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EXACT ESTIMATES FOR THE RATE OF CONVERGENCE OF THE
s-STEP METHOD OF STEEPEST DESCENT IN EIGENVALUE PROBLEMS

P.F.Zhuk and L.N. Bondarenko UDC 519.6

We obtain exact (unimprovable) estimates for the rate of convergence of the s-step method of steepest
descent for finding the least (greatest) eigenvalue of a linear bounded self-adjoint operator in a Hilbert
space.

The investigation of the rate of convergence of an s-step method of steepest descent in the solution of linear
operator equations was began by Kantorovich [1] and, for eigenvalue problems, by Birman {2]. In further works
(see, e.g., [3—-6]), the results obtained in [1, 2] were generalized and improved. In particular, exact (unimprovable)
estimates were obtained for the rate of convergence of the s-step method of steepest descent in the solution of linear
operator equations. The present work is devoted to establishing similar estimates in the problem of finding the least
eigenvalue of a linear operator.

Let A: H — H be a linear bounded self-adjoint operator acting in the real Hilbert space H with the scalar
product (u, v). For the spectrum of the operator A, we assume that sp(A) C{m} U [m*, M], m<m* <M. In
this case, m is an eigenvalue of the operator A associated with a certain proper subspace H M),

To find the eigenvalue m and the corresponding eigenvector, we use the s-step method of steepest descent
whose successive approximations are constructed according to the rule

s
upr = 2008, k=01,..., (1)
i=0
where u is an arbitrary unit vector and the coefficients o) are such that llug,qll =1 and the Rayleigh ratio

i

(A1, 1)

M(ugey) =
* ||”k+1 “2

is minimum. We assume that p,=n{u,), £=0,1,....
Remark 1. Consider the generalized eigenvalue problem
Ku = ALu, (2)

where K and L are linear self-adjoint operators, L is a positive-definite operator, and A = L~1K is the operator
bounded in the energy space H;. Problem (2) is reduced to the eigenvalue problem

Au = hu 3

in the space H;. Since A is a self-adjoint operator in H;, the s-step method of steepest descent can be used for
the solution of problem (3) and, hence, problem (2).
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Remark 2. If {(1, uy), k=0,1,...} is a sequence of pairs generated by the s-step method of steepest
descent applied to the operator A, then {xl + Xy (B up), k=0,1,.. } is the sequence of pairs of the s-step
method of steepest descent applied to the operator X, E+%,A (E is the unit operator and ¥, and Y, are arbitrary
real numbers).

It follows from Remark 2 that it is sufficient to study the s-step method of steepest descent only for an operator
of the form X, E+y,A (X, # 0). As this operator (denote it by A), we choose an arbitrary operator of the indi-
cated form with the numbers X, +x,M=1, X, +X,m>0, and X,>0, ie., in what follows, we assume that A
is a self-adjoint operator with the boundaries m >0 and M= 1.

We say that the s-step method of steepest descent with the initial approximation u becomes stable if, for
certain k€ {0, 1,... } the equality w, = Au,—p,u,=0 is valid, i.e.,, an eigenpair of the operator A is
determined by finitely many iterations.

Denote by & a subset of the unit sphere Q of the space H consisting of elements v for which the system of
vectors v, Av, ..., AST! is linearly dependent. Assume that 11 =Q\Z.

In [7], the following condition of stabilization of the s-step method of steepest descent was proved: if u, € &,
then w,=0; otherwise uy e ll, k=1,2,.... Thus, the s-step method of steepest descent becomes stable if and
only if uge .

Since the case where ug € & is trivial, in what follows, we assume that uy € 1.

We see from the definition of the s-step method of steepest descent that m S, 1 S U, k=0, 1, ... and,

(1)
0

hence, {1, k=0, 1,... } is abounded sequence. Let u;’ be the orthogonal projection of the vector u, onto

HO, 1f 4§ =0, then, evidently, lim p; >m* and, consequently, for finding m, it is necessary that u(!) # 0.
k—0

Under the condition u(()l) #0, we have L, > m and k — o. Therefore, without loss of generality, we can assume
in what follows that py<m*.

