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ASYMPTOTIC NORMALITY OF IMPROVED WEIGHTED
EMPIRICAL DISTRIBUTION FUNCTIONS

UDC 519.21

R. MAĬBORODA AND O. KUBAĬCHUK

Abstract. Weighted empirical distribution functions are often used to estimate the
distributions of components in a mixture. However, weighted empirical distribution
functions do not possess some properties of probability distribution functions in the
case of negative weight coefficients. We consider a method allowing one to improve
weighted empirical distribution functions and obtain an estimator that is a distri-
bution function. We prove that this estimator is asymptotically normal. The limit

distribution of the improved weighted empirical distribution function coincides with
that of the initial estimator.

1. Introduction

Let ΞN = {ξ1:N , . . . , ξN :N} be a sample from a mixture with varying concentrations,
that is, ξj:N , j = 1, . . . , N , are jointly independent random variables, and

P{ξj:N < x} =
M∑

m=1

wm
j:NHm(x)

where M is the total number of components in the mixture, Hm is the distribution func-
tion of the component m, and wm

j:N is the concentration of the component m for the
observation j, that is, the probability that an object of the component m occurs. (It
is clear that wm

j:N ≥ 0 and
∑M

m=1 wm
j:N = 1.) We assume in this paper that the con-

centrations of components are known. Thus the problem is to estimate the distribution
functions Hk.

The weighted empirical distribution functions

(1) F̂N (x, a) =
1
N

N∑
j=1

aj:N1{ξj:N < x}

are proposed in [1] as estimators for Hk, where

a = (a1:N , . . . , aN :N)

is a nonrandom vector of weight coefficients. It is shown in [1] that these estimators
are unbiased, consistent, asymptotically normal, and minimax for appropriate weight
coefficients. If, however, some coefficients aj:N are negative, then the function F̂N (x, a)
is not nondecreasing, and therefore it is not a probability distribution function. This
circumstance does not play an important role for some applications but for some others
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it does. For example, this is the case for the bootstrap method where a crucial assump-
tion is that the functions are probability distributions (otherwise one cannot simulate a
bootstrap sample).

One can improve the weighted empirical distribution functions F̂N (x, a) by putting

(2) F+
N (x, a) = sup

y<x
F̂N (y, a).

The function F+
N (x, a) assumes only positive values and is nondecreasing. However, it

may assume values greater than 1. Thus we consider the function

(3) F ∗
N (x, a) = min

(
1, F+(x, a)

)
.

In what follows we describe an effective procedure to evaluate improved weighted
empirical distribution functions and study their asymptotic behavior. Under certain
conditions we show that they are asymptotically normal estimators and their limit dis-
tribution is the same as that of the weighted empirical distribution functions defined by
(1). Thus the asymptotic behavior of the empirical process

(4) B+
N (x) =

√
N
(
F+

N (x, a) − Hk(x)
)

is the same as that of the empirical process

(5) BN (x) =
√

N
(
F̂N (x, a) − Hk(x)

)
.

2. The procedure for evaluating improved weighted empirical

distribution functions

First we assume that all members of the sample ΞN = (ξ1:N , . . . , ξN :N ) are distinct.
Denote by σ the permutation of numbers 1, 2, . . . , N for which the members of the sam-
ple are arranged in ascending order: ξσ(1):N < ξσ(2):N < · · · < ξσ(N):N . (The numbers
σ(j), j = 1, . . . , N , are called the “inverse ranks”, since σ−1(j) is the rank of the ob-
servation j in the sample.) Since the function F̂N (x, a) is constant on the intervals
(ξσ(j):N , ξσ(j+1):N ), so is the function F+

N (x, a) defined by (2). Thus

F+
N (x, a) =

1
N

N∑
j=1

b+
j 1 {ξj:N < x} =

1
N

N∑
j=1

b+
σ(j):N1

{
ξσ(j):N < x

}

where b+
j are some coefficients that depend (in contrast to aj:N ) on the sample ΞN .

