product editing panel;

 This panel includes an interface with functions for creating, viewing,

editing, and deleting products.

At this stage, the administrator can access the menu for viewing and editing

products and use its functions to manage products.

Sequential description of generating a text file and describing products from

internet stores:

 In the administration panel, the administrator selects a sub-panel for

generating text files of products;

 After clicking on this sub-panel, the administrator dynamically switches

to the product text file generation panel and can choose products from three Ukrainian

internet stores;

 After clicking the “Generate” button, the administrator receives a

generated text file with the listed products on their local system.

At this stage, the administrator can access the menu for generating text files of

products and use its functions to obtain product descriptions from internet stores.

Sequential description of order processing:

34

 In the platform menu, the administrator selects a sub-panel for order

processing;

 The sub-panel includes three order processing stages: pending,

packaging, and dispatch;

 The administrator can manually switch orders between these processing

stages until the order is completed.

At this stage, the administrator moves to the platform’s order processing sub-

panel, which includes a three-stage order processing system.

2.2 Rationale for development tools

2.2.1 Software development environments

Since the e-commerce web application using web scraping with an optimized

product reading process is developed in the C# programming language and ASP.NET

Core framework, the decision was made to use the integrated development

environment Visual Studio by Microsoft with the necessary plugins suitable for web

application development. Additionally, a range of technologies and processes listed

below in the sections were utilized.

2.2.2 Programming language C#

To develop an e-commerce web application, the decision was made to use the

C# programming language as the primary language in this implementation.

The C# is a modern, object-oriented language that allows for the creation of

secure and reliable programs, working in conjunction with .NET [14].

The choice of language is justified by the fact that C# is one of the most

versatile programming languages in the world.

35

2.2.3 ASP.NET Core framework

The software implemented on the ASP.NET Core platform is a high-

performance platform for creating modern applications with cloud support and open-

source code.

Among the advantages of this platform, the following aspects can be

highlighted:

 Support for multiple platforms, allowing ASP.NET Core applications to

work on various operating systems, eliminating the need to create separate programs

for each platform;

 Built-in “IoC” container for automatic dependency management;

 Integration with modern user interface frameworks such as AngularJS,

ReactJS, Vue.js, Umber, Bootstrap, and Bulma [15]. The diagram of the ASP.NET

division is depicted in Fig. 2.2.

Fig. 2.2. Diagram of the ASP.NET division

As a result of utilizing these capabilities of the ASP.NET Core platform, the e-

commerce web application was developed, characterized by high performance, lower

system memory requirements, easy deployment, and convenient maintenance.

36

2.2.4 MVC architecture pattern

The e-commerce web application using web scraping with an optimized

product reading process built using an MVC pattern due to its high effectiveness.

Model-View-Controller, or MVC, is an architectural pattern that divides a

program into three main components: model, view, and controller. Each of these

components is designed to handle specific aspects of software development. MVC is

often used to create scalable and expandable projects [16]. The interaction of the

components of the MVC design pattern is depicted in Fig. 2.3.

Fig. 2.3. Diagram of the interaction of MVC template components

The three components of the MVC software design pattern can be described as

follows:

 The model manages data and business logic and does not directly interact

with the user;

 The view describes the program’s external appearance;

 The controller acts as an intermediary between the model and the view. It

receives data from the user, passes it to the model, receives the processed result, and

passes it to the view.

2.2.5 AWS cloud platform

Amazon Web Services, known as AWS, is a comprehensive remote computing

service that provides a variety of online services through cloud storage. AWS

encompasses more than 200 products and services. Accessing Amazon Web Services

is done through HTTP, using the REST architectural style and SOAP protocol,

typically for older systems, and JSON for newer ones [17].

37

2.2.6 Docker platform

For the e-commerce web application, Docker technology was implemented to

facilitate the deployment of the software. Docker is an open-source platform for

containerization.

The Docker platform utilizes containers, which are implemented through

process isolation and virtualization built into the Linux kernel. These capabilities

allow multiple components of an application to share resources of a single host

operating system instance, much like a hypervisor enables multiple virtual machines

to share the CPU, memory, and other resources of a single physical server [18]. The

docker system architecture scheme is depicted in Fig. 2.4.

Fig. 2.4. Docker system architecture scheme

As a result, container technology offers all the functionality and benefits of

virtual machines, including application isolation and cost-effective scalability.

2.2.7 Stripe payment service

To facilitate convenient and efficient management of financial transactions in

this software, the Stripe service has been implemented. Stripe is a payment service

provider that business owners can use to accept various forms of payments, including

credit cards, direct purchases, and deferred payments. It’s important to note that Stripe

charges a commission for each transaction.

38

As a payment processor, Stripe allows business owners to accept and process

payments from credit and debit cards. Additionally, by using Stripe, companies can

accept payments via mobile wallets and make immediate purchases, subsequently

paying for the goods or services. Stripe also supports payments in various currencies

through its built-in service called “Stripe Payments”, which processes payment data.

The operation of this software involves the following steps:

 The client provides information about their card;

 Card data is encrypted by the Stripe payment gateway;

 Stripe forwards this data to the acquiring bank for transaction processing

on behalf of the seller, with Stripe acting as the seller. This means that Stripe users do

not need to create a seller account;

 Payment data is sent to the card-issuing bank (the bank that issued the

card) of the cardholder through the credit card network, such as Visa or Mastercard;

 The card-issuing bank approves or declines the transaction;

 The transaction result signal is sent back to the client through Stripe;

 After the card-issuing bank of the cardholder completes its approval, the

user can transfer funds from Stripe to their bank account, and Stripe users can receive

payouts after transaction processing.

The stripe payment gateway system design is depicted in Fig. 2.4.

Fig. 2.5. Stripe payment gateway system design

Users will pay Stripe a certain fee for processing each transaction. The amount

of these fees depends directly on the type of transaction; for example, each payment

may cost 2.9% of the item’s price [19].

39

2.2.8 Bulma framework

To create the user interface for the project, we implemented the Bulma

framework. Bulma is a free CSS solution based on the Flexbox layout. Thanks to

Bulma, we have access to a wide range of built-in features, greatly simplifying the

CSS coding process [20].

2.2.9 Vue.js framework

Also, to create the user interface, we implemented the Vue.js framework. It’s a

user interface framework written in JavaScript. It’s built on HTML, CSS, and

JavaScript and provides a declarative programming model that helps streamline user

interface development. Vue.js uses a virtual DOM. Instead of making changes directly

to the DOM, a copy of it is created, represented as JavaScript data structures. As a

result, the final changes are updated to the real DOM [21]. This is a significant

optimization advantage.

2.2.10 Microsoft SQL server database management system

To manage the software, SQL Server is used – it is a relational database

management system, developed by Microsoft. It is based on SQL, which is a standard

programming language for interacting with relational databases. SQL Server is

associated with Transact-SQL or T-SQL from Microsoft, which includes a set of

special programming constructs [22].

2.2.11 HTML Agility Pack library

To implement the logic of fetching products from internet stores, the HTML

Agility Pack library was used – it is a syntactic HTML parser that creates a DOM

structure for reading and writing and supports common XPATH or XSLT. This is a

.NET library that allows analyzing HTML files “offline”. The syntactic parser is very

tolerant of HTML [23].

2.3 Database Architecture

40

For the e-commerce web application using web scraping with an optimized

product reading process, domain models were built, an ER diagram was developed,

and a database schema was implemented.

Generally, the better the database architecture is developed, the faster the

program can retrieve and process the necessary amount of data.

2.3.1 Building a domain model

The domain model is a type of metadata that consists of multiple tables [24].

To gain a clear understanding of the domain of the e-commerce web application

using web scraping with an optimized product reading process, an entity table (and

inter-project entities) for the domain was created. You can view it below as Table 2.1.

Table 2.1.

All domain entities in the database

Essence Attribute

Customer

Information

First name, last name, mail, phone number, required address,

optional address, city, zip code, order date

Order Order code, order link, stripe service token link, first name,

last name, email, phone number, required address, optional

address, city, zip code, order date, order status

Composition of

orders

Warehouse code, order code, quantity of goods

Product or Product Product code, naming, specification, price, warehouses

Product in cart Product code, product name, warehouse code, price, quantity

Warehouse Warehouse code, description, quantity, product code, order

warehouse

Warehouse on hold Pending warehouse code, session token code, warehouse

code, quantity, expiration date

41

2.3.2 ER diagram

When developing the database for the e-commerce web application, an entity-

relationship diagram representing the relationships between sets of entities stored in

the database was implemented. An entity is an object, a data component, and a set of

entities is a collection of similar entities [25].

