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 The manual “ TRANSIENT ANALYSIS OF ELECTRIC POWER CIRCUITS 
BY THE CLASSICAL METHOD IN THE EXAMPLES” is intended for the students 
of the senior courses of the electrical specialities, and those learning 
automatic control theory. 

The aim of this book is to help students to master the theory and 
methods of solving problems in applied electricity. The book contains 
typical problem solutions which give better insight into the theory and the 
physical nature of various phenomena, suggest different approaches to the 
problems, and illustrates the application of various theoretical principles. 
The author has tried to follow a middle path between rigor and 
completeness on one hand and application to practical situations on the 
other. 

The order in which the topics appear is that found mostly successful 
in long experience of teaching the subject. Getting through the course 
“ELECTRICAL ENGINEERING FUNDATION” the students may find this work 
of assistance in preparing for the examination. The teachers may also find it 
useful. 
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PREFACE 

Most of the textbooks on electrical and electronic engineering only 
partially cover the topic of transients in simple RL , RC and RLC circuits 
and the study of this topic is primarily done from an electronic engineer’s 
viewpoint, i.e., with an emphasis on low-current systems, rather than from 
an electrical engineer’s viewpoint, whose interest lies in high-current, high-
voltage power systems. In such systems a very clear differentiation between 
steady-state and transient behaviour of circuits is made. Such a division is 
based on the concept that steady-state behaviour is normal and transients 
arise from the faults. The operation of most electronic circuits (such as 
oscillators, switch capacitors, rectifiers, resonant circuits etc.) is based on 
their transient behaviour, and therefore the transients here can be referred to 
as ‘‘desirable’’. The transients in power systems are characterized as 
completely ‘‘undesirable’’ and should be avoided; and subsequently, when 
they do occur, in some very critical situations, they may result in the 
electrical failure of large power systems and outages of big areas. Hence, 
the Institute of Electrical and Electronic Engineers (IEEE) has recently paid 
enormous attention to the importance of power engineering education in 
general, and transient analysis in particular.  

It is with the belief that transient analysis of power systems is one of 
the most important topics in power engineering analysis that the author 
proudly presents this book, which is wholly dedicated to this topic.  

Of course, there are many good books in this field, some of which are 
listed in the book; however they are written on a specific technical level or 
on a high theoretical level and are intended for top specialists. On the other 
hand, introductory courses, as was already mentioned, only give a 
superfical knowledge of transient analysis. So that there is a gap between 
introductory courses and the above books.  

The present book is designed to fill this gap. It covers the topic of 
transient analysis from simple to complicated, and being on an intermediate 
level, this book therefore is a link between introductory courses and more 
specific technical books. The appropriate level and the concentration of all 
the topic sunder one cover make this book very special in the field under 
consideration. The author believes that this book will be very helpful for all 
those specializing in electrical engineering and power systems. It is 
recommended as a textbook for specialized under graduate and graduate 
curriculum, and can also be used for master and doctoral studies. Engineers 
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in the field may also find this book useful as a handbook and / or resource 
book that can be kept handy to review specific points. Theoreticians / 
researchers who are looking for the mathematical background of transients 
in electric circuits may also find this book helpful in their  work. 

The presentation of the covered material is geared to readers who are 
being exposed to (a) the basic concept of electric circuits based on their 
earlier study of physics and / or introductory courses in circuit analysis, and 
(b) basic mathematics, including differentiation and integration techniques  

This book is composed of two chapters. The study of transients, as 
mentioned, is presented from simple to complicated. Chapters 1 and 2 are 
dedicated to the classical method of transient analysis, which is traditional 
for many introductory courses. However, these two chapters cover much 
more material giving the mathematical as well as the physical view of 
transient behaviour of electrical circuits. So-called incorrect initial 
conditions and two generalized commutation laws, which are important for 
a better understanding of the transient behaviour of transformers and 
synchronous machines, are also discussed in Chapter 2.  

 
CHAPTER 1. CLASSICAL  APPROACH  TO 

TRANSIENT ANALYSIS 

1.1. INTRODUCTION  

Transient analysis(or just transients) of electrical circuits is as 
important as steady-state analysis. When transients occur, the currents and 
voltages in some parts of the circuit may many times exceed those that exist 
in normal behaviour and may destroy the circuit equipment in its proper 
operation. We may distinguish the transient behaviour of an electrical 
circuit from its steady-state, in that during the transients all the quantities, 
such as currents, voltages, power and energy, are changed in time, while in 
steady-state they remain invariant, i.e. constant (in d.c. operation) or 
periodical (in a.c. operation) having constant amplitudes and phase angles.  

The cause of transients is any kind of changing in circuit parameters 
and/or in circuit configuration, which usually occur as a result of switching 
(commutation), short, and/or open circuiting, change in the operation of 
sources etc. The changes of currents, voltages etc. during the transients are 
not instantaneous and take some time, even though they are extremely fast 
with a duration of milliseconds or even microseconds. These very fast 
changes, however, cannot be instantaneous (or abrupt) since the transient 
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processes are attained by the interchange of energy, which is usually stored 
in the magnetic field of inductances or/and the electrical field of 
capacitances. Any change in energy cannot be abrupt otherwise it will 

result in infinite power (as the power is a derivative of energy, 
dt
dwp = ), 

which is in contrast to physical reality. All transient changes, which are 
also called transient responses (or just responses), vanish and, after their 
disappearance, a new steady-state operation is established. In this respect, 
we may say that the transient describes the circuit behaviour between two 
steady-states: an old one, which was prior to changes, and a new one, 
which arises after the changes.  

A few methods of transient analysis are known: the classical method, 
The Cauchy-Heaviside (C-H) operational method, the Fourier 
transformation method and the Laplace transformation method. The C-H 
operational or symbolic (formal) method is based on replacing a derivative 

by symbol  ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
↔⎟

⎠
⎞

⎜
⎝
⎛ s

dt
ds  and an integral by   

∫ ↔
s

dt 1
 

Although these operations are also used in the Laplace transform 
method, the C-H operational method is not as systematic and as rigorous as 
the Laplace transform method, and therefore it has been abandoned in 
favour of the Laplace method. The two transformation methods, Laplace 
and Fourier, will be studied in the following chapters. Comparing the 
classical method and the transformation method it should be noted that the 
latter requires more knowledge of mathematics and is less related to the 
physical matter of transient behaviour of electric circuits than the former.  

This chapter is concerned with the classical method of transient 
analysis. This method is based on the determination of differential 
equations and splitting the solution into two components: natural and 
forced responses. The classical method is fairly complicated 
mathematically, but is simple in engineering practice. Thus, in our present 
study we will apply some known methods of steady-state analysis, which 
will allow us to simplify the classical approach of transient analysis.  
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1.2. APPEARANCE OF TRANSIENTS IN ELECTRICAL 

 CIRCUITS 

In the analysis of an electrical system (as in any physical system), we 
must distinguish between the stationary operation or steady-state and the 
dynamical operation or transient-state.  