The idea of the procedure is as follows. Moving from left to right along the sequence
of order statistics, we consecutively improve the coefficients aσ(j):N so that the sum

ŜN
j = NF̂N

(
ξσ(j):N , a

)
=

∑
i : ξi:N≤ξσ(j):N

ai:N

become “lower” than all its predecessors.
Thus the procedure is as follows:

(1) evaluate the inverse ranks σ(j), j = 1, . . . , N , in the sample ΞN .
(2) Put b+

σ(1) = max(aσ(1):N , 0), Ŝ1 = aσ(1):N , S+
1 = b+

σ(1).
(3) For j from 2 to N perform

(a) Ŝj = Ŝj−1 + aσ(j):N ;
(b) b+

σ(j) = max
(
Ŝj − S+

j−1, 0
)
;

(c) S+
j = S+

j−1 + b+
σ(j).
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To evaluate the coefficients b∗j for the function F ∗
N defined by equality (3), Step (3)

of this procedure must contain the following algorithm: until Ŝj < N put b∗σ(j) = b+
σ(j);

otherwise if Ŝj0 ≤ N for some j0, put b∗σ(j0) = N − Ŝj0 and b∗σ(j) = 0 for all j > j0.
Note that the procedure of evaluating inverse ranks is similar to the sorting algorithm

for a sample. The number of operations required by fast sorting algorithms is of order
CN ln N . Steps (2) and (3) require CN operations. Thus the total number of operations
needed to evaluate the coefficients b+ and b∗ is of order CN ln N . Algorithms that require
a total number of operations of this order are called fast.

If there are several equal members in a sample, say ξj1:N = ξj2:N = · · · = ξjl:N , then
it is reasonable to remove all of them from the sample except for ξj1:N and to change
its weight coefficient to a∗

j1:N = aj1:N + · · · + ajl:N . After this change, the coefficients
of improved weighted empirical distribution functions can be evaluated according to the
described procedure.

3. The asymptotic behavior of weighted empirical distribution functions

Before we start the study of the asymptotic behavior of improved weighted empirical
distribution functions, we recall some results concerning usual weighted empirical distri-
bution functions defined by (1). Let F̂N (x, a) be regarded as an estimator of Hk(x) and
let the weight coefficients a = ak be such that F̂N (x, a) is an unbiased estimator. It is
known that the following conditions are sufficient for F̂N (x, a) to be unbiased:

(6)
〈
akwm

〉
N

= 1{k = m} for all m = 1, . . . , M,

where 〈·〉N is the average over the whole sample: 〈a〉N = N−1
∑N

j=1 aj:N . We denote
by 〈a〉 the limit 〈a〉 = limN→∞〈a〉N if it exists.

Theorem 3.1. Let
(1) for some A < ∞,

sup
j,N

|aj:N | < A;

(2) the limits 〈wlwm(ak)2〉 exist for all l, m = 1, . . . , M ;
(3) Hm are continuous functions on R for all m = 1, . . . , M ;
(4) condition (6) holds.

Then the processes B̃N (x) and B(x) can be defined on a common probability space such
that

(1) the processes B̃N (x) have the same distribution as BN (x);
(2) B(x) is a Gaussian stochastic process with almost sure continuous paths and zero

mean, and with covariance function given by

EB(x)B(y) =
M∑

m=1

〈
wm

(
ak
)2〉

Hm(min(x, y))

−
M∑

i,m=1

〈
wmwi

(
ak
)2〉

Hm(x)Hi(y);

(3) supx∈R
|B̃N (x) − B(x)| → 0 almost surely as N → ∞.

Proof. The assumptions of Theorem 3.1 imply the weak convergence of BN to B in the
space D(R) of functions without discontinuities of the second kind (see Theorem 2 in [2]).
The sample continuity of B(x) can be proved in a standard way by using the Dudley
condition [3]. Now a theorem by Skorokhod [4] completes the proof of Theorem 3.1. �
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4. The asymptotic behavior of improved weighted empirical

distribution functions

The process B+
N defined by equality (4) can be represented in terms of the process

BN (x) as follows:

(7) B+
N (x) =

√
N

(
sup
y<x

(
F (y) + BN (y)/

√
N
)
− F (x)

)
.

In what follows we identify the process BN (x) with the process B̃N (x) constructed in
Theorem 3.1, since their distributions coincide and we are interested in the weak conver-
gence. The process B+

N defined by equality (7) is understood as B+
N (x).

A point x is called a point of increase of the function Hk if for all δ > 0

Hk(x) − Hk(x − δ) > 0.

The set of all points of increase of the function Hk is denoted by suppHk.

Theorem 4.2. Let the assumptions of Theorem 3.1 hold and

supp Hm ⊆ supp Hk

for all m = 1, . . . , M . Then

(8) sup
x∈R

∣∣B+
N (x) − BN (x)

∣∣→ 0

in probability as N → ∞.

Corollary 4.1. Let the assumptions of Theorem 4.2 hold. Then the process B+
N weakly

converges to the process B in the uniform metric in the space D(R). Moreover, the
process B∗

N weakly converges to B in the uniform metric in D((−∞, s]) for all interior
points of increase s ∈ supp Hk.