In Fig. 2.6., you can see the ER diagram of the subject area.

Fig. 2.6. ER diagram of the subject area

2.3.3 Database schema

To create an architecturally correct database for the e-commerce web

application, a database schema was designed.

For this software, a simplified database schema or data logical model was

created. In Fig. 2.7., you can see the simplified database schema of the domain.

Fig. 2.7. Simplified database schema

Additionally, data logical model was generated for this web application. It is

presented in Fig. 2.8. and Fig. 2.9. under the title “Database schema”.

42

Fig. 2.8. Database schema – first part

Fig. 2.9. Database schema – second part

As a result, a database schema was created, which represents the structure of

the database system, providing a logical representation of the entire database and

supported by the database management system. It defines how data is organized, and

their relationships, and formulates all the constraints that need to be applied to the

data [26].

2.4 Software architecture

This software has been divided into six projects, which use a three-layer

architecture, and two projects for implementing testing layers, which will be

discussed in the fourth section. Thus, DAL, BL, and PL layers have been

implemented. The flexibility of this approach adheres to SOLID principles.

43

Specifically, the DAL and BL layers are divided into class libraries, each of

which is intended for the interfaces of the respective logic layer. These interfaces

establish a connection between the DAL and BL layers.

You can see the architecture of the e-commerce web application using web

scraping with an optimized product reading process in Fig. 2.10.

Fig. 2.10. E-commerce web application architecture using web scraping with an

optimized product reading process

Moving on to the consideration of each project, the first in logic is

GenericStore.Entities – this is a class library that includes all database entities,

intermediate entities, and everything related to them.

GenericStore.Models is a class library that embodies data transfer objects.

GenericStore.DAL.IMPL is a class library responsible for the logic of the data

access layer.

GenericStore.DAL.ABSTRACT is a class library responsible for the logic of

the interfaces of the data access layer.

GenericStore.BL.IMPL is a project that is responsible for logic and

implementing services.

GenericStore.UI is a project that is responsible for the graphical user interface

of the application and implements the MVC architecture, with models stored as entity

data and used to process parts of the code. Moreover, the views generated in this

software can be in the form of HTML code or JSON response format. Controllers are

used to combine view and model components and are applied for data processing.

2.4.1 UML software diagrams

During the development of the architecture of this software, it was essential to

use UML, which stands for Unified Modeling Language. In other words, UML is a

modern approach to modeling and documenting software. It is a popular method for

44

modeling business processes and is based on schematic representations of software

components. By using UML, it becomes easier to understand potential flaws or errors

in the software or business processes.

Two main categories encompass all other types of UML diagrams: structural

and behavioral. Based on their names, some UML diagrams analyze and depict the

structure of an application or process, while others describe the behavior of the

application, its actors, and components [27].

As a result, a series of UML diagrams were created and integrated into this e-

commerce web application.

2.4.1.1 Use case diagram

UML uses case diagrams to model the behavior and requirements of an

application. They describe high-level functions and the scope of the web application.

These diagrams also define interactions between the application and its actors. Use

cases and actors describe what the application does and how participants use it, but

not how the application works internally. In other words, a use case diagram describes

the “action” rather than the “process of creating action logic” [28].

Typically, developing use case diagrams is part of the project modeling stages.

The main goals of creating use case diagrams during the process include:

 Specifying the application’s context;

 Capturing the application’s requirements;

 Verifying the application’s architecture.

A diagram of the use cases of the subject area is shown in the in Fig. 2.11.

under the title “Structural scheme of use cases”.

45

Fig. 2.11. Structural scheme of use cases

As a result, this diagram can be referenced throughout the entire development

process.

2.4.1.2 Class diagram

The e-commerce web application using web scraping with an optimized

product reading process cannot be done without a class diagram, just like any other

properly formed architectural solution.

The class diagram is used to illustrate and create a functional representation of

classes in the software application. It serves as a vital resource throughout the

software development lifecycle [29].

The diagram of the classes of the subject area is shown in the appendix B, in

Fig. B.1., under the title “Structural scheme of software classes”.

Therefore, class diagrams are one of the most important types of UML

diagrams and are crucial in software development.

46

2.4.1.3 Business Process Model and Notation diagram

To model the primary client-side business processes of the web application, a

model diagram, and Business Process Model and Notation (BPMN) notation were

introduced. This diagram is depicted in Fig. 2.12.

Fig. 2.12. Diagram of the model and notation of the business processes of the

application

2.4.1.4 Sequence diagram

Sequence diagrams are interaction diagrams that provide a detailed description

of how operations are executed. They capture interactions between objects [30].

A diagram of the application authorization sequence is shown in Fig. 2.13.

Fig. 2.13. Application authorization sequence diagram

The purpose of a sequence diagram is to:

 Model high-level interactions between active objects;

47

 Model interactions between object instances that implement a use case.

Fig. 2.14. shows a diagram of the sequences of the entity update process in the

application.

Fig. 2.14. Entity-update process sequence diagram

In Fig. 2.15, you can see a diagram of the sequence of the general logic of the

user process.

Fig. 2.15. Diagram of the sequence of the general logic of the user process

48

2.4.1.5 State diagram

A state diagram is a tool for describing the behavior of a program, taking into

account all possible states of an object. This behavior is represented and analyzed

through a series of events that occur in one or more possible states. Each diagram

represents objects and tracks their different states throughout the entire application

[31].

It is worth noting separately the status diagram for the process of adding goods

and paying for the order, shown in Fig. 2.16.

Fig. 2.16. Status diagram for the order payment process

It is also worth noting the state diagram for the CRUD process of entities,

shown in Fig. 2.17.

Fig. 2.17. State diagram for entity crud process

49

2.4.1.6 Component diagram

The component diagram breaks down the developed web application into

various levels of functionality. Each component is responsible for a specific purpose

within the entire application and interacts with other elements [32].

The component diagram for the MVC process of the main entities of the e-

commerce web application is shown in in Fig. 2.18. under the title “Structural

diagram of software components”.

Fig. 2.18. Structural diagram of software components

2.4.2 Software architecture selection analysis

This section analyzes the choice of architecture for implementing the e-

commerce web application. There are two fundamental software architectures:

– Monolithic architecture – the use of a single general module;

– Microservices architecture – a set of independent, separately deployable

services.

After analyzing the monolithic architecture, the advantages and disadvantages

were reviewed and described in Table 2.2.

Table 2.2 – Advantages and disadvantages of monolithic architecture

Advantages Disadvantages

Convenience in writing As the project grows, significant portions of code may

50

need editing, even with minor changes

Fast interaction between

project parts

Complexity in dissecting and comprehending long-

standing projects, like a 20-year-old monolith

Interconnectedness Learning the entire system takes a lot of time

After analyzing the microservice architecture, we reviewed and described it in

Table 2.3.

Table 2.3 – Advantages and disadvantages of microservice architecture

Advantages Disadvantages

Reliability and security Complex test writing

Scalability and distribution Costly maintenance – each microservice requires its

own server

Minimal business logic per

microservice

Network overhead and round-the-clock code churn

Therefore, after exploring various architectural options with all their advantages

and disadvantages, a decision was made to implement a monolithic architecture for

this e-commerce web application. The choice was justified by the single-module logic

of the architecture and its ease of understanding and implementation, as opposed to

microservices architecture.

2.4.3 Description of software architecture

Based on the architecture of the web application in Fig. 2.12. and the diagram

of classes shown in the appendix B, in Fig. B.1. under the title “Structural scheme of

software classes”. It is worth considering and describing the architecture of the e-

commerce web application for the sale of products under the project name

“GenericStore”.

Referring to a three-layer architecture, the software includes

GenericStore.DAL.IMPL, GenericStore.DAL.ABSTRACT, GenericStore.BL.IMPL,

and GenericStore.UI. Each of the layers and its inclusions is responsible for a separate

51

part of the functionality. In the future, each layer of the logic of this software will be

considered.

Let’s take a look at the GenericStore.Entities project, which implements entities

and their fields used to store data in the database. The content of the entities is shown

in Fig. 2.19.

Fig. 2.19. GenericStore.Entities project, entities in the project

The details of each e-commerce web application entity for selling products are

shown in Table 2.4.

Table 2.4.