An electrical system is said to be in steady-state when the variables 
describing its behaviour (voltages, currents, etc.) are either invariant with 
time (d.c. circuits) or are periodic functions of time (a.c. circuits). An 
electrical system is said to be in transient-state when the variables are 
changed non-periodically, i.e., when the system is not in steady-state. The 
transient-state vanishes with time and a new steady-state regime appears. 
Hence, we can say that the transient-state, or just transients, is usually the 
transmission state from one steady-state to another.  

The parameters L and C are characterized by their ability to store 
energy:  
magnetic energy  

2
2
1ψ

2
1 LiiwL ==  

in the magnetic field and electric energy 

2
2
1

2
1 CvqvwC ==  

in the electric field of the circuit. The voltage and current sources are the 
elements through which the energy is supplied to the circuit. Thus, it may 
be said that an electrical circuit, as a physical system, is characterized by 
certain energy conditions in its steady-state behaviour. Under steady-state 
conditions the energy stored in the various inductances and capacitances, 
and supplied by the sources in a d.c. circuit, are constant; whereas in an a.c. 
circuit the energy is being changed (transferred between the magnetic and 
electric fields and supplied by sources) periodically.  

When any sudden change occurs in a circuit, there is usually a 
redistribution of energy between L -s and C-s, and a change in the energy 
status of the sources, which is required by the new conditions. These 
energy distributions cannot take place instantaneously, but during some 
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period of time, which brings about the transient-state.  
The main reason for this statement is that an instantaneous change of 

energy would require infinite power, which is associated with 
inductors/capacitors. As previously mentioned, power is a derivative of 
energy and any abrupt change in energy will result in an infinite power. 
Since infinite power is not realizable in physical systems, the energy cannot 
change abruptly, but only within some period of time in which transients 
occur. Thus, from a physical point of view it may be said that the transient-
state exists in physical systems while the energy conditions of one steady-
state are being changed to those of another.  

Our next conclusion is about the current and voltage. To change 
magnetic energy requires a change of current through inductances. 
Therefore, currents in inductive circuits, or inductive branches of the 
circuit, cannot change abruptly. From another point of view, the change of 

current in an inductor brings about the induced voltage of magnitude 
dt
diL  

.An instantaneous change of current would therefore require an infinite 
voltage, which is also unrealizable in practice. Since the induced voltage is 

also given as 
dt
dψ

, where ψ is a magnetic flux, the magnetic flux of a 

circuit cannot suddenly change.  
Similarly, we may conclude that to change the electric energy 

requires a change in voltage across a capacitor, which is given by 
C
qv = , 

where q is the charge. Therefore, neither the voltage across a capacitor nor 
its charge can be abruptly changed. In addition, the rate of voltage change 

is 
C
i

dt
dq

Cdt
dv

==
1

, and the instantaneous change of voltage brings about 

infinite current, which is also unrealizable in practice. Therefore, we may 
summarize that any change in an electrical circuit, which brings about a 
change in energy distribution, will result in a transient-state.  

In other words, by any switching, interrupting, short-circuiting as well as 
any rapid changes in the structure of an electric circuit, the transient 
phenomena will occur. Generally speaking, every change of state leads to a 
temporary deviation from one regular, steady-state performance of the 
circuit to another one. The redistribution of energy, following the above 
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changes, i.e., the transient-state, theoretically takes infinite time. However, 
in reality the transient behaviour of an electrical circuit continues a 
relatively very short period of time, after which the voltages and currents 
almost achieve their new steady-state values.  

The change in the energy distribution during the transient behaviour 
of electrical circuits is governed by the principle of energy conservation, 
i.e., the amount of supplied energy is equal to the amount of stored energy 
plus the energy dissipation. The rate of energy dissipation affects the time 
interval of the transients. The higher the energy dissipation, the shorter is 
the transient-state. Energy dissipation occurs in circuit resistances and its 
storage takes place in inductances and capacitances. In circuits, which 
consist of only resistances, and neither inductances nor capacitances, the 
transient-state will not occur at all and the change from one steady-state to 
another will take place instantaneously. However, since even resistive 
circuits contain some inductances and capacitances the transients will 
practically appear also in such circuits; but these transients are very short 
and not significant, so that they are usually neglected.  

Transients in electrical circuits can be recognized as either desirable 
or undesirable. In power system networks, the transient phenomena are 
wholly undesirable as they may bring about an increase in the magnitude of 
the voltages and currents and in the density of the energy in some or in 
most parts of modern power systems. All of this might result in equipment 
distortion, thermal and/or electrodynamics’ destruction, system stability 
interference and in extreme cases an outage of the whole system.  

In contrast to these unwanted transients, there are desirable and 
controlled transients, which exist in a great variety of electronic equipment 
in communication, control and computation systems whose normal 
operation is based on switching processes.  

The transient phenomena occur in electric systems either by 
intentional switching processes consisting of the correct manipulation of 
the controlling apparatus, or by unintentional processes, which may arise 
from ground faults, short-circuits, a break of conductors and/or insulators, 
lightning strokes (particularly in high voltage and long distance systems) 
and similar inadvertent processes.  

As was mentioned previously, there are a few methods of solving 
transient problems. The most widely known of these appears in all 
introductory textbooks and is used for solving simpler problems. It is called 
the classical method. Other useful methods are Laplace and Fourier 
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transformation methods. These two methods are more general and are used 
for solving problems that are more complicated.  

1.3. DIFFERENTIAL  EQUATIONS  DESCRIBING 
ELECTRICAL CIRCUITS 

Circuit analysis, as a physical system, is completely described by 
integrodifferential equations written for voltages and/or currents, which 
characterize circuit behaviour. For linear circuits these equations are called 
linear differential equations with constant coefficients, i.e. in which every 
term is of the first degree in the dependent variable or one of its derivatives. 
Thus, for example, for the circuit of three basic elements: R, L and C 
connected in series and driven by a voltage source v(t), Fig.1.1, we may 
apply Kirchhoff’s voltage law 

)(tvvvv CLR =++ ,  
in which  

,  ∫=

=

=

idtv
dt
diLv

Riv

C

L

R

 

and then we have 

                             ∫ =++ )(1 tvidt
C

Ri
dt
diL .                            (1.1) 

v( t)

R L

C
i( t)

 
Fig.1.1 

 
After the differentiation of both sides of equation 1.1 with respect to 

time, the result is a second order differential equation  
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dt
dvi

cdt
diR

dt
idL =++

1
2

2
                              (1.2) 

The same results may be obtained by writing two simultaneous first 
order differential equations for two unknowns, i and Cv

 
:  

                                       i
Cdt

dvC 1
=                                                (1.3a) 

                                       )(tvv
dt
diLRi C =++ .                            (1.3b) 

