ПЕРЕЛІК ТИПОВИХ ЗАВДАНЬ ДЛЯ РОЗВ'ЯЗКУ, З ЯКИХ ФОРМУВАТИМУТЬСЯ БІЛЕТИ ДЛЯ ПРОВЕДЕННЯ МОДУЛЬНОЇ КОНТРОЛЬНОЇ РОБОТИ

МОДУЛЬ 1

- 1. Machine elements. Main definitions (machine, element, subassembly, two groups of machine elements).
- 2. Design and checking calculation Criteria of serviceability (characterize every criterion).
- 3. Determination of acting and allowable stresses. Strength condition for tension (compression), torsion, shear and bending.
- 4. Determination of allowable stresses for plastic and brittle materials, variable loads.
- 5. Transmissions. Classification.
- 6. Parameters of mechanical drive
- 7. Gearings. Advantages of gearings. Classification of gearings
- 8. Failure of teeth (characterize every of them).
- 9. Materials and heat treatment of toothed wheels
- 10.Calculation of allowable contact and bending stresses
- 11.Geometry of standard spur gears. Forces in the engagement of spur gear
- 12. Helical gears features. Forces in the engagement. Equivalent straight spur gear
- 13. Bevel gears. Geometry of bevel gears. Forces in the engagement
- 14. Worm gearings. Advantages and disadvantages of worm gears. Geometry of the worm and worm gear.
- 15.Forces in the engagement of the worm gearing. Material for worm gearing. Heat removal analysis of the worm gearing
- 16.Belt drives. Classification. Advantages and disadvantages.
- 17. Chain drives. Classification. Advantages and disadvantages.

Examples of problems

1. Determine centre distance a_w , gear face width b^g , pinion and gear nominal pitch circle diameters d^g , d^p , addendum circle diameters d^g_a , d^p_a , dedendum circle diameters d^g_f , d^p_f of standard involute straight spur gear, if $z^p=17$, $z^g=51$, m=3 mm, $\psi_{ba}=0.4$.

2. Determine module m, nominal pitch circle diameter d, addendum circle diameter d_a , dedendum circle diameter d_f and pitch P of the straight spur gear with external contact, if whole depth of a tooth h = 13.5 mm, number of teeth z = 25.

3. Determine normal module m_n , helix angle β , dedendum circle diameter d_{f_i} normal pitch P_n , dedendum of a tooth h_f of the helical spur gear, if addendum circle diameter $d_a=120$ mm, nominal pitch circle diameter d=112 mm and number of teeth z = 27.

4. Determine pitch angles δ^{p} , δ^{g} , outer cone distance R_e, gear face width b^{g} , external pitch circle diameter d_{e}^{p} , external addendum circle diameter d_{a}^{p} of the pinion of bevel gears, if $z^{p}=20$, $z^{g}=63$, $m_{e}=3$ mm, $\psi_{bR}=0.285$.

5. Determine external module m_e , number of teeth of the gear z^g , outer cone distance R_e , external addendum circle diameter $d_a{}^g$, external dedendum circle diameter $d_f{}^g$ of the gear of bevel gears, if $d_e{}^g = 135$ mm, $h_f = 3.6$ mm, $\delta^g = 75^{\circ}$.

6. Determine centre distance a_w of the worm gearing, worm and worm gear pitch circle diameters d^w , d^g , major and minor diameters of the worm d_a^w and d_f^w , lead angle γ of the worm, if $z^w=1$, $z^g=55$, $q^w=8$, m=4 mm.

7. Determine axial module m, worm and worm gear pitch circle diameters d^w , d^g , addendum and dedendum circle diameters of the worm gear $d_a{}^g$ and $d_f{}^g$, lead angle γ of the worm, if $a_w = 130$ mm, $z^w = 2$, $z^g = 42$, $q^w = 10$.

8. Determine velocity ratio u, efficiency η , input and output torques T_{inp} , T_{out} , input and output rotational speeds n_{inp} , n_{out} for single – stage speed reducer, if $P_{inp}=4$ kW, $P_{out}=3.5$ kW, $\omega_{inp}=100$ sec⁻¹, $z^p=20$, $z^g=60$.

9. Determine normal force F_n , turning force F_t and radial force F_r , acting at the engagement of straight spur gears, if torque at the pinion $T^p=400$ N m, nominal pitch circle diameter of the pinion $d^p=80$ mm, pressure angle $\alpha_w=20^\circ$.

10. Determine normal force F_n , turning force F_t , radial force F_r and axial force F_a acting at the engagement of helical spur gears, if torque at the pinion $T^p=520$ N m, nominal pitch circle diameter of the pinion $d^p=80$ mm, helix angle $\beta=10^\circ$, pressure angle $\alpha_w=20^\circ$.