Detailed description of application database entities

Class field Description Type

Order

Id Order code Integer

Table 2.4. (continue)

OrderReference Order link String

StripeTokenReference Stripe token link String

Name Customer name String

Surname Customer’s last name String

Email Customer mail String

PhoneNumber Customer phone number String

RequiredAddress Customer address required String

OptionalAddress Optional customer address String

52

City Customer city String

PostalCode Postal code of the customer String

OrderDate The date of the customer’s order DateTime

Status Customer order status OrderStatus

OrderStorehouses Link to warehouse IСollection

<OrderStorehouse>

OrderStorehouse

OrderId Warehouse code Integer, Order

StorehouseId Order code Integer, Storehouse

Quantity Quantity of goods Integer

Product

Id Product code Integer

Naming Name of the product String

Specification Product specification String

Price The price of the product Decimal

Storehouses Warehouses ICollection

<Storehouse>

Storehouse

Id Warehouse code Integer

Description Product description in stock String

Table 2.4. (continue)

Quantity Quantity of goods in stock Integer

ProductId Product code Integer, Product

OrderStorehouses Warehouse/Order ICollection

<OrderStorehouse>

StorehouseOnHold

Id Warehouse code pending Integer

SessionTokenId Warehouse session token code String

53

StorehouseId Warehouse code Integer, Storehouse

Quantity Quantity of goods in stock Integer

DateOfExpiry Token expiration date DateTime

Next, we will examine the GenericStore.Models project, which includes entities

implemented with the DTO (Data Transfer Object) pattern, used for data transfer

between the e-commerce web application’s logic. The GenericStore.Models project is

depicted in Fig. 2.20.

Fig. 2.20. GenericStore.Models project, DTO entities

The description of DTO entities in the GenericStore.Models project is

discussed and presented in Table 2.5. These DTO entities are essential for interaction

between the internal logic, the database, and the user interface. These entities are

organized into various directories, each implementing different aspects of the creation

logic.

 Table 2.5.

Detailed description of DTO entities for data transfer

DTO entity directory Description

54

CartDTO Recycle bin entity in DTO to execute the assigned

functionality of the application recycle bin

OrdersAdminDTO DTO entities for performing order-related

functionality for administrators

OrdersDTO DTO entities for executing order-related functionality

from the user’s perspective

ProductsAdminDTO DTO entities for product-related functionality from the

administrator’s perspective

ProductsDTO A collection of DTO entities for executing product-

related functionality from the user’s perspective

StorehouseAdminDTO A collection of DTO entities for performing

warehouse-related functionality with administrator

privileges

Next, the first layer to consider, which is directly responsible for data access,

includes projects named GenericStore.DAL.IMPL and

GenericStore.DAL.ABSTRACT. They provide simplified access to data stored in the

database.

The class library GenericStore.DAL.IMPL includes classes for initializing

database entities and managing them using the “Manager” template. It is in this

project that the database is initialized along with the migrations folder. The

architecture and content of the GenericStore.DAL.IMPL class library are depicted in

Fig. 2.21.

Fig. 2.21. GenericStore.DAL.IMPL project, part of the logic

55

To implement this layer, the “Manager” template was used, which, in turn, is a

branch of the “Repository” template. The class library GenericStore.DAL.IMPL is

detailed in Table 2.6, which describes the layer itself and the classes included in it.

 Table 2.6.

Detailed description of the GenericStore.DAL.IMPL project and its classes designed

to store data in a database

Project or layer

name

Class Description and purpose of the class

GenericStore.DAL

.IMPL

GenericStoreDb

Context

This class includes all the provided

entities of the e-commerce web

application and initializes the

connection between the program and

the database

GenericStore.DAL

.IMPL

OrderManager This class manages and handles the

entities of orders between the program

and the database

GenericStore.DAL

.IMPL

ProductManager This class manages the entities of

products between the program and the

database

GenericStore.DAL

.IMPL

StorehouseManager This class handles the entities of

warehouses between the program and

the database

Next, we move on to the second project, GenericStore.DAL.ABSTRACT,

which encompasses the implementation of data access layer interfaces. The project’s

structure can be seen in Fig. 2.22.

56

Fig. 2.22. GenericStore.DAL.ABSTRACT project, part of abstractions

The class library GenericStore.DAL.ABSTRACT plays a fundamental role in

facilitating communication and data/method transfer among other projects and layers.

It is responsible for flexible interaction between projects. A detailed description of

this class library is provided in Table 2.7.

 Table 2.7.

Detailed description of the GenericStore.DAL.ABSTRACT project

Project/layer name Class Description and purpose of the

class

GenericStore.DAL

.ABSTRACT

DecimalPriceExtensions This class is a static extension that

performs the function of converting

and formatting the price into a

string

GenericStore.DAL

.ABSTRACT

IOrderManager Responsible for abstracted

shopping cart functionality and

ensures the flexibility of methods

GenericStore.DAL

.ABSTRACT

IProductManager Implements abstracted product

functionality

GenericStore.DAL

.ABSTRACT

ISessionControlManager Incorporates abstracted session

control functionality

GenericStore.DAL

.ABSTRACT

IStorehouseManager Realizes abstracted warehouse

functionality

2.5 Description of software architecture

57

We should consider the detailed creation of the business logic for the e-

commerce web application using web scraping with an optimized product reading

process. The business logic consists of the GenericStore.BL.IMPL project, which

includes the core logic and application services. The structure of this project can be

seen in Fig. 2.23.

Fig. 2.23. GenericStore.BL.IMPL project, part of the logic

The GenericStore.BL.IMPL class library serves as the core logic of the e-

commerce web application. It is responsible for implementing and utilizing the logic

and functionality presented in the presentation layer. The structure of the business

logic is divided into directories for convenience and flexibility in usage and future

application enhancements. This approach of splitting classes to implement a clearly

defined functionality is known as the “Single Responsibility Principle” and adheres to

SOLID principles. A detailed description of the class library is provided in Table 2.8.

This table contains all the project logic that will be integrated into the application’s

presentation layer.

58

Table 2.8.

Detailed description of the GenericStore.BL.IMPL project

Class name Method name with

parameters

Description of the method

Service – Serves as a service attribute for

all business logic classes

CartServices

AddClient

Information

DoAction

(ClientInformationDTO

request)

Adding customer’s personal

information with session tokens

in mind

AddProduct

ToCart

DoAction

(CartStorehouseQtyDTO

request)

Adding a product to the

customer’s cart with session

tokens in mind

GetCart DoAction() Viewing the cart with session

tokens in mind

GetClient

Information

DoAction() Retrieving customer’s personal

information with session tokens

in mind

GetOrder

Information

DoAction() Retrieving order-specific

personal information for the

customer with session tokens in

mind

RemoveProduct

FromCart

DoAction

(CartStorehouse QtyDTO

request)

Removing a product from the

cart with session tokens in mind

OrderAdminServices

GetOrder

Information

DoAction(int id) Retrieving customer’s personal

information at the administrator

level

59

Table 2.8. (continue)

GetOrders

Information

DoAction(int status) Retrieving the status of

customer orders at the

administrator level

UpdateOrder

Information

DoActionAsync(int id) Updating customer orders

at the administrator level

OrderServices

CreateOrder

Entity

DoAction (request) та

CreateOrderReference()

Creating an order at the

user level

GetOrder

Information

DoAction(string

reference)

Getting order information

at the user level

ProductAdminServices

CreateProduct

Entity

DoAction (CreateProduct

RequestDTO request)

Creating a new product at

the administrator level

DeleteProduct

Entity

DoAction(int id) Deleting a product at the

administrator level

GetProductEntity DoAction(int id) Getting a product

GetProducts DoAction() Getting a list of products

UpdateProduct

Entity

DoAction

(UpdateProduct

RequestDTO request)

Updating a product at the

administrator level

ProductServices

GetProduct DoAction(string name) Getting a product at the

user level

GetProducts DoAction() Getting a list of products

StorehouseAdminServices

CreateStorehouse DoAction

(CreateStorehouse

RequestDTO request)

Creating a new warehouse

at the administrator level

60

Table 2.8. (continue)

DeleteStorehouse DoAction(int id) Deleting from the

warehouse at the

administrator level

GetStorehouse DoAction() Getting product

information at the

warehouse as an

administrator

UpdateStorehouse DoAction

(UpdateRequestDTO

request)

Updating the warehouse at

the administrator level

The user interaction layer, characterized by the presentation, is implemented as

part of the software execution for this work within the software module called

“GenericStore.UI”. This project embodies the visual part of the web application and

includes various classes and directories related to the user interface logic. Within this

layer, specifically in the “wwwroot” directory, CSS and JS code for the application is

located. Additionally, there are application controllers and user interface pages

implemented using the “Razor Pages” technology.

The application also includes a session control manager, validation logic, a

shopping cart component, and a visual model for creating login and password for

authentication. The web application also includes classes such as “Program”,

“RegisterOfServices”, “Startup”, and “Dockerfile” that allow containerization of the

entire web application.