After differentiation of equation 1.3b and substituting 
dt

dvC  by 

equation 1.3a, we obtain the same (as equation 1.2) second order singular 
equation. The solution of differential equations can be completed only if the 
initial conditions are specified. It is obvious that in the same circuit under 
the same commutation, but with different initial conditions, its transient 
response will be different. For more complicated circuits, built from a 
number of loops (nodes), we will have a set of differential equations, which 
should be written in accordance with Kirchhoff ’s two laws or with nodal 
and/or mesh analysis. For example, considering the circuit shown in Fig. 
1.2, after switching, we will have a circuit, which consists of two loops and 
two nodes. By applying Kirchhoff’s two laws, we may write three equations 
with three unknowns, i, Li  

and Cv ,  

                             0=−+ ii
dt

dvC L
C                                (1.4a) 

                             01 =++ RiiR
dt
diL L

L                           (1.4b) 

                             01 =−+ CL
L viR

dt
diL                           (1.4c) 
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R 1

v( t) C

R 2

L

i1( t)
i2( t) i3( t)

 
Fig.1.2 

These three equations can then be redundantly transformed into a 
single second order equation. First, we differentiate the third equation of 

1.4c once with respect to time and substitute 
dt

dvC  by taking it from the 

first one. After that, we have two equations with two unknowns, Li  
and i. 

Solving these two equations for Li  
(i.e. eliminating the current i) results in 

the second order homogeneous differential equation  

                           0)()( 112

2
=++++ L

LL iRR
dt
diCRRL

dt
idLCR        (1.5) 

As another example, let us consider the circuit in Fig. 1.3. Applying 
mesh analysis, we may write three integro-differential equations with three 
unknown mesh currents:  

)(11
21 tviR

dt
diL

dt
diL =+−  

                              0)( 33232
12 =−++− iRiRR

dt
diL

dt
diL               (1.6) 

∫ =++− 01
33323 dti

C
iRiR . 

 
In this case it is preferable to solve the problem by treating the whole 

set of equations 1.6 rather than reducing them to a single one (see further 
on).  
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v(t)

R2

L C

R1

R3i1 i2 i3

 
Fig.1.3 

From mathematics, we know that there are a number of ways of 
solving differential equations. Our goal in this chapter is to analyze the 
transient behaviour of electrical circuits from the physical point of view 
rather than applying complicated mathematical methods. (This will be 
discussed in the following chapters.) Such a way of transient analysis is in 
the formulation of differential equations in accordance with the properties 
of the circuit elements and in the direct solution of the obtained equations, 
using only the necessary mathematical rules. Such a method is called the 
classical method or classical approach in transient analysis. We believe that 
the classical method of solving problems enables the student to better 
understand the transient behaviour of electrical circuits.  

1.3.1 Exponential solution of a simple differential equation 

Let us, therefore, begin our study of transient analysis by considering 
the simple series RC circuit, shown in Fig. 1.4. After switching we will get 
a source free circuit in which the capacitor C will be discharged via the 
resistance R. To find the capacitor voltage we shall write a differential 
equation, which in accordance with Kirchhoff ’s voltage law becomes  

                               0=+ c
c v

dt
dvRC                             (1.7) 

A direct method of solving this equation is to write the equation in 
such a way that the variables are separated on both sides of the equation 
and then to integrate each of the sides. Multiplying by dt and dividing by 

cv
 
, we may arrange the variables to be separated,  

                                   dt
RCv

dv

c

c 1
−=                                  (1.8) 
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The solution may be obtained by integrating each side of equation 
1.8 and by adding a constant of integration:  

∫ ∫ +−= Kdt
RCv

dv

c

c 1 , 

v(t)= 0
C uC

 
Fig.1.4 

and the integration yields  

                                  Kt
RC

vc +−=
1ln                                  (1.9) 

 Since the constant can be of any kind, and we may write K = ln D, 
we have   

Dt
RC

vc ln1ln +−= , 

then  

                                     RC
t

c Dev
−

=                            (1.10) 

The constant D can not be evaluated by substituting equation 1.10 
into the original differential equation 1.7, since the identity 00 ≡  will 

result for any value of D (indeed: 01
=+

−
−−
RC

t
RC

t

DeRCe
RC

D ). The 

constant of integration must be selected to satisfy the initial condition 
0)0( Vvc = , which is the initial voltage across the capacitance. Thus, the 

solution of equation 1.10 at t = 0 becomes Dvc =)0( , and we may 
conclude that 0VD =

 
. Therefore, with this value of D we will obtain the 

desired response  
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                                         RC
t

c eVtv
−

= 0)(                            (1.11) 

We shall consider the nature of this response. At zero time, the 
voltage is the assumed value 0V

 
and, as time increases, the voltage 

decreases and approaches zero, following the physical rule that any 
condenser shall finally be discharged and its final voltage therefore reduces 
to zero.  

Let us now find the time that would be required for the voltage to 
drop to zero if it continued to drop linearly at its initial rate. This value of 
time, usually designated by t, is called the time constant. The value of t can 
be found with the derivative of )(tvc  at zero time, which is proportional to 
the angle c between the tangent to the voltage curve at t = 0, and the t-axis, 
i.e.,  

RC
VeV

dt
d

t

RC
t

0

0

0
−

=⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

=

−

 

or  

τ = RC 

and equation 1.11 might be written in the form  

                                        τ
0)(

t

c eVtv
−

=                             (1.12) 

The units of the time constant are seconds ([τ] = [R][C] = Ω·F), so 
that the exponent t/RC is dimensionless, as it is supposed to be.  

Another interpretation of the time constant is obtained from the fact 
that in the time interval of one time constant the voltage drops relatively to 
its initial value, to the reciprocal of e; indeed, at t = τ we have 

%)8,36( 368,01

0
== −e

V
vc . At the end of the 5t interval the voltage is less 

than one percent of its initial value. Thus, it is usual to presume that in the 
time interval of three to five time constants, the transient response declines 
to zero or, in other words, we may say that the duration of the transient 
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response is about five time constants. Note again that, precisely speaking, 
the transient response declines to zero in infinite time, since 0→−te , 
when ∞→t .  

Before we continue our discussion of a more general analysis of 
transient circuits, let us check the power and energy relationships during 
the period of transient response. The power being dissipated in the resistor 
R, or its reciprocal G, is 

                                  RC
t

cR eGVGvp
2

2
0

2
−

== ,                                (1.13) 

and the total dissipated energy (turned into heat) is found by integrating 
equation 1.13 from zero time to infinite time 

∫ ∫
∞ ∞

∞
−−

=−===
0 0

2
00

2
2

0

2

0 2
1

2
CVeRCGVeGVdtpw RC

t
RC

t

RR . 

This is actually the energy being stored in the capacitor at the 
beginning of the transient. This result means that all the initial energy, 
stored in the capacitor, dissipates in the circuit resistances during the 
transient period.  
 