11. Determine normal force F_n , turning force F_t , radial force F_r and axial force F_a acting on the pinion of bevel gears, if torque at the pinion $T^p=350$ N m, mean pitch circle diameter of the pinion $d_m^p=100$ mm, pitch angle $\delta^p=16^{\circ}$, pressure angle $\alpha_w=20^{\circ}$.

12. Determine normal force F_n , turning force F_t^g , radial force F_r^g and axial force F_a^g acting at the engagement of the worm gearing, if torque at the worm $T^w=120$ N m, torque at the worm gear $T^g=1350$ Nm, major diameter of the worm $d^w=80$ mm, pitch circle diameter of the worm gear $d^g=250$ mm, lead angle $\gamma=13^\circ$, pressure angle $\alpha_w=20^\circ$.

МОДУЛЬ 2

- 1. Shaft and axles. Definitions. Classification. Materials. Strength analysis of shafts.
- 2. Determination of the shaft minimal diameter. Designing the shaft construction.
- 3. Bearings (sliding contact bearings and rolling contact bearings). Advantages (disadvantages) of rolling contact bearings.
- 4. Classification of rolling contact bearings. Main failures. Calculation of rolling contact bearings
 - 5. Couplings. Coupling functions. Classification.
- 6. Keyed joints. Advantages and disadvantages. Classification.
- 7. Splined joints. Advantages and disadvantages. Classification.
- 8. Threaded joints. Advantages and disadvantages. Characterise threaded joints formed by a bolt, a screw and a stud
- 9. Classification of threads. Geometrical parameters of the cylindrical thread.
- 10. Riveted joints. Materials. Advantages and disadvantages.
- 11. Riveted joints. Classification. Efficiency. Strength analysis.
- 12. Welded joints. Advantages and disadvantages. Classification. Strength analysis.

Examples of problems

1. Determine the minimal diameter and design the shaft of the single stage bevel gear speed reducer if T = 300 N m, $[\tau] = 20$ MPa.

2. Determine rated life in hours Lh for tapered roller bearing with movable inner ring, if $F_r = 15 \text{ kN}$, $F_a = 5 \text{ kN}$, X = 0.6, Y = 1.8, C = 40 kN, n = 120 rpm, t<100 °C, Ks=1.3.

3. Determine basic load rating C for radial-thrust ball bearing with movable inner ring, if $F_r=16$ kN, $F_a=2$ kN, X =0.45, Y=1.62, $L_h=12000$ hours, n=80 rpm, t<100 °C, Ks=1.3.

4. Select a sunk key for the shaft of diameter d=40 mm and analyse it for bearing strength and shearing strength, if torque T=250 N m, design key length l_d =56 mm, $[\sigma_{bear}]$ =100 MPa, $[\tau_{shear}]$ =60 MPa.

5. Determine bolt diameter d of the tightened threaded joint loaded by a torque only, if $F_{ten}=8$ kN, $[\sigma_{ten}]=100$ MPa.

6. Determine bolt diameter d of the threaded joint loaded by an axial force F_a only, if F=7 kN, $[\sigma_{ten}]=100$ MPa.

7. Determine bolt diameter d of the threaded joint when bolt is fitted into hole with some play, if F= 2 kN (not F_{pr}), $[\sigma_{ten}]$ = 130 MPa, f = 0.2, i=2.

8. Determine bolt diameter d_0 of the threaded joint when bolt is fitted into hole with small interference, if F= 8 kN, $[\tau] = 60$ MPa

9. Determine the number of required rivets if the rivet diameter d = 4 mm, shearing force F = 17 kN, the minimum thickness of the plate $\delta = 3$ mm and the allowable shearing stress [τ] = 270 MPa.

10. Determine the bearing force F of riveted joint if the rivet diameter d = 4 mm, number of rivets z = 4, the minimum thickness of the plate $\delta_{min} = 10$ mm and the allowable bearing stress [σ] = 250 MPa.

11. Determine the plate width (b) if the rivet diameter d = 6 mm, z = 2, the minimum thickness of the plate $\delta_{min} = 7 \text{ mm}$, tearing force F = 28 kN, and the allowable tensile stress $[\sigma] = 400 \text{ MPa}$.

12. Check lap weld for shear if the shearing force F = 12 кH, length weld l = 40 мм, thickness of the plate δ (k) = 7,5 мм. Allowable shear stress [τ]' = 100 МПа.

13. Determine the tearing force of the butt weld, if thickness $\delta = 6$ mm, width b= 70 mm. The allowable tensile stress [σ]' = 110 MPa.