2.5.1 Implementation description of the main tasks of the software

 The task of generating a text file with lists of products from internet stores is

implemented in the presentation layer of the “GenericStore.UI” project. To

accomplish this task, a file with graphic content and interaction with task logic was

created, along with a class for implementing the logic of generating the file and

61

extracting data. Extracting data from other websites requires the use of the HTML

Agility Pack library, which includes convenient classes and methods for this purpose.

The order processing framework task is implemented in the business logic and

presentation layers and involves a three-stage dynamic order processing process for

customers. This functionality is available only to administrators.

The task of creating a dynamic user interface is implemented in the presentation

layer of the application and has two main aspects. The first aspect is the dynamism of

processes, pages, and interface elements. The second aspect is the ability to

dynamically change the interface background, including changing the color to

“random,” dynamic gradient, and adaptive black with the option to save the state in

the local computer storage.

The task of conducting financial transactions is implemented in the presentation

layer of the application and includes retrieving customer data and processing order

payments through the “Stripe” API service.

2.5.2 Implementation of service registration logic

Within the scope of the review of service registration logic, which involves

creating the “Service” class with the implementation of the abstract class “Attribute”

from the “Reflection” library. This class, in turn, represents a late-binding process

achieved by passing type metadata and reading it using the “Reflection” library.

Each class located in the business logic layer is marked with a significant

attribute called “Service.” In the presentation layer, there is a class called

“RegisterOfServices,” which automates the processing of services marked specifically

with the “Service” attribute.

As a result, the method of the “RegisterOfServices” class is called in the initial

application class named “Startup”, thereby injecting all services into the

“AddTransient” method, which, in turn, adds the service to the application upon each

new project initialization.

62

2.6 Data security analysis

2.6.1 Authorization and authentication

To ensure the security of the application’s data, a class, interface, and session

management methods called “SessionControlManager” were developed and

implemented. These methods handle the addition and removal of session tokens

within a session by adding and converting tokens into JSON code. Sessions also have

a timer set to thirty minutes from the moment of creation and automatically delete

themselves when the time expires, thereby removing stored session data.

Additionally, for data security, an authentication process was developed and

implemented using the “IdentityUser” and “Claim” classes, which directly provide

data for authentication, validate it, and store it in the database.

Conclusions on the section

Therefore, this section provides a detailed description of software modeling and

construction. It describes in detail the general processes that users and administrators

of the software must undergo. The necessary development tools are reviewed and

justified, including a description of the database architecture with entity descriptions,

schemas, and database diagrams. The software architecture is also described,

including necessary UML diagrams and a description of the software architecture

with tables of classes and methods implemented in the project, along with an analysis

of the choice of software architecture. The software was designed and implemented

with consideration for dependency injection methods. The construction of the

software is also discussed, including a description of the implementation of the core

tasks of the software and the implementation of service registration logic. Finally, a

security analysis of data is conducted, including a section that discusses the

authentication and authorization processes in the project.

63

3 QUALITY ANALYSIS AND SOFTWARE TESTING

3.1 Software quality analysis

The quality of software is defined as a research area that describes the desired

attributes of software products [33]. In turn, software testing is a necessary process for

evaluating and verifying the software product’s compliance with the specified

requirements and expected functionality, which should not be omitted during

development. Software testing aims to minimize errors, reduce development costs,

and enhance the productivity of the web application [34].

During the testing of the web application, a testing logic was developed, which

uses the testing pyramid. The testing pyramid typically operates at three levels:

– unit tests;

– integration tests;

– end-to-end tests.

Unit tests cover the web application services located in the

GenericStore.BL.IMPL class library is shown in Fig. 2.18. Services are crucial

components of the application that need to be tested, and understanding their logic is

essential. This approach helps identify errors at an early stage of development.

Integration tests cover most of the web application controllers located in the

GenericStore.UI class library. Controllers are important for integration testing

because they interact between architectural layers and act as mediators between them.

Black-box testing, which doesn’t require knowledge of the internal implementation, is

used for integration testing.

To test the project, the xUnit, Moq, AutoFixture,

Microsoft.AspNetCore.Hosting, Microsoft.AspNetCore.TestHost, and

System.Net.Http libraries are used. The xUnit library serves as a testing tool [35]. The

Moq library is used for creating artificial objects and simulating functionality [36].

Additionally, the AutoFixture library simplifies the creation of objects of various

types and improves the safety of unit tests.

64

In conclusion, software testing plays a vital role in creating and implementing

various levels of tests.

3.2 Description of testing processes

To implement proper testing of the e-commerce web application, a testing

pyramid approach is employed.

The foundation of the automated testing pyramid primarily consists of unit

tests, followed by integration tests, system tests, functional tests, acceptance tests,

and, as the final stage, user interface tests. The structure of the automated testing

pyramid for this software is depicted in Fig. 3.1.

Fig. 3.1. Pyramid of automated software testing

This software undergoes a sequence of different types of tests, such as:

– Unit testing, which verifies whether each software module works

correctly;

– Integration testing, which ensures that all software components interact

cohesively and correctly;

– System testing, which thoroughly tests the integrated software product

for compliance with all requirements;

65

– Functional testing, which checks the modeling of business scenarios

according to functional requirements and performs functional verification using

black-box tests;

– Acceptance testing, which verifies whether the entire application

functions correctly;

– User interface testing, which checks the graphical user interface of the

software [37].

3.3 Description of the test case

To implement effective testing for the e-commerce web application, the testing

pyramid concept was employed. Therefore, this section implements each testing stage

as depicted in Fig. 3.1.

As each testing stage is reviewed and implemented, the e-commerce web

application using web scraping with an optimized product reading process becomes

progressively more covered by tests, which will subsequently help in detecting errors

more efficiently.

3.3.1 Unit testing

Unit testing is a method of software testing where individual blocks and

components of the software code are tested separately. Its goal is to confirm that each

unit of the code functions correctly [38].

To implement unit testing, testing technologies that isolate test components

from the logic of other parts of the program were used. Libraries like xUnit and Moq

were employed for creating unit tests. Consequently, a separate project named

GenericStore.UnitTests was created for this purpose. A part of the structure of this

project is illustrated in Fig. 3.2.

Fig. 3.2. Project structure for unit testing GenericStore.UnitTests

66

As mentioned earlier, xUnit and Moq libraries were used for unit testing, and a

dedicated project was created for this purpose.

As an example of unit testing, consider the test class from the section

responsible for handling client information, named “AddClientInformationTest”. This

class includes a constructor with initial objects that are initialized and the actual test

method. The implementation of the unit test “AddClientInformationTest” is shown in

Fig. 3.3.

Fig. 3.3. AddClientInformationTest unit class test

The constructor includes a “mock” repository and manager interface and

initializes the tested class, service, and object from the Fixture library, which allows

artificially initializing objects from the project’s source code. After describing the

constructor, the implementation of the unit test “AddClientInformationTest” follows.

For this software, this test includes creating an “artificial” entity and testing it using

the xUnit and Moq libraries.

After writing a unit test, it’s important to run it to check for errors, as shown in

Fig. 3.4.

Fig. 3.4. Successfully completed unit test

67

As a result, unit tests were created to effectively check for errors during the

development of the e-commerce web application using web scraping with an

optimized product reading process.

3.3.2 Integration testing

Integration testing is a type of testing designed to check the interaction and

combinations of various modules [39]. To create integration tests, a separate project

was created using the xUnit, TestHost, and Test.Sdk libraries, named

“GenericStore.IntegrationTests”. The structure of this project is shown in Fig. 3.5.

Fig. 3.5. Part of structure of the project for integration testing

GenericStore.IntegrationTests

As mentioned earlier, the creation of integration tests involves the use of the

xUnit, TestHost, and Test.Sdk libraries, so a project utilizing these libraries was

created. This project includes a directory with two necessary initialization classes.

The first class, called “BaseTestFixture” contains objects such as “TestServer”,

“GenericStoreDbContext”, “HttpClient”, and “FakeDbInitializer”. These objects are

initialized in the class’s constructor as they are required for creating basic test

fixtures. A fixture, in turn, helps save the system’s state to a file and then restore it. It

also initializes the fake database in its constructor. The second class, named

“FakeDbInitializer,” contains a static method “Initialize,” which initializes the fake

“GenericStoreDbContext” database. “FakeDbInitializer” serves as an artificial

database that is initialized along with the fixtures.