Example 1.1  
 

Consider a numerical example. The RL circuit in Fig. 1.5 is fed by a 
d.c. current source, 0I  = 5A. At instant t = 0 the switch is closed and the 
circuit is short-circuited. Find:1) the current after switching, by separating 
the variables and applying the definite integrals, 2) the voltage across the 
inductance. 

40Ω

20mHL
RI0

 
Fig.1.5 

 



 18

Solution  
1) First, we shall write the differential equation:  

0=+=+ Ri
dt
diLvv RL , 

or after separating the variables  

dt
L
R

i
di

= . 

Since the current changes from 0I
 
at the instant of switching to i(t), 

at any instant of  t, which means that the time changes from t = 0 to this 
instant, we may perform the integration of each side of the above equation 
between the corresponding limits 

∫ ∫ −=
)(

00

ti

I

t
dt

L
R

i
di

. 

Therefore,  
tti

I t
L
Ri 0

)(
0

ln −=  

and 

t
L
RIti =− 0ln)(ln  

or 

t
L
R

I
ti

−=
0

)(ln , 

which results in 
t

L
R

e
I
ti −
=

0

)(
. 

 
Thus,  

tt
L
R

eeIti 2000
0 5)( −−

== , 
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or  

3105,0τ
0 5)(

−⋅
−−

==

tt

eeIti , 

where  

1
3  2000

1020
40 −

− =
⋅

= s
L
R

, 

which results in time constant  

ms
R
L  5,0== . 

Note that by applying the definite integrals we avoid the step of 
evaluating the constant of the integration.  

2) The voltage across the inductance is  

( ) Vee
dt
dL

dt
diLtv

t
t

L   ,2005)( 5,02000
−

− −=== . 

Note that the voltage across the resistance is  

5,05,0 200540
tt

R eeRiv
−−

=⋅== , 

i.e., it is equal in magnitude to the inductance voltage, but opposite in sign, 
so that the total voltage in the short-circuit is equal to zero.  

 
1.4 NATURAL AND FORCED RESPONSES 

 
Our next goal is to introduce a general approach to solving 

differential equations by the classical method. Following the principles of 
mathematics we will consider the complete solution of any linear 
differential equation as composed of two parts: the complementary solution 
(or natural response in our study) and the particular solution (or forced 
response in our study). To understand these principles, let us consider a 
first order differential equation, which has already been derived in the 
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previous section. In a more general form it is  

                                       )()( tQvtP
dt
dv

=+                               (1.14) 

Here Q(t) is identified as a forcing function, which is generally a 
function of time (or constant, if a d.c. source is applied) and P(t), is also 
generally a function of time, represents the circuit parameters. In our study, 
however, it will be a constant quantity, since the value of circuit elements 
does not change during the transients (indeed, the circuit parameters do 
change during the transients, but we may neglect this change as in many 
cases it is not significant).  

A more general method of solving differential equations, such as 
equation 1.14, is to multiply both sides by a so-called integrating factor, so 
that each side becomes an exact differential, which afterwards can be 
integrated directly to obtain the solution. For the equation above (equation 

1.14) the integrating factor is ∫Pdte  or Pte , since P is constant. We 
multiply each side of the equation by this integrating factor and by dt and 
obtain  

dtQedtvPedve PtPtPt =+ . 

The left side is now the exact differential of Ptve  (indeed, 
( ) dtvPedveved PtPtPt += ), and thus  

( ) dtQeved PtPt = .  
Integrating each side yields  
                                         ∫ += AdtQeve PtPt ,                        (1.15) 
where A is a constant of integration. Finally, the multiplication of both 
sides of equation 1.15 by Pte−  yields  

                                  PtPtPt AedtQeetv −− += ∫)( ,                 (1.16) 

which is the solution of the above differential equation. As we can see, this 
complete solution is composed of two parts. The first one, which is 
dependent on the forcing function Q, is the forced response (it is also called 
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the steady-state response or the particular solution or the particular 
integral). The second one, which does not depend on the forcing function, 
but only on the circuit parameters P (the types of elements, their values, 
interconnections, etc) and on the initial conditions A, i.e., on the ‘‘nature’’ 
of the circuit, is the natural response. It is also called the solution of the 
homogeneous equation, which does not include the source function and has 
anything but zero on its right side. 

Following this rule, we will solve differential equations by finding 
natural and forced responses separately and combining them for a complete 
solution. This principle of dividing the solution of the differential equations 
into two components can also be understood by applying the superposition 
theorem. Since the differential equations, under study, are linear as well as 
the electrical circuits, we may assert that superposition is also applicable 
for the transient-state. Following this principle, we may subdivide, for 
instance, the current into two components  

''' iii += , 

and by substituting this into the set of differential equations, say of the form  

∑∑ ∫ =⎟
⎠
⎞

⎜
⎝
⎛ ++ svidt

C
Ri

dt
diL 1

, 

we obtain the following two sets of equations  

∑∑ ∫ =⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
++ svdti

C
Ri

dt
diL ''

' 1
 

01 ''''
''

=⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
++∑ ∫ dti

C
Ri

dt
diL  

It is obvious that by summation (superimposition) of these two 
equations, the original equation will be achieved. This means that ''i  is a 
natural response since it is the solution of a homogeneous equation with a 
zero on the right side and develops without any action of any source, and 'i  
is a steady-state current as it develops under the action of the voltage 
sources sv  (which are presented on the right side of the equations).  
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The most difficult part in the classical method of solving differential 
equations is evaluating the particular integral in equation 1.16, especially 
when the forcing function is not a simple d.c. or exponential source. 
However, in circuit analysis we can use all the methods: node/mesh 
analysis, circuit theorems, the phasor method for a.c. circuits (which are all 
given in introductory courses on steady-state analysis) to find the forced 
response. In relation to the natural response, the most difficult part is to 
formulate the characteristic equation (see further on) and to find its roots. 
Here in circuit analysis we also have special methods for evaluating the 
characteristic equation simply by inspection of the analyzed circuit, 
avoiding the formulation of differential equations.  

Finally, it is worthwhile to clarify the use of exponential functions as 
an integrating factor in solving linear differential equations. As we have 
seen in the previous section, such differential equations in general consist 
of the second (or higher) derivative, the first derivative and the function 
itself, each multiplied by a constant factor. If the sum of all these 
derivatives (the function itself might be treated as a derivative of order 
zero) achieves zero, it becomes a homogeneous equation. A function whose 
derivatives have the same form as the function itself is an exponential 
function, so it may satisfy these kinds of equations. Substituting this 
function into the differential equation, whose right side is zero (a 
homogeneous differential equation) the exponential factor in each member 
of the equation might be simply crossed out, so that the remaining 
equation’s coefficients will be only circuit parameters. Such an equation is 
called a characteristic equation.  