Proof. There are two steps in the proof. First we prove the pointwise convergence in
probability, that is, we prove that

(9) P
{|B+

N (x) − BN (x)| > ε
}→ 0, N → ∞,

for all x ∈ R. Then we prove (8) using (9).
Consider the transformation ξj:N → ξ̃j:N = (2/π) arctan ξj:N . Let H̃m be the distribu-

tion function of the random variable (2/π) arctan ηm where ηm is a random variable with
the distribution Hm. Then (ξ̃j:N , j = 1, . . . , N) is a sample from a mixture with varying
concentrations for which the distributions of components are H̃m and the concentrations
are wm

j:N . Note that if B̃N and B̃+
N are the corresponding empirical processes constructed

from (ξ̃j:N , j = 1, . . . , N), then B̃N ((2/π) arctan(x)) = BN (x) and

sup
x

∣∣∣B̃N (x) − B̃+
N (x)

∣∣∣ = sup
x

∣∣BN (x) − B+
N (x)

∣∣ .
Since supp H̃m ⊆ [−1, 1], the latter means that we can restrict our consideration to the
case of samples such that suppHm ⊆ [−1, 1].

Now we are going to prove relation (9). Since B+
N (x) ≥ BN (x), we only need to show

that for all ε > 0
P
{
B+

N ≥ BN (x) + ε
}→ 0

as N → ∞.
If for some δ > 0 and x ∈ R

(x − δ, x) ∩ supp Hk = ∅
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(therefore (x−δ, x)∩suppHm = ∅ for all m = 1, . . . , M by assumptions of the theorem),
then

P{ξj:N ∈ (x − δ, x)} = 0,

whence

F̂N (x, a) = F̂N (x − δ, a), Hk(x) = Hk(x − δ), F+
N (x, a) = F+

N (x − δ, a),

BN (x) = BN(x − δ), B+
N (x) = BN (x − δ).

Put s(x) = sup{x′ ∈ supp Hk : x′ < x}. Then s(x) ∈ supp Hk and

BN (x) = BN(s(x)), B+
N (x) = B+

N (s(x)).

Hence it is sufficient to prove relation (9) only for x ∈ supp Hk.
Let δ be a number such that 0 < δ < ε, t0 ∈ R, and r ∈ N. Put

tj = t0 + δj, AN =
{
B+

N (x) ≥ BN (x) + ε
}

, A−
N = {BN(x) < t0},

A+
N =

{
B+

N ≥ tr + ε
}

, Aj
N =

{
BN (x) ∈ [tj , tj + δ], B+

N > tj + ε
}

.

Then AN ⊆ A+
N ∪ A−

N

⋃r−1
j=0 Aj

N .
Fix z > 0 and ε > 0 and set δ = ε/2. Now we estimate the probabilities of the

events A+
N , A−

N , and Aj
N . Since for all fixed λ > 0

P{|BN(x) − B(x)| > λ} → 0

as N → ∞ and
P{|B(x)| > λ} → 0, λ → ∞,

there is t0 such that p−N = P(A−
N ) < ε/3 for all sufficiently large N . Since

B+
N (x) > BN (x),

there is a sufficiently large r (and thus there is tr) such that p+
N = P(A+

N ) < ε/3. Fix t0
and r.

Now we estimate

pj
N = P

(
Aj

N

)
≤ P

{
BN (x) < tj+1, B

+
N (x) > tj+1 + δ

}
(recall that tj+1 = tj + δ and ε = 2δ). We have

{
B+

N (x) > tj+1 + δ
}

=
{

sup
y<x

(Hk(y) + BN (y))/
√

N > Hk(x) + (tj+1 + δ)/
√

N

}

=
{

there exists y ≤ x : BN (y) > tj+1 + δ +
√

N(Hk(x) − Hk(y))
}

and hence

Aj
N ⊆

{
BN (x) < tj+1 and there exists y ≤ x :

BN (y) > tj+1 + δ +
√

N(Hk(x) − Hk(y))
}

.

Fix l > 0. The latter event occurs if on the interval [x− l, x], the process BN (y) exceeds
either the level √

N(Hk(x) − Hk(y)) + tj+1 + δ

for some y < x − l or the level tj+1 + δ. Therefore

pj
N ≤ P(CN ) + P(DN )
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where

CN =
{

sup
y

BN (y) > tj+1 + δ +
√

N(Hk(x) − Hk(x − l))
}

,

DN =
{
BN (x) < tj+1 and there exists y ∈ [x − l, x] such that BN (y) > tj+1 + δ

}
.