Using the example of the “ProductsControllerTests” an integration test for a

products controller, one can see how these tests are created. This class includes a

68

constructor with objects for initialization and the actual test. The implementation of

the “ProductsControllerTests” integration test can be seen in Fig. 3.6.

Fig. 3.6. Integration class-test ProductsControllerTests

Overall, this integration test checks the correctness of URL returns when the

controller is in operation.

As the final stage of an integration test, it needs to be executed to check for

errors, as shown in Fig. 3.7.

Fig. 3.7. Successfully completed integration test

Therefore, these integration tests were created to verify the logic of controllers

during the development of the e-commerce web application.

3.3.3 System testing

System testing is a level of testing that involves the comprehensive testing of an

integrated software product to ensure compliance with all requirements. Its main

purpose is to evaluate and identify possible inconsistencies between the developed

application and its initial objectives [40].

As a result, during the development of the e-commerce web application using

web scraping with an optimized product reading process, thorough checks of all

pages, blocks, and user interface modules were conducted. This helped identify

several errors that were corrected during the development process.

69

3.3.4 Functional testing

Functional testing is a type and level of software testing that verifies the

application’s compliance with functional requirements. The main goal of functional

tests is to check each function of the software application using appropriate input and

output data to ensure compliance with functional requirements [41].

To implement functional testing, the functional requirements of the application

were used, which can be found in Table 1.3.

Functional tests from the user’s perspective of the application are provided in

Table 3.1.

Table 3.1.

Functional testing by the application user

Test 1

Purpose of the test Checking the main product page

Input User’s personal data, user’s credit card data

Description of the test Filling out the personal information window, then filling

out the user’s credit card information window and

clicking on “Pay”

Expected result A successful monetary transaction must take place

Actual result Successful monetary transaction

Test 2

Purpose of the test Checking for Adding Items to Cart

Initial state Open the page with a detailed product description

Input –

Description of the test Add one or several items to the cart

Expected result The cart should be filled with the specified quantity of

items

Actual result The cart is filled with the specified quantity of items

70

Table 3.1. (continue)

Test 3

Purpose of the test Payment order confirmation

Initial state The page for entering personal information is open,

followed by the page for entering credit card information

for order payment by the user

Initial state The main page with a list of all products is open

Input –

Description of the test As a user, review how the products are displayed on the

main page

Expected result The main page for viewing products should be displayed

Actual result The main page for viewing products is displayed

Mixed functional testing, both on the part of the user and on the part of the

application administrator, is shown in Table 3.2.

Table 3.2.

Mixed functional testing by the user and the application administrator

Test 1

Purpose of the test Checking for changing the application background

Initial state Open page

Input –

Description of the test Click the change background button in the application

menu panel

Expected result After clicking the button, the background should change

Actual result After clicking the button, the background has changed

Test 2

Purpose of the test Authentication check

Initial state Open page

Input Application token

71

Table 3.2. (continue)

Description of the test Add products to the shopping cart or log in as an

administrator and reload the website

Expected result After reloading the website, the previous actions should

be restored, preserved

Actual result After reloading the website, the previous actions’ data

has been restored and preserved

Functional testing by the application administrator is shown in Table 3.3.

Table 3.3

Functional testing by the administrator

Test 1

Purpose of the test Authentication verification

Initial state Open page

Input Administrator credentials

Description of the test Filled fields of the authorization page

Expected result Successful authorization should occur

Actual result Successful authorization

Test 2

Purpose of the test Administrative panel access check

Initial state Open page

Input –

Description of the test On the main page, there should be a button in the menu

for accessing the admin panel

Expected result There should be a button for accessing the admin panel

Actual result A button for accessing the admin panel is present

Test 3

Purpose of the test Checking product viewing and editing

Initial state Open administrative panel

72

Table 3.3. (continue)

Input Input data into the fields

Description of the test Open the product sub-panel, create and save a product

Expected result The product should be viewable, editable, deletable, and

savable

Actual result The product is viewable, editable, deletable, and savable

Test 4

Purpose of the test Checking proper generation of the product list file

Initial state Open the administrative panel

Input Input the required link into the field

Description of the test Open the file generation sub-panel, enter the necessary

data into the field, and click the file generation button to

the local system

Expected result A generated and entered product list file should be

present in the local “Downloads” directory

Actual result A successfully generated and entered product list file is

present in the local “Downloads” directory

Test 5

Purpose of the test Checking order processing viewing and editing

Initial state Open the administrative panel

Input Input data into the fields

Description of the test Open the order processing sub-panel, edit a possible

order

Expected result The order should be viewable and processed

Actual result The order is viewable and has been processed

Test 6

Purpose of the test Checking product quantity viewing and editing

Initial state Open the administrative panel

Input Input data into the fields

73

Table 3.3. (continue)

Description of the test Open the product inventory sub-panel, create and save a

product in inventory

Expected result The product in inventory should be viewable, editable,

deletable, and savable

Actual result The product in inventory is viewable, editable, deletable,

and savable

Test 7

Purpose of the test Checking the creation of new users

Initial state Open the administrative panel

Input Input data into the fields

Description of the test Open the new user creation sub-panel, create and save

one user

Expected result A user should be created

Actual result A user has been created

3.3.5 Acceptance testing

User Acceptance Testing (UAT) is one of the final stages of software

development. Its purpose is to test the software in real-world scenarios to determine if

it meets its intended objectives [42]. After completing all the aforementioned levels of

testing, User Acceptance Testing was performed. It involved checking the e-

commerce web application to ensure the correct delivery of results in various

scenarios.

As a result, several issues were identified and addressed, including an error

during the payment process, which was promptly rectified, as well as an issue in the

order processing.

74

3.3.6 User interface testing

User Interface Testing is a type of software testing that evaluates the graphical

user interface of the software. Its goal is to ensure the functionality of the application

by examining interfaces, pages, and user interface elements such as menus, buttons,

and icons, in accordance with specifications [43]. After implementing this testing,

several interface-related issues were discovered, such as dynamic menu and block

changes when resizing the screen and dynamic button states during user interaction.

These issues were corrected during the application’s development.

Conclusions on the section

This section analyzed the software testing process and described the results of

the assessments conducted. A description of the software’s acceptance test case was

provided, encompassing all levels of testing, including unit testing, integration testing,

system testing, functional testing, user acceptance testing, user interface testing, and

their incorporation into the project. During the execution of these testing types, the

necessary tests were conducted, with unit testing covering 100% of the web

application’s services and integration testing covering the majority of controllers.

Functional testing was also conducted from both the user and administrator

perspectives, as well as mixed functional testing. Several issues were identified during

testing, all of which were successfully rectified.

As a result of the testing, it was confirmed that the program operates as

specified. Thus, the developed web application is ready for use.

75

4 SOFTWARE IMPLEMENTATION AND MAINTENANCE

4.1 Software deployment

The e-commerce web application using web scraping with an optimized

product reading process consists of two parts: server-side and client-side. Before

providing a detailed description of these components, let’s explore the available

software deployment methods.

4.1.1 Overview of available software deployment methods

There are numerous methods for deploying software in production, both in

terms of implementation and user access. Therefore, choosing the right deployment

strategy is a crucial aspect of the software development lifecycle.

Let’s review the available software deployment methods for the user, along

with explanations:

– Standard deployment: The user obtains the necessary project directory

and deploys it on their local system through any download method;

– Docker-based deployment: Users can deploy the project using

containerization technology if they have the project directory;

– AWS services deployment: Users can access only the graphical interface

of the project remotely by utilizing a link to the project’s main page, concealing the

project’s logic from them.

Additionally, let’s consider deployment methods that can be used for editing

processes and code of this e-commerce web application when needed:

– Standard deployment;

– Recreate: Version A is terminated, and then version B is launched;

– Rolling deployment: Version B is gradually deployed and replaces

version A;

– Shadow: Version B receives real traffic alongside version A and does not

affect the response [44].

76

After thoroughly examining various software deployment methods, the decision

was made to use standard deployment for reviewing the structure, code, and graphical

interface. Deployment through AWS services are used to access only the graphical

part of the project.

4.1.2 Server-side deployment

To deploy the server side of the web application, you need to:

– Install Visual Studio 2016 and above with the necessary settings for

ASP.NET Core platform and C# programming language;

– Install Microsoft SQL Server 2016 and above;

– Open the project with the server-side part in the aforementioned IDE;

– Migrate the database structure to the DBMS;

– Launch the GenericStore.UI project via Internet Information Services

(IIS).

4.1.3 Client-side deployment

For deploying the client-side of the web application, you need to:

– Install Visual Code for working with the program’s code;

– Open the folder with the client-side project and run the GenericStore.UI

project.