 
1.5 CHARACTERISTIC EQUATION AND ITS DETERMINATION 

 

Let us start by considering the simple circuit in which an RL in series 
is switching on to a d.c. voltage source. Let the desired response in this 
circuit be current i(t). We shall first express it as the sum of the natural and 
forced currents  

fn iii += . 

The form of the natural response, as was shown, must be an 
exponential function, st

n Aei = . Substituting this response into the 
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homogeneous differential equation, which is 0=+ Ri
dt
diL , we obtain 

0=+ ReLse stst , or  

                                               Ls + R = 0.                                       (1.17a) 

This is a characteristic (or auxiliary) equation, in which the left side 
expresses the input impedance seen from the source terminals of the 
analyzed circuit.  

                                      RLssZin +=)( .                                      (1.17b)  

We may treat  s  as the complex frequency s = σ + jω. Note that by 
equaling this expression of circuit impedance to zero, we obtain the 
characteristic equation. Solving this equation we have  

                                      
R
L

L
Rs =−=       τand    .                            (1.18) 

Hence, the natural response is  

                                       
t

L
R

n Aei
−

= .                                              (1.19)           

Subsequently, the root of the characteristic equation defines the 
exponent of the natural response. The fact that the input impedance of the 
circuit should be equaled to zero can be explained from a physical point of 
view (this fact is proven more correctly mathematically in Laplace 
transformation). Since the natural response does not depend on the source, 
the latter should be ‘‘killed’’. This action results in short-circuiting the 
entire circuit, i.e. its input impedance.  

Consider now a parallel LR circuit switching to a d.c. current source 
in which the desired response is )(tvL , as shown in Fig.1.6. Here, 
‘‘killing’’ the current source results in open-circuiting. 

LR
I0

 
Fig.1.6 
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This means that the input admittance should be equaled to zero. 
Thus,  

                                  011
=+

sLR
, 

or  

                                              sL + R  =  0,  
which however gives the same root  

                               
R
L

L
Rs =−=      τand     .                           (1.20) 

Next, we will consider a more complicated circuit, shown in 
Fig.1.7(a). This circuit, after switching and short-circuiting the remaining 
voltage source, will be as shown in Fig.1.7(b). The input impedance of this 
circuit ‘‘measured’’ at the switch  (which is the same as seen from the 
‘‘killed’’ source) is 

)//(//)( 2431 sLRRRRsZin ++=  

or  

1

243
1

111)(
−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

+++=
sLRRR

RsZin . 

Evaluating this expression and equaling it to zero yields  

0))(( 4312434131 =++++ RRRsLRRRRRRR , 

and the root is  

434131

432421321431        ,
RRRRRR

RRRRRRRRRRRRR
L

R
s eq

eq

++
+++

=−=  

It is worthwhile to mention that the same results can be obtained if 
the input impedance is ‘‘measured’’ from the inductance branch, i.e. the 
energy-storing element, as is shown in Fig. 1.7(c).  
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Fig.1.7 

The characteristic equation can also be determined by inspection of 
the differential equation or set of equations. Consider the second-order 
differential equation like in equation 1.2  

                                         )()(1)()(
2

2
tgti

Cdt
tdiR

dt
tidL =++        (1.21) 

Replacing each derivative by ns , where n is the order of the 
derivative (the function by itself is considered as a zero-order derivative), 
we may obtain the characteristic equation:  

                                      012 =++
LC

s
L
Rs                                  (1.22) 

This characteristic equation is of the second order (in accordance 
with the second order differential equation) and it possesses two roots 1s  
and 2s

 
.  

If any system is described by a set of integro-differential equations, 
like in equation 1.6, then we shall first rewrite it in a slightly different form 
as homogeneous equations  



 26

                             00 321 =⋅+−⎟
⎠
⎞

⎜
⎝
⎛ + ii

dt
dLiR

dt
dL  

                          0332321 =−⎟
⎠
⎞

⎜
⎝
⎛ +++− iRiRR

dt
dLi

dt
dL         (1.23) 

                           010 33231 =⎟
⎠
⎞

⎜
⎝
⎛ ++−⋅ ∫ iRdt

C
iRi  

Replacing the derivatives now by ns  and an integral by 1−s  (since 
an integral is a counter version of a derivative) we have  

                              ( ) 00 321 =⋅+−+ isLiiRLs  
                            ( ) 0332321 =−+++− iRiRRLsLsi             (1.24) 

                            010 33231 =⎟
⎠
⎞

⎜
⎝
⎛ ++−⋅ iR

sC
iRi  

We obtained a set of algebraic equations with the right side equal to zero. In 
the matrix form            

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
⋅

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

+−

−++−
−+

0
0
0

 1                            0     

                 
0                             

3

2

1

33

332

1

i
i
i

R
Cs

R

RRRLssL
sLRLs

                     (1.24a) 

With Cramer’s rule the solution of this equation can be written as  

                                            
Δ
Δ

=
Δ
Δ

=
Δ
Δ

= 3
3

2
2

1
1             iii        (1.24b) 

where  Δ  is the determinant of the system matrix and determinants 
321   , , ΔΔΔ

 
are obtained from Δ, by replacing the appropriate column (in 

1Δ  
the first column is replaced, in 2Δ  

the second column is replaced, and 
so forth), by the right side of the equation, i.e. by zeroes. As is known from 
mathematics such determinants are equal to zero and for the non-zero 
solution in equation 1.24 the determinant Δ in the denominator must also be 
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zero. Thus, by equaling this determinant to zero, we get the characteristic 
equation:  

0

 1                            0     

                 
0                             

33

332

1

=

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

+−

−++−
−+

R
Cs

R

RRRLssL
sLRLs

 

or  

01)(1))(( 3
222

313321 =⎟
⎠
⎞

⎜
⎝
⎛ +−+−⎟

⎠
⎞

⎜
⎝
⎛ ++++ R

sC
LsRRsLR

sC
RRsLRsL  

Simplifying this equation yields a second-order equation 

                               0ξ1 1

,2

,12 =+⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
++ LC

eq

eq s
CRL

R
s             (1.25) 

where 

3231

2131

321

3231
,2

21

21
,1  ξ             

RRRR
RRRR

RRR
RRRRR

RR
RRR eqeq +

+
=

++
+

=
+

=  

We could have achieved the same results by inspecting the circuit in 
Fig. 1.3 and determining the input impedance (we leave this solution as an 
exercise for the reader). The characteristic equation 1.25 is of second order, 
since the circuit (Fig. 1.3) consists of two energy-storing elements (one 
inductance and one capacitance).  