Denote by E, the spectral function of the operator A and by 6,=G,(t)= (E,u;, u;) the distribution function
of the vector u,;. By definition, the function o is defined and nondecreasing on the entire number axis, continuous
from the left on the segment J—oo; 1[, and ¢,(t)=0 for t <m and o,k(t)=1 for r=2 1. In addition, G, ()=
G(m+0) for m<t<m™.

Denote by X, the set of points of growth of the function &, belonging to the segment [m*, 1]. It follows
from [7] that £,,; CZ;, k=0,1,... and any set X contains at least s + 1 points (because ugye U). Assume
that

A.=minZ; A'=maxZI,

It follows from [7] that A, =minZ; and A* =maxZ,, k=0, 1,.... Denote by 7 (¢, uy) the polynomial of
degree s in ¢ with the smallest deviation from zero on the set X, normalized by the condition ® (m, uy) = 1.
Assume that

psug) = max|m (2, ug)|.
teXy
We decompose the vector u into orthogonal components
o = ud +u®, WP e HO, W@ 1D @)
and construct the vector #; by the rule

ity = ul + py(ug)us?. 5)
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Theorem 1. The following estimates hold:

W —m ps(ug) |’ A -l
l— < [ =0 ] < p(ug) L. ©6)
o —m i | n

Proof. Assume that [y = W(ily), & =7 (A, uglug, and [i = p(a). It follows from decomposition (4) and
equality (5) that

i=ud+ia®, @@ = nan®, @@Ly,

_ mh+p (Aul, ulD)
Lo = )
T @)

- mh+ (AR, 5@
hela®|’

2

8) 2, and p = p(up). In the integral form, we have

where, for brevity, n(r)=7n.(s, ug), h= II U

l'
mh + p> jl tdoy (1)

ﬁo=

2 (A ’
h+p -[l. dog(t)
8)
X,
mh + J; 112 (1)d6y (1)
u = A': 5 [}
h+ jx' 72 (1)do,(t)
where the integrals are understood in the Riemann - Stieltjes sense.
Let us prove that
Ry S| S fig S o ®)

Indeed, by using Egs. (4) and (7), we have
ko- il = (1-p"h{(4u. uf?) - m|uf? |l 1 2 0.

because

(122

|1

To prove the inequality fi < [i;, we approximate the integrals in formulas (8) by integral sums. More exactly,
we show that, for any sufficiently fine partition of the segment [A., A*], the following inequality holds:

0<p<l, 2 A, > m.
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mh+ Y (VR mhp? Y (R

=11

<
EDWIR AR h+p? ¥ B

i=1"1

10

where h,-(”) is the Stieltjes measure of the ith half interval of the partition and t,-(") is an intermediate point of the
i th half interval of the partition (if ™ 20, then £ € ;). We define the function

mh+ Y40,
f&,....5,) = __Z'_;‘__
ht+ 30 &

Assume that the considered partition of the segment [A,, A*] is so fine that f (pzh?) oo, PR ) < A (this is pos-
sible because [ig <Py <A,). An elementary analysis shows that the function f({;,..:,{,) monotonically in-
creases on the set

[0,p%A] x... x[ 0, p*A{]
with respect to each variable. This yields
F(R2ERD, 2 aPR) < MY, .., pPED),

which was to be proved (note that if hi(") #0, then ti(”) € X, and, hence, nz(tf")) <p?d.

By passing to the limit in inequality (10), we obtain fi < fi;.

To prove the estimate p; < [i, it is sufficient to note that i € span (ug, Aug, ..., A*up) and, hence, p(u;) <
u(u).

Thus, we have proved inequalities (9). Further, it follows from the estimate < [, and the relation for [i,
in (7) that

~ 2
ul—msuo—ms[;].
Ro—m  Hg—m g |

The left-hand side of inequality (6) is proved. To prove the right-hand side of this inequality, we set A =
w(u®). Since |lugll =1, it follows from equalities (7) that

h+||u%2)“2 =1, mh+;‘“”§)2)"2 = 1o,
an

mh+pAJu@|”
——— o = Ho

S LA

2
By solving Egs. (11) for &, u u§? || , and p2, we obtain

tiol? = el = 2ot
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Since A=A, it follows from estimates (%) that

I 1?2

Theorem 1 is proved.