4.1.4 Providing a secure communication channel

Regardless of the chosen deployment method, this software ensures a secure

communication channel between the client and server parts of the program. Within

the selected software architecture and specified interaction protocols to establish a

secure communication channel, the HTTPS protocol has been used, which includes

data encryption performed using an SSL certificate in compliance with protocol

standards.

77

4.1.5 Working with the software

Detailed step-by-step instructions for working with the server and client parts

are given in the next section.

Conclusions on the section

In this section, we described the software deployment process, including an

overview of available deployment methods, server-side and client-side deployment,

and system requirements for deploying the web application. We also discussed

providing a secure communication channel and provided a reference to the “User

guide” section.

78

5 USER GUIDE

5.1 General information

The e-commerce web application using web scraping with an optimized

product reading process, along with a base for an order processing conveyor

framework and a dynamic interface is utilized for browsing and managing a

personalized e-commerce platform.

The software features a dynamic, simple, and user-friendly interface.

User-side client functionalities include:

– viewing products;

– adding products to the cart;

– canceling the cart;

– order authentication;

– order payment;

– receiving a payment confirmation message;

– changing the background.

Administrator-side user functionalities include:

– authorization;

– authentication;

– viewing and editing products;

– generating a text file and description of products from internet stores;

– processing the order processing conveyor framework;

– viewing and editing the quantity of products in stock;

– creating new users;

– changing the background.

79

5.2 Preparation for work

5.2.1 System requirements for correct operation

For the successful operation of this application from the user's perspective, the

following requirements must be met:

– availability of a computer, tablet, or mobile device;

– availability of an internet browser;

– access to the necessary website link;

– internet access.

For the successful operation of this application from the user and administrator

perspective, the following requirements must be met:

– availability of a computer, tablet, or mobile device;

– availability of administrator credentials for authorization;

– availability of an internet browser;

– access to the necessary website link;

– internet access.

5.2.2 Software installation

To start working with the program, both the client and the administrator need to

launch the website using the provided link.

5.2.3 Checking correct operation

To check the proper functioning of the web application, users can use the

application's website link. If everything works without errors, and the site and

database data of the web application are displayed and editable, then everything is

working correctly.

5.3 Working with the application

To begin using the web application, users, both clients and administrators, need

to visit the generated link.

80

 This link is created using AWS services such as EC2, RDS and their instances.

 Upon launching the web application, users will see the main page of the site,

which includes the main menu and the product list, as depicted in Fig. 5.1.

Fig. 5.1. Initial, main page of the application

On the main page, the user from the client side has access to a menu that

includes the ability to click on the application's logo to return to the main page, the

background change functionality, the shopping cart functionality, and administrator

login.

Reviewing the application menu reveals the background change functionality,

which includes:

– changing the background to a “random color”;

– changing the background to a dynamic background;

– changing the background to a “dark” background mode.

The options for changing the background are shown in Fig. 5.2.

81

Fig. 5.2. Main menu, background change options

By clicking on the first “random background” option, the app's background

takes on a “random” RGB color. The process of changing the color is shown in Fig.

5.3.

Fig. 5.3. The process of changing the color from the “random color” option

By clicking on the second option “dynamic color – Diia”, the background of the

application becomes dynamic. The dynamic color process is shown in Fig. 5.4.

Fig. 5.4. Dynamic color process from the “dynamic color action” option

Clicking on the third option “toggle dark-mode” changes the application’s

background to dark mode. The dark mode background replacement process is shown

in Fig. 5.5. This mode is stored in the local storage of the site.

82

Fig. 5.5. The process of replacing the background with dark mode from the

“toggle dark-mode” option

Clicking on a product allows the user to navigate to the detailed product page,

which includes photos, a detailed description, model, quantity, and an "approve"

button to add the product to the shopping cart. The detailed product description page

is shown in Fig. 5.6.

Fig. 5.6. Detailed product description page

By selecting the product model and quantity and clicking the "approve" button,

the user is taken to the shopping cart page, where the selected product is already

present. If the user wishes to purchase additional items, they can exit the cart by

clicking the "buy more" button and continue selecting items, as the cart is saved

throughout the session. The cart page is shown in Fig. 5.7.

Fig. 5.7. Shopping cart page

Clicking the “checkout” button takes the user to the personal information input

page for the order, which includes fields for entering information and a reduced image

83

of the product, quantity, characteristics, and price. The page for entering user personal

information is shown in Fig. 5.8.

Fig. 5.8. User’s personal information entry page

Clicking the “Submit your information” button takes the user to the order

payment page. The order payment page is shown in Fig. 5.9.

Fig. 5.9 – Order payment page

Clicking the “pay” button takes the user to the successful order payment page.

The successful order payment page is shown in Fig. 5.10.

Fig. 5.10. Page of successful payment of the order

84

Clicking the “return home” button allows the user to return to all the above-

mentioned options or wait for their order. Now, let’s move on to the administrator’s

perspective. On the main page, Fig. 5.1, the administrator has the option to use the

“admin login” button. Clicking on this button takes the administrator to the

authorization page. The administrator authorization page is shown in Fig. 5.11.

Fig. 5.11. Administrator authorization page

Clicking the “login” button allows the administrator to access the administrator

panel page, administration. The administration panel page is shown in Fig. 5.12.

Fig. 5.12. Admin authorization page, and product management page

Upon reaching the administration panel page, the administrator has two sub-

panels, including the “e-commerce menu” and the “administrator’s menu”. Each sub-

panel has its functionality, dynamically displayed when clicked.

85

The first subpanel of the “e-commerce menu” includes functionality for

managing products, generating a file of product listings from well-known internet

stores, a base for order processing conveyor framework, and inventory management.

The product management functionality is depicted in Fig. 5.10. This feature

allows adding, viewing, editing, and deleting products within the application.

The functionality for generating a file of product listings from well-known

internet stores is illustrated in Fig. 5.13. It is implemented using the HTML Agility

Pack library for network data retrieval. This page includes a field with available

websites for reading, a field for entering the link to an available internet product, and

a button for generating a file to the local system or computer.

Fig. 5.13. Page for generating a product list file from well-known internet

stores

The functionality of the operational order processing conveyor framework is

depicted in Fig. 5.14. It allows for a three-stage order processing process, including

the statuses of pending, packaging, and order shipment. The page displays the order

code and the customer’s email.

Fig. 5.14. Working order processing pipeline frame page

86

The inventory management functionality is illustrated in Fig. 5.15. It lists the

inventory of created items, and clicking on one of them opens a dynamic panel for

adding the quantity of items with characteristics to the inventory.

Fig. 5.15. Warehouse management page

The second sub-panel, “Administrator’s Menu” is depicted in Fig. 5.10. It

consists of a page for creating a new user with the role of a manager, shown in Fig.

5.16. The button for returning to the main application page is displayed in Fig. 5.10.

Fig. 5.16. Warehouse management page

Returning to Fig. 5.1, you can observe that some products have icons of yellow

and red colors. These icons, in the case of yellow, indicate that the product is running

low in stock, with fewer than 11 units remaining.

If the icon color is red, it signifies that the product is out of stock. These icons

can be seen in Fig. 5.17.

87

Fig. 5.17. Icons of the status of goods in the warehouse

Additionally, while filling the shopping cart with items, the cart menu generates

a dynamic sum of all added products. The dynamic change in the cart’s total can be

observed in Fig. 5.18.

Fig. 5.18. Icons of product status in stock

Conclusions on the section

The user guide provides comprehensive instructions for navigating the dynamic

e-commerce application. Users, both clients and administrators should meet system

requirements, including a device with internet access. Installation is straightforward,

requiring the launch of the provided link.

88

Upon accessing the application, users encounter a user-friendly interface. For

clients, functionalities encompass product viewing, cart management, and order

processes. Administrators enjoy additional capabilities, such as product and inventory

management.

Visual cues, like colored icons, convey stock statuses efficiently. In summary,

the guide systematically explains how to use and manage the e-commerce platform,

ensuring a seamless experience for all users.

89

CONCLUSIONS

During the development of this diploma project, several improvements were

considered and implemented for the e-commerce web application using web scraping

with an optimized product reading process, addressing various shortcomings in

existing implementations and introducing several innovations.

The introduced innovations include the automation of product creation

processes through web data scraping, the restructuring of the order processing

conveyor framework, and the implementation of a dynamic user interface.

One of the key features of this project is the ability to automatically generate

product lists and descriptions obtained from internet stores for the application’s

administrator. Additionally, a functional order processing framework and dynamic

user interface were developed.