By analyzing the circuits in their transient behaviour and determining 
their characteristic equations, we should also take into consideration that 
the natural responses might be different depending on the kind of applied 
source: voltage or current. We have to distinguish between two cases:  

• If the voltage source, in its physical representation (i.e. with an 
inner resistance connected in series) is replaced by an equivalent current 
source (i.e. with the same resistance connected in parallel), the transient 
responses will not change. Indeed, as can be seen from Fig.1.8, the same 
circuit A is connected in (a) to the voltage source and in (b) to the current 
source. By ‘‘killing’’ the sources (i.e. short-circuiting the voltage sources 
and opening the current sources) we are getting the same passive circuits, 
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for which the impedances are the same. This means that the characteristic 
equations of both circuits will be the same and therefore the natural 
responses will have the same exponential functions. 
 

A
V

P

a

I

b

R
R

R A PR

 
Fig.1.8 

• However, if the ideal voltage source is replaced by an ideal current 
source, Fig. 1.9, the passive circuits in (a) and (b), i.e. after killing the 
sources, are different, having different input impedances and therefore 
different natural responses.  

A
V P

a

AI P

b  
Fig.1.9 
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1.6. ROOTS OF THE CHARACTERISTIC EQUATION AND DIFFERENT 

KINDS OF TRANSIENT RESPONSES 

1.6.1 First-order characteristic equation 

If an electrical circuit consists of only one energy-storing element (L 
or C) and a number of energy dissipation elements (R’s), the characteristic 
equation will be of the first order:  

For an RL circuit 

                                    0=+ eqRsL                                     (1.26a) 

and its root is 

                          ,          τ,
τ
1

eq

eq

R
L

L
R

s =−=−=               (1.26b) 

where τ is a time constant. 

For an RC circuit 

                   
τ
11      01

−=−=⇒=+
CR

sR
sC eq

eq              (1.27) 

where τ = CReq  is a time constant. In both cases the natural solution is  

                                        ,  τ
t

st
n AeAef

−
==                      (1.28) 

which is a decreasing exponential, which approaches zero as the time 
increases without limit. However, during the time interval of five times τ 
the difference between the exponential and zero is less than 1%, so that 
practically we may state that the duration of the transient response is about 
5τ.  
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1.6.2 Second-order characteristic equation 

If an electrical circuit consists of two energy-storing elements, 
then the characteristic equation will be of the second order. For an 
electrical circuit, which consists of an inductance, capacitance and 
several resistances this equation may look like equations 1.22, 1.25 or in 
a generalized form 

                              0ωα2 2
d

2 =++s                       (1.29) 

The coefficients in the above equation shall be introduced as 
follows: α as the exponential damping coefficient and dω  

as a resonant 

frequency. For a series RLC circuit α = R/2L and 
LCd
1ωω 0 == . 

For a parallel RLC circuit α = 1/2RC and 
LCd
1ωω 0 == , which is 

the same as in a series circuit. For more complicated circuits, as in Fig. 
1.3, the above terms may look like  

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+=

CRL
R

eq

eq

,2

,1 1
2
1α  

which is actually combined from those coefficients for the series and 
parallel circuits and ξωω 0=d , where ξ  is a distortion coefficient, 
which influences the resonant/oscillatory frequency.  

The two roots of a second order (quadratic) equation 1.29 are 
given as  

                                      22
1 ωαα ds −+−=                          (1.30a) 

                                      22
1 ωαα ds −−−=                          (1.30b) 

and the natural response in this case is  

                                      tsts
n eAeAtf 21

21)( +=                           (1.31) 

Since each of these two exponentials is a solution of the given 



 31

differential equation, it can be shown that the sum of the two solutions is 
also a solution (it can be shown, for example, by substituting equation 
1.31 into the considered equation. The proof of it is left for the reader as 
an exercise.)  

As is known from mathematics, the two roots of a quadratic 
equation can be one of three kinds:  

• negative real different, such as 12 ss > , if dωα > ; 

• negative real equal, such as sss == 12  , if dωα = ; 

• complex conjugate, such as njs ωα2,1 ±−= , if dωα < , where 

22
d αωω −=n  is the frequency of oscillation or natural frequency 

(see further on).  

A detailed analysis of the natural response of all three cases will 
be given in the next chapter. Here, we will restrict ourselves to their 
short specification.  

Overdamping. In this case, the natural response (equation 1.31) 
is given as the sum of two decreasing exponential forms, both of which 
approach zero as ∞→t . However, since 12 ss > , the term of 2s

 
has 

a more rapid rate of decrease so that the transients’ time interval is 

defined by ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
≈

1
1

15
s

ts tr .  

Critical damping. In this case, the natural response (equation 
1.31) converts into the form  

                                        st
n eAtAtf −+= )()( 21 .              (1.32)  

Underdamping. In this case, the natural response becomes 
oscillatory, which may be imaged as a decaying alternating current 
(voltage)  
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                                        β)ωsin()( α += − tBetf n
t

n                 (1.33) 

Here term α is the rate of decay and nω  is the angular frequency of the 
oscillations.  

Now the critical damping may be interpreted as the boundary case 
between the overdamped and underdamped responses. It should be 
noted however that the critical damping is of a more theoretical than 
practical interest, since the exact satisfaction of the critical damping 
condition dωα =

 
in a circuit, which has a variety of parameters, is of 

very low probability. Therefore, the transient response in a second order 
circuit will always be of an exponential or oscillatory form. Let us now 
consider a numerical example.  

Example 1.2  

The circuit shown in Fig 1.10 represents an equivalent circuit of a 
one-phase transformer and has the following parameters: 1L

 
= 0.06 H , 

2L  
 
= 0.02 H , M = 0.03 H, 1R

 
= 6 Ω, 2R

 
= 1 Ω. If the transformer is 

loaded by an inductive load, whose parameters are ldL  = 0.005 H and 

ldR  = 9 Ω, a) determine the characteristic equation of a given circuit 
and b) find the roots and write the expression of a natural response.  

MR1 R2

Rld

Lld

L1 L2

i2i1
 

Fig.1.10 
Solution  

Using mesh analysis, we may write a set of two algebraic 
equations (which represent two differential equations in operational 
form)  
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0)( 2111 =−+ sMiisLR  

0)( 2221 =++++− isLRsLRsMi ldld  

The determinant of this set of two equations is  

)()(         
                 

det
22

11

ldld LLsRRsM
sMsLR

+++−
−+

= = 

= /
211

/
2

/
21

2/
21 )()( RRsLRLRsMLL +++− , 

where, to shorten the writing, we assigned ldLLL += 2
/
2  

and 

ldRRR += 2
/
2 .  

Letting det = 0, we obtain the characteristic equation in the form  

02/
21

/
21

2/
21

1
/
2

/
212 =

−
+

−
+

+
MLL

RRs
MLL

LRLRs  

Substituting the given values, we have  

01010105,12 422 =⋅+⋅+ ss . 

The roots of this equation are:  

   106,11        1086,0 12
2

12
1

−− ⋅−=⋅−= ssss , 

which are two different negative real numbers. Therefore the natural 
response is:  

tt
n eAeAtf 116

2
86

1)( −− += , 
which consists of two exponential functions and is of the overdamped 
kind.  