It follows from Theorem 1 that

w-—m . 2, Hp—m
S pyluy)——. (12)

A -y S PR T

Since
min):k= k,, maka= )\,*, ZngZk, k=0, I,...,

by successive use of estimates (12) for the vectors ug, uy, ..., we obtain

Be—m . 2. ‘Be_—m

——— < pilyy)————,

A =1y B 1P

Hemm < Ho—-m k=1.2
— (u )?\. - 22y,

i.e., the s-step method of steepest descent converges at least with the rate of a geometric progression with ratio

P2 (up)-
Note that
105
||uk—e|lS2[EL—] . k=0,1,...,
Ao—-m
where

(l)

= [4]

Estimate (12) is exact (unimprovable) in the following sense: if p < sup p,(4y), then
L]

€ H(l):

Hy—-m > pz Ug—m
Ao -1y A —Ug

for a certain initial approximation ug with py<m*. To prove this assertion, it is sufficient to consider initial ap-
proximations in a neighborhood of the proper subspace H ),

If we impose an additional restriction on the initial approximation assuming, e.g., that the value {1, is fixed,
then estimate (12) can, generally speaking, be improved. We prove that the estimate
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—-m o lips(uo)r,

mo—m | fi]
which follows from inequality (6), remains unimprovable.

Theorem 2. Let H be a finite-dimensional space. If dimH = s + 2, then, for any number pn (m <
<m?*), there exists an initial approximation uy (depending on |) such that W, =W and

Uy—m = I:ps(uO):}z'

Hyg—m Y

Proof. Let Ay,....,A, Ay =m, Ay=m*, A,=1) be eigenvalues of the operator A. Denote by m (z) the
polynomial of degree s of the least deviation from zero on the set {A,,...,A,} normalized by the condition
w,(A;)=1, and denote the value of deviation by

p, = max [ e, (A)].

i=2,...,n

It foliows from the definition of the polynomial = (f) that there exist numbers 2 <i; <... <i _; <z suchthat
Y m(hy) = () = D'mA,) = p, j=1.,s- L (13)

Weset g(z)y=(¢t—)n, (), J={1,2,7,...,i;;,n}. Since m<p <m*, the sequence g(A;), g{A,),
g\, 1), ..., q(A,) hasexactly s+ 1 changesin sign. Therefore, the system of equations linear with respect to §3

je J,

=1, YXgh) =0 i=01..,s

jeld jel

has a real solution Q; # 0, j €J. Indeed, otherwise, by virtue of the Stiemke theorem [8], there exists a poly-
nomial [(t)=1To+ T r+ ... +T,2°# 0 with real coefficients such that q(lj)l(lj)z 0, j € J. But in this case, the
polynomial [(z) has s+ 1 real roots (with regard to their multiplicity) and, hence, I(z) = 0. Thus, we arrive at a
contradiction,

Let e; be an arbitrary unit eigenvector of the operator A corresponding to the eigenvalue A ;. Letus show that
the vector

ug = 2 Lie;

jelJ
satisfies the condition of the theorem.
Consider the polynomial

q.(1) = (1=ppo(t) po(n) = 2oV
i=0

Since (Au; —puy, Aiuo) =0, i=0,1,...,s wehave
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i *\2 .
27“1"11(7‘7)@1') =0, i=0,1,...,s
jeJ

and, hence, for an arbitrary number «, we obtain

zxj[ql(xj)_aq(xj)](g;)z =0, i=01,...,s. (14)
jeJ

Let o™ be such that the degree of the polynomial g,(¢)— a*g(r) is at most s. It follows from Egs. (14) that
q,(t)=a"q(¢). This yields

I::a

Ri=W, polt) = a’my(t), u,= (=7 (Auy).

&

Since
L, = {XZ’ }\'il’ e xif-l’ }\'n},

we conclude that w (s, ug) = (¢) and, by virtue of (13), p,(uy)=p,. Thus, we get

by-m = p@)-m = [ps—(”"l]h(uo—m»

lal

il

It remains to note that ||| = || m(A)uy|l = |4 |. The theorem is proved.
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