In the “Analysis of software requirements” section, a comprehensive analysis

of the subject area, software requirements based on successful IT projects, and their

significance in this project are presented.

In the “Software modeling and design” section, the architecture of the web

application and its database are designed and examined from a software perspective.

It also presents class libraries, classes, and methods that define the application’s logic.

The “Quality analysis and software testing” section analyzes application quality

indicators, describes testing processes, and reviews a test case for the web application.

In the “Software implementation and maintenance” section, the deployment

process and usage of the web application are explained.

In the “User guide” section, the step-by-step instructions for navigating and

utilizing the dynamic e-commerce application are detailed.

The result of this diploma project is a fully functioning e-commerce web

application using web scraping with an optimized product reading process, which

includes several innovations that address the shortcomings of existing solutions. This

application can be easily expanded and supplemented with new unique features to

meet various application needs.

90

REFERENCES

1. CMS [Electronic resource]. – 2023. – Mode of access to the resource:

https://www.techtarget.com/searchcontentmanagement/definition/content-

management-system-CMS.

2. E-commerce platform [Electronic resource]. – 2023. – Mode of access to the

resource: https://sendpulse.com/support/glossary/ecommerce-platform.

3. Web scraping [Electronic resource]. – 2023. – Mode of access to the resource:

https://www.zyte.com/learn/what-is-web-scraping/.

4. Camunda [Electronic resource]. – 2023. – Mode of access to the resource:

https://docs.camunda.org/manual/7.17/.

5. CMS statistics [Electronic resource]. – 2023. – Mode of access to the resource:

https://www.envisagedigital.co.uk/wordpress-market-share/.

6. WordPress stats [Electronic resource]. – 2023. – Mode of access to the resource:

https://kinsta.com/knowledgebase/what-is-wordpress/.

7. WordPress [Electronic resource]. – 2023. – Mode of access to the resource:

https://www.namecheap.com/wordpress/what-is-wordpress/.

8. Drupal [Electronic resource]. – 2023. – Mode of access to the resource:

https://www.drupal.org/about.

9. Joomla [Electronic resource]. – 2023. – Mode of access to the resource:

https://www.techopedia.com/definition/3276/joomla.

10. Magento [Electronic resource]. – 2023. – Mode of access to the resource:

https://www.commonplaces.com/blog/what-is-magento/.

11. CMS comparison [Electronic resource]. – 2023. – Mode of access to the resource:

https://blog.templatetoaster.com/open-source-cms/.

12. Software development process [Electronic resource]. – 2023. – Mode of access to

the resource: https://www.techopedia.com/definition/16431/software-development.

13. SDLC [Electronic resource]. – 2023. – Mode of access to the resource:

https://www.indeed.com/career-advice/career-development/what-is-software-

development.

14. Programming language C# [Electronic resource]. – 2023. – Mode of access to the

https://www.techtarget.com/searchcontentmanagement/definition/content-management-system-CMS
https://www.techtarget.com/searchcontentmanagement/definition/content-management-system-CMS
https://sendpulse.com/support/glossary/ecommerce-platform
https://www.zyte.com/learn/what-is-web-scraping/
https://docs.camunda.org/manual/7.17/
https://www.envisagedigital.co.uk/wordpress-market-share/
https://kinsta.com/knowledgebase/what-is-wordpress/
https://www.namecheap.com/wordpress/what-is-wordpress/
https://www.drupal.org/about
https://www.techopedia.com/definition/3276/joomla
https://www.commonplaces.com/blog/what-is-magento/
https://blog.templatetoaster.com/open-source-cms/
https://www.techopedia.com/definition/16431/software-development
https://www.indeed.com/career-advice/career-development/what-is-software-development
https://www.indeed.com/career-advice/career-development/what-is-software-development

91

resource: https://www.techopedia.com/definition/26272/c-sharp.

15. ASP.NET Core framework [Electronic resource]. – 2023. – Mode of access to the

resource: https://www.tutorialsteacher.com/core/aspnet-core-introduction.

16. MVC template [Electronic resource]. – 2023. – Mode of access to the resource:

https://www.tutorialspoint.com/mvc_framework.htm.

17. AWS service [Electronic resource]. – 2023. – Mode of access to the resource:

https://www.techopedia.com/definition/26426/amazon-web-services-aws.

18. Docker platform [Electronic resource]. – 2023. – Mode of access to the resource:

https://docs.docker.com/get-started/overview/.

19. Stripe service [Electronic resource]. – 2023. – Mode of access to the resource:

https://www.nerdwallet.com/article/small-business/what-is-stripe.

20. Bulma framework [Electronic resource]. – 2023. – Mode of access to the resource:

https://devmountain.com/blog/why-bulma-css-could-be-your-new-favorite-

framework.

21. Vue.js framework [Electronic resource]. – 2023. – Mode of access to the resource:

https://www.altexsoft.com/blog/engineering/pros-and-cons-of-vue-js/.

22. Microsoft SQL Server [Electronic resource]. – 2023. – Mode of access to the

resource: https://www.sqlservertutorial.net/getting-started/what-is-sql-server/.

23. HTML Agility Pack library [Electronic resource]. – 2023. – Mode of access to the

resource: https://html-agility-pack.net/.

24. Subject area of the database [Electronic resource]. – 2023. – Mode of access to the

resource: https://www.orbitanalytics.com/subject-area-modeling/.

25. Concept and description of ER diagram [Electronic resource]. – 2023. – Mode of

access to the resource: https://www.smartdraw.com/entity-relationship-diagram/.

26. Database schema [Electronic resource]. – 2023. – Mode of access to the resource:

https://www.tutorialspoint.com/dbms/dbms_data_schemas.htm.

27. UML software diagrams [Electronic resource]. – 2023. – Mode of access to the

resource: https://www.tutorialspoint.com/uml/uml_standard_diagrams.htm.

28. Use case diagram [Electronic resource]. – 2023. – Mode of access to the resource:

https://www.visual-paradigm.com/guide/uml-unified-modeling-language/what-is-

https://www.techopedia.com/definition/26272/c-sharp
https://www.tutorialsteacher.com/core/aspnet-core-introduction
https://www.tutorialspoint.com/mvc_framework.htm
https://www.techopedia.com/definition/26426/amazon-web-services-aws
https://docs.docker.com/get-started/overview/
https://www.nerdwallet.com/article/small-business/what-is-stripe
https://devmountain.com/blog/why-bulma-css-could-be-your-new-favorite-framework
https://devmountain.com/blog/why-bulma-css-could-be-your-new-favorite-framework
https://www.altexsoft.com/blog/engineering/pros-and-cons-of-vue-js/
https://www.sqlservertutorial.net/getting-started/what-is-sql-server/
https://html-agility-pack.net/
https://www.orbitanalytics.com/subject-area-modeling/
https://www.smartdraw.com/entity-relationship-diagram/
https://www.tutorialspoint.com/dbms/dbms_data_schemas.htm
https://www.tutorialspoint.com/uml/uml_standard_diagrams.htm
https://www.visual-paradigm.com/guide/uml-unified-modeling-language/what-is-use-case-diagram/

92

use-case-diagram/.

29. Class diagram [Electronic resource]. – 2023. – Mode of access to the resource:

https://www.microtool.de/en/knowledge-base/what-is-a-class-diagram/.

30. Sequence diagram [Electronic resource]. – 2023. – Mode of access to the resource:

https://www.visual-paradigm.com/guide/uml-unified-modeling-language/what-is-

sequence-diagram/.

31. State diagram [Electronic resource]. – 2023. – Mode of access to the resource:

https://www.techopedia.com/definition/16446/state-diagram.

32. Component diagram [Electronic resource]. – 2023. – Mode of access to the

resource: https://www.lucidchart.com/pages/uml-component-diagram.

33. Software quality [Electronic resource]. – 2023. – Mode of access to the resource:

https://asq.org/quality-resources/software-quality.

34. Software testing [Electronic resource]. – 2023. – Mode of access to the resource:

https://u-tor.com/topic/software-quality-defined-and-measure.

35. xUnit [Electronic resource]. – 2023. – Mode of access to the resource:

https://xunit.net/.

36. Moq [Electronic resource]. – 2023. – Mode of access to the resource:

https://docs.microsoft.com/en-us/shows/visual-studio-toolbox/unit-testing-moq-

framework.

37. Types of tests [Electronic resource]. – 2023. – Mode of access to the resource:

https://www.kaizenko.com/what-is-the-testing-pyramid/.

38. Concept and description of unit testing [Electronic resource]. – 2023. – Mode of

access to the resource: https://www.guru99.com/unit-testing-guide.html.