It should be noted that in second order circuits, which contain two 
energy-storing elements of the same kind (two L -s, or two C-s), the 
transient response cannot be oscillatory and is always exponential 
overdamped. It is worthwhile to analyze the roots of the above 
characteristic equation. We may then obtain  
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        (1.34) 

 The expression under the square root can be simplified to the 
form:  

04)( 2/
21

2
1

/
2

/
21 >++ MRRLRLR , 

which is always positive, i.e., both roots are negative real numbers and 
the transient response of the overdamped kind. These results once again 
show that in a circuit, which contains energy-storing elements of the 
same kind, the transient response cannot be oscillatory.  

In conclusion, it is important to pay attention to the fact that all 
the real roots of the characteristic equations, under study, were negative 
as well as the real part of the complex roots. This very important fact 
follows the physical reality that the natural response and transient-state 
cannot exist in infinite time. As we already know, the natural response 
takes place in the circuit free of sources and must vanish due to the 
energy losses in the resistances. Thus, natural responses, as exponential 
functions ste , must be of a negative power (s < 0) to decay with time.  
 

1.7. INDEPENDENT AND DEPENDENT INITIAL 

 CONDITIONS 

From now on, we will use the term ‘‘switching’’ for any change 
or interruption in an electrical circuit, planned as well as unplanned, i.e. 
different kinds of faults or other sudden changes in energy distribution.  

1.7.1 Two switching rules (laws) 

The principle of a gradual change of energy in any physical 
system, and specifically in an electrical circuit, means that the energy 
stored in magnetic and electric fields cannot change instantaneously. 
Since the magnetic energy is related to the magnetic flux and the current 
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through the inductances , both of them must not be allowed to change 
instantaneously. In transient analysis it is common to assume that the 
switching action takes place at an instant of time that is defined as t = 0 
(or 0tt =

 
) and occurs instantaneously, i.e. in zero time, which means 

ideal switching. Henceforth, we shall indicate two instants: the instant 
just prior to the switching by the use of the symbol −0 , i.e. −= 0t

 
, and 

the instant just after the switching by the use of the symbol +0 , i.e.  

+= 0t , (or just 0). Using mathematical language, the   

value of the function )0( −f , is the ‘‘limit from the left’’, as t 
approaches zero from the left and the value of the function )0( +f  is the 
‘‘limit from the right’’, as t approaches zero from the right. Keeping the 
above comments in mind, we may now formulate two switching rules.  

• First switching law (or first switching rule)  

The first switching rule/law determines that the current 
(magneticflux) in an inductance just after switching )0( +Li  is equal to 
the current (flux) in the same inductance just prior to switching  

                                )0()0( −+ = LL ii                                (1.35a) 
                                   )0ψ()0ψ( −+ =                             (1.35b) 

Equation 1.35a determines the initial value of the inductance 
current and enables us to find the integration constant of the natural 
response in circuits containing inductances. If the initial value of the 
inductance current is zero (zero initial conditions), the inductance at the 
instant t = 0 (and only at this instant) is equivalent to an open circuit 
(open switch). If the initial value of the inductance current is not zero 
(non-zero initial conditions) the inductance is equivalent at the instant t 
= 0 (and only at this instant) to a current source whose value is the 
initial value of the inductance current )0(LiI = . Note that this 
equivalent, current source may represent the inductance in a most 
general way, i.e., also in the case of the zero initial current. In this case, 
the value of the current source is zero, and inner resistance is infinite 
(which means just an open circuit).  
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• Second switching law (or second switching rule)  

The second switching rule/law determines that the voltage 
(electric charge) in a capacitance just after switching )0( +cv  is equal to 
the voltage (electric charge) in the same capacitance just prior to 
switching  

                                  )0()0( −+ = cc vv                               (1.36a) 

                                  )0()0( −+ = qq                               (1.36a) 

Equation 1.36a determines the initial value of the capacitance 
voltage and enables us to find the integration constant of the natural 
response in circuits containing capacitances. If the initial value of the 
voltage across a capacitance is zero, zero initial conditions, the 
capacitance at the instant t= 0 (and only at this instant) is equivalent to a 
short-circuit (closed switch). If the initial value of the capacitance 
voltage is not zero (non-zero initial conditions), the capacitance, at the 
instant t = 0 (and only at this instant), is equivalent to the voltage source 
whose value is the initial capacitance voltage )0(cvV = . Note that this 
equivalent, voltage source may represent the capacitance in a most 
general way, i.e., also in the case of the zero initial voltage. In this case, 
the value of the voltage source is zero, and inner resistance is zero 
(which means just a short-circuit).  

In a similar way, as a current source may represent an inductance 
with a zero initial current, we can also use the voltage source as an 
equivalent of the capacitance with a zero initial voltage. Such a source 
will supply zero voltage, but its zero inner resistance will form a short-
circuit.  

If the initial conditions are zero, it means that the current through 
the inductances and the voltage across the capacitances will start from 
zero value, where as if the initial conditions are non-zero, they will 
continue with the same values, which they possessed prior to switching.  

The initial conditions, given by equations 1.35 and 1.36, i.e., the 
currents through the inductances and voltages across the capacitances, 
are called independent initial conditions, since they do not depend either 
on the circuit sources or on the status of the rest of the circuit elements. 
It does not matter how they had been set up, or what kind of switching 
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or interruption took place in the circuit.  
The rest of the quantities in the circuit, i.e., the currents and the 

voltages in the resistances, the voltages across the inductances and 
currents through the capacitances, can change abruptly and their values 
at the instant just after the switching ( += 0t ) are called dependent 
initial conditions. They depend on the independent initial conditions and 
on the status of the rest of the circuit elements. The determination of the 
dependent initial conditions is actually the most arduous part of the 
classical method. In the next sections, methods of determining the initial 
conditions will be introduced. We shall first, however, show how the 
independent initial conditions can be found.  

1.7.2 Methods of finding independent initial conditions 

For the determination of independent initial conditions the given 
circuit/network shall be inspected at its steady-state operation prior to 
the switching. Let us illustrate this procedure in the following examples.  

Example1.3  

In the circuit in Fig. 1.11, a transient-state occurs due to the 
closing of the switch. Find the expressions of the independent initial 
values, if prior to the switching the circuit operated in a d.c. steady-state.  

R1

R2

L

C1

C2iL

V

 
Fig.1.11 

Solution  

By inspection of the given circuit, we may easily determine 1) the 
current through the inductance and 2) the voltages across two 
capacitances.  
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1) Since the two capacitances in a d.c. steady-state are like an 
open switch the inductance current is  

21
)0(

RR
Vi s

L +
=−  

2) Since the voltage across the inductance in a d.c. steady-state is 
zero (the inductance provides a closed switch), the voltage across the 
capacitances is  

)0()0( 2 −− = Lc iRv . 