Now we estimate

P{DN} ≤ P

{
sup

|y−x|<l

|BN (x) − BN (y)| > δ

}
.

Since B(x) is a sample continuous process, there is a sufficiently small l such that

(10) P

{
sup

|x−y|<l

|B(x) − B(y)| >
δ

3

}
≤ ε

18r
.

According to Theorem 3.1

(11) P

{
sup

x
|BN (x) − B(x)| >

δ

3

}
≤ ε

18r

for sufficiently large N . Since

|BN (x) − BN (y)| ≤ |BN (x) − B(x)| + |B(x) − B(y)| + |B(y) − BN (y)|,
conditions (10)–(11) imply

(12) P{DN} ≤ ε

6r
.

Fix l and estimate P(CN ). If l > 0, then

Hk(x) > Hk(x − l)

and
sup

y
BN (y) → sup

y
B(y) < ∞, N → ∞.

Thus Theorem 3.1 implies that P(CN ) → 0 as N → ∞. Hence

(13) P(CN ) ≤ ε

6r

for sufficiently large N . Combining inequalities (12) and (13) we get pj
N ≤ ε/(3r).

Finally

P(AN ) ≤ p+
N + p−N +

r∑
j=1

pj
N ≤ ε

3
+

ε

3
+

r∑
j=1

ε

3r
≤ ε

for sufficiently large N . Thus relation (9) is proved.
Now we prove (8). Let [a, b] be an arbitrary interval. Since B+

N (x) ≥ BN (x), we have

inf
x∈[a,b]

B+
N (x) ≥ inf

x∈[a,b]
BN (x).

Now we obtain an upper estimate for supx∈[a,b] B
+
N (x). Since B+

N is decreasing on inter-
vals between jumps of F̂N (x, a), the supremum is attained either at a point of jump of
the function F̂N (x, a) or at the left endpoint of the interval [a, b]. In the first case, the
supremum is equal to supx∈[a,b] BN (x). Thus

(14) sup
x∈[a,b]

B+
N (x) ≤ max

(
B+

N (a), sup
x∈[a,b]

BN (x)

)
.
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Since B(x) is sample continuous, for all λ > 0 and ε > 0 there is δ such that

P

{
sup

j
|B(tj) − B(tj−1)| > ε

}
< λ

for tj = −1 + δj. Relation (9) implies that for sufficiently large N

(15) P

{
sup

j

∣∣B+
N (tj) − BN (tj)

∣∣ > ε

}
< λ.

According to Theorem 3.1, δ can be chosen so that

P

{
sup

|x−y|<δ

|BN (x) − BN (y)| > ε

}
< λ,

whence

(16) P

{
max

j

(
sup

y∈[tj ,tj+1]

BN (x) − inf
y∈[tj,tj+1]

BN (x)

)
> ε

}
< λ.

For all x ∈ [−1, 1] there is j such that x ∈ [tj , tj+1] and

B+
N (x) ≥ inf

y∈[tj,tj+1]
B+

N (y) ≥ inf
y∈[tj ,tj+1]

BN (y).

It follows from (14) that

B+
N (x) ≤ sup

y∈[tj,tj+1]

B+
N(y) ≤ max

(
B+

N (tj), sup
y∈[tj,tj+1]

BN (y)

)

≤ max

(
BN (tj) + ε, sup

y∈[tj,tj+1]

BN (y)

)
≤ sup

y∈[tj,tj+1]

BN(y) + ε

if the event under the probability sign in (15) occurs. Taking into account (15), we obtain

P

{
for all j, x ∈ [tj , tj+1], inf

y∈[tj,tj+1]
BN (y) ≤ B+

N (x) ≤ sup
y∈[tj,tj+1]

BN (y) + ε

}
< λ.

Combining this with (16) we get

P

{
sup

x

∣∣B+
N (x) − BN (x)

∣∣ > 2ε

}
< 2λ.

Since ε and λ are arbitrary, the proof of the theorem is complete. �

Proof of the corollary. Note that B∗
N (x) ≤ B+

N(x) by construction and{
sup

x∈(−∞,s]

∣∣B∗
N (x) − B+

N (x)
∣∣ �= 0

}
⊆
{

sup
x∈(−∞,s]

F̂N (x, a) > 1

}
= DN .

Theorem 3.1 implies that

sup
x∈(−∞,s]

∣∣∣F̂N (x, a) − Hk(x)
∣∣∣→ 0

in probability. Since s is a point of increase,

Hk(x) < Hk(s) < 1.

Therefore P{DN} → 0 as N → ∞. �
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