39. Concept and description of integration testing [Electronic resource]. – 2023. –

Mode of access to the resource: https://www.guru99.com/integration-testing.html.

40. Concept and description of system testing [Electronic resource]. – 2023. – Mode

of access to the resource: https://www.guru99.com/system-testing.html.

41. Concept and description of functional testing [Electronic resource]. – 2023. –

Mode of access to the resource: https://www.guru99.com/functional-testing.html.

42. Concept and description of acceptance testing [Electronic resource]. – 2023. –

https://www.microtool.de/en/knowledge-base/what-is-a-class-diagram/
https://www.visual-paradigm.com/guide/uml-unified-modeling-language/what-is-sequence-diagram/
https://www.visual-paradigm.com/guide/uml-unified-modeling-language/what-is-sequence-diagram/
https://www.techopedia.com/definition/16446/state-diagram
https://www.lucidchart.com/pages/uml-component-diagram
https://asq.org/quality-resources/software-quality
https://u-tor.com/topic/software-quality-defined-and-measure
https://xunit.net/
https://docs.microsoft.com/en-us/shows/visual-studio-toolbox/unit-testing-moq-framework
https://docs.microsoft.com/en-us/shows/visual-studio-toolbox/unit-testing-moq-framework
https://www.kaizenko.com/what-is-the-testing-pyramid/
https://www.guru99.com/unit-testing-guide.html
https://www.guru99.com/integration-testing.html
https://www.guru99.com/system-testing.html
https://www.guru99.com/functional-testing.html

93

Mode of access to the resource: https://www.panaya.com/blog/testing/what-is-uat-

testing/.

43. Concept and description of UI testing [Electronic resource]. – 2023. – Mode of

access to the resource: https://www.guru99.com/gui-testing.html.

44. Concept and detailed description of software deployment methods [Electronic

resource]. – 2023. – Mode of access to the resource:

https://thenewstack.io/deployment-strategies/.

https://www.panaya.com/blog/testing/what-is-uat-testing/
https://www.panaya.com/blog/testing/what-is-uat-testing/
https://www.guru99.com/gui-testing.html
https://thenewstack.io/deployment-strategies/

94

APPENDIX А

Listing of some parts of the app source code

GenericStore.Entities/ClientInformation.cs

using System;

namespace GenericStore.Entities

{

 public class ClientInformation

 {

 public string Name { get; set; }

 public string Surname { get; set; }

 public string Email { get; set; }

 public string PhoneNumber { get; set; }

 public string RequiredAddress { get; set; }

 public string OptionalAddress { get; set; }

 public string City { get; set; }

 public string PostalCode { get; set; }

 public DateTime OrderDate { get; set; }

 }

}

GenericStore.Entities/Order.cs

using System;

using System.Collections.Generic;

using GenericStore.Entities.Enums;

95

APPENDIX A (CONTINUE)

namespace GenericStore.Entities

{

 public class Order

 {

 public int Id { get; set; }

 public string OrderReference { get; set; }

 public string StripeTokenReference { get; set; }

 public string Name { get; set; }

 public string Surname { get; set; }

 public string Email { get; set; }

 public string PhoneNumber { get; set; }

 public string RequiredAddress { get; set; }

 public string OptionalAddress { get; set; }

 public string City { get; set; }

 public string PostalCode { get; set; }

 public DateTime OrderDate { get; set; }

 public OrderStatus Status { get; set; }

 public ICollection<OrderStorehouse> OrderStorehouses { get; set; }

 }

}

GenericStore.Entities/OrderStorehouse.cs

namespace GenericStore.Entities

{

96

APPENDIX A (CONTINUE)

public class OrderStorehouse

 {

 public int OrderId { get; set; }

 public Order Order { get; set; }

 public int StorehouseId { get; set; }

 public Storehouse Storehouse { get; set; }

 public int Quantity { get; set; }

 }

}

GenericStore.Entities/Product.cs

using System.Collections.Generic;

namespace GenericStore.Entities

{

 public class Product

 {

 public int Id { get; set; }

 public string Naming { get; set; }

 public string Specification { get; set; }

 public decimal Price { get; set; }

 public ICollection<Storehouse> Storehouses { get; set; }

 }

}

97

APPENDIX A (CONTINUE)

GenericStore.Entities/ProductInCart.cs

namespace GenericStore.Entities

{

 public class ProductInCart

 {

 public int ProductId { get; set; }

 public string ProductName { get; set; }

 public int StorehouseId { get; set; }

 public decimal Price { get; set; }

 public int Quantity { get; set; }

 }

}

GenericStore.Entities/Storehouse.cs

using System.Collections.Generic;

namespace GenericStore.Entities

{

 public class Storehouse

 {

 public int Id { get; set; }

 public string Description { get; set; }

 public int Quantity { get; set; }

 public int ProductId { get; set; }

98

APPENDIX A (CONTINUE)

 public Product Product { get; set; }

 public ICollection<OrderStorehouse> OrderStorehouses { get; set; }

 }

}

GenericStore.Entities/StorehouseOnHold.cs

using System;

namespace GenericStore.Entities

{

 public class StorehouseOnHold

 {

 public int Id { get; set; }

 public string SessionTokenId { get; set; }

 public int StorehouseId { get; set; }

 public Storehouse Storehouse { get; set; }

 public int Quantity { get; set; }

 public DateTime DateOfExpiry { get; set; }

 }

}

GenericStore.UnitTests/BLTests/CartServices/AddClientInformationTest.cs

using AutoFixture;

using GenericStore.BL.IMPL.CartServices;

99

APPENDIX A (CONTINUE)

using GenericStore.DAL.ABSTRACT;

using GenericStore.Entities;

using GenericStore.Models.CartDTO;

using Moq;

using Xunit;

namespace GenericStore.UnitTests.BLTests.CartServices

{

 public class AddClientInformationTest

 {

 private Mock<ISessionControlManager> mockedRepository;

 private AddClientInformation service;

 private Fixture fixture;

 public AddClientInformationTest()

 {

 mockedRepository = new Mock<ISessionControlManager>();

 service = new AddClientInformation(mockedRepository.Object);

 fixture = new Fixture();

 }

 [Fact]

 public void DoAction_EntityCreated()

 {

 var dto = fixture.Create<ClientInformationDTO>();

 service.DoAction(dto);

 mockedRepository.Verify(x =>

x.AddClientInformation(It.IsAny<ClientInformation>()));

100

 APPENDIX A (CONTINUE)

}

 }

}

GenericStore.Models/OrdersDTO/CreateOrderRequestDTO.cs

using System;

using System.Collections.Generic;

namespace GenericStore.Models.OrdersDTO

{

 public class CreateOrderRequestDTO

 {

 public string StripeTokenReference { get; set; }

 public string SessionId { get; set; }

 public string Name { get; set; }

 public string Surname { get; set; }

 public string Email { get; set; }

 public string PhoneNumber { get; set; }

 public string RequiredAddress { get; set; }

 public string OptionalAddress { get; set; }

 public string City { get; set; }

 public string PostalCode { get; set; }

 public DateTime OrderDate { get; set; }

 public List<StorehouseDTO> Storehouses { get; set; }

 }

}

101

APPENDIX A (CONTINUE)

GenericStore.Models/OrdersDTO/GetOrderResponseDTO.cs

using System;

using System.Collections.Generic;

namespace GenericStore.Models.OrdersDTO

{

 public class GetOrderResponseDTO

 {

 public string OrderReference { get; set; }

 public string Name { get; set; }

 public string Surname { get; set; }

 public string Email { get; set; }

 public string PhoneNumber { get; set; }

 public string RequiredAddress { get; set; }

 public string OptionalAddress { get; set; }

 public string City { get; set; }

 public string PostalCode { get; set; }

 public DateTime OrderDate { get; set; }

 public IEnumerable<ProductDTO> Products { get; set; }

 public string TotalPrice { get; set; }

 }

}

102

APPENDIX A (CONTINUE)

GenericStore.Models/OrdersDTO/ProductDTO.cs

namespace GenericStore.Models.OrdersDTO

{

 public class ProductDTO

 {

 public string Naming { get; set; }

 public string Specification { get; set; }

 public string Price { get; set; }

 public int Quantity { get; set; }

 public string StorehouseDescription { get; set; }

 }

}

GenericStore.Models/OrdersDTO/StorehouseDTO.cs

namespace GenericStore.Models.OrdersDTO

{

 public class StorehouseDTO

 {

 public int StorehouseId { get; set; }

 public int Quantity { get; set; }

 }

}

 101

 Fig. B.1. Structural scheme of software classes

APPENDIX B