This voltage is divided between two capacitors in inverse 
proportion to their values (which follows from the principle of their 
charge equality, i.e., 

21 21 cc vCvC = ), which yields: 

21

1
2

21

2
2

)0()0(

)0()0(

2

1

CC
CiRv

CC
CiRv

Lc

Lc

+
=

+
=

−−

−−

. 

Example 1.4 
 
Find the independent initial conditions )0( −Li  and )0( −cv  in the 

circuit shown in Fig. 1.12, if prior to opening the switch, the circuit was 
under a d.c. steady-state operation.  

R2
R1R3

R4

R5 L C
I

i
i1

i2

 
Fig.1.12 
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Solution  

1) First, we find the current 4i  
with the current division formula 

(no current is flowing through the capacitance branch)  

5343514131

315

3154

5
4

)(
//

         

RRRRRRRRRR
RRRI

RRRR
RIi

s

s

++++
+

=

=
++

=

 

Using once again the current division formula, we obtain the 
current through the inductance  

5343514131

35

13

3
4)0(              

RRRRRRRRRR
RRI

RR
Rii

s

L

++++
=

=
+

=−

 

2) The capacitance voltage can now be found as the voltage drop 
in resistance 1R  

)0()0( 1 −− = Lc iRv . 

The examples given above show that in order to determine the 
independent initial conditions, i.e., the initial values of inductance 
currents and/or capacitance voltages, we must consider the circuit under 
study prior to the switching, i.e. at instant t = 0. It is usual to suppose 
that the previous switching took place along time ago so that the 
transient response has vanished. We may apply all known methods for 
the analysis of circuits in their steady-state operation. Our goal is to 
choose the most appropriate method based on our experience in order to 
obtain the quickest answer for the quantities we are looking for.  

1.7.3 Methods of finding dependent initial conditions 

As already mentioned the currents and voltages in resistances, the 
voltages across inductances and the currents through capacitances can 
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change abruptly at the instant of switching. Therefore, the initial values 
of these quantities should be found in the circuit just after switching, 
i.e., at instant += 0t  . Their new values will depend on the new 
operational conditions of the circuit, which have been generated after 
switching, as well as on the values of the currents in the inductances and 
voltages of the capacitances. For this reason we will call them 
dependent initial conditions.  

As we have already observed, the natural response in the circuit of 
the second order is, for instance, of form equation 1.31. Therefore, two 
arbitrary constants 1A

 
and 2A , called integration constants, have to be 

determined to satisfy the two initial conditions. One is the initial value 
of the function and the other one, as we know from mathematics, is the 
initial value of its first derivative. Thus, for circuits of the second order 
or higher the initial values of derivatives at += 0t  must also be found. 
We also consider the initial values of these derivatives  as dependent 
initial conditions.  

In order to find the dependent initial conditions we must consider the 
analyzed circuit, which has arisen after switching and in which all the 
inductances and capacitances are replaced by current and voltage 
sources (or, with zero initial conditions, by an open and/or short-circuit). 
Note that this circuit fits only at the instant += 0t  . For finding the 
desirable quantities, we may use all the known methods of steady-state 
analysis. Let us introduce this technique by considering the following 
examples.  

Example1.5  

Consider once again the circuit in Fig. 1.12. We now however 
need to find the initial value of current )0(2 +i , which flows through the 
capacitance and therefore can be changed instantaneously.  

Solution  

We start the solution by drawing the equivalent circuit for instant 
+= 0t  , i.e. just after switching, Fig. 1.13. The inductance and 

capacitance in this circuit are replaced by the current and voltage 
sources, whose values have been found in Example 1.4 and are assigned 



 41

as 0LI
 
and 0cV

 
.  

R2
R1R3

R4

IL(0)I

i1
i2(0)

VC(0)
 

Fig.1.13 
The achieved circuit has two nodes and the most appropriate 

method for its solution is node analysis. Thus,  

0)0(203 =+++− iIVGI Labs , 

where 
3

3
1
R

G =
 
. Substituting )0(220 iRVV cab +=  for abV

 
we may 

obtain  

030232 )1)(0( cLs VGIIRGi −−=+ , 
or  

23

030
2 1

)0(
RG

VGIIi cLs
+

−−
= . 

Example 1.6  

As a numerical example, let us consider the circuit in Fig. 1.14. 
Suppose that we wish to find the initial value of the output voltage, just 
after switch instantaneously changes its position from ‘‘1’’ to ‘‘2’’. The 
circuit parameters are: L = 0.1 H , C = 0.1 mF,  1R

 
= 10 Ω,  2R

 
= 20 Ω,  

ldR
 
= 100 Ω,  1sV

 
= 110 V and  2sV

 
= 60 V.  
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R1
R2
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V1
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a

R1 R2
Rld

V2 V1

V0

b

VL(0)

VC(0)
iC(0)

iL(0) i0(0)

 
Fig.1.14 

Solution  

In order to answer this question, we must first find the 
independent initial conditions, i.e., )0( +Li and )0( +cv . By inspection 
of the circuit for instant t = −0 , Fig.1.14(a),we have 

A
RR

Vi
ld

s
L  1

10100
110)0(

1

1 =
+

=
+

=− , 

and 

V
RR

RVv
ld

sc  10
10100

10110)0(
1

1
1 =

+
=

+
=− . 

  With two switching rules we have  

Vvv
Aii

cc

LL

 10)0()0(
 1)0()0(

==
==

−+

−+ , 

and we can now draw the equivalent circuit for instant t = +0 , 
Fig.1.14(b).By inspection, using KCL (Kirchhoff ’s current law),we 
have  

                           )0()( 212122 cssld vVViiRiR ++−=++ .      (1.37) 

Keeping in mind that 02 ii =  and )0(1 Lii = , we obtain  
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A
RR

iRvVVi
ld

Lcss  5,0)0()0()0(
2

221
2 −=

+
−++−

= . 

Thus the initial value of the output current is −0,5 A. Note that, 
prior to switching, the value of the output current was − 1 A, therefore, 
with switching the current drops to half of its previous value.  

The circuit of this example is of the second order and, as earlier 
mentioned, its natural response consists of two unknown constants of 
integration. Therefore, we shall also find the derivative of the output 
current at instant t = +0

 
.By differentiating equation 1.37  with respect 

to time, and taking into consideration that 1sV
 
and 2sV

 
are constant, we 

have  

dt
dv

dt
diR

dt
diRR cL
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By inspection of the circuit in Fig. 1.14(b) once again, we may find  

. 5,0)0()0()0(
 40)0()0()0(

0

101

Aiii
ViRiRVv
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Thus,  

1

0

0  75 −

=
−= As

dt
di

t
. 

1.7.4 Generalized initial conditions 

Our study of initial conditions would not be complete without 
mention of the so-called incorrect initial conditions, i.e. by which it 
looks as though the two switching laws are disproved.  
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(a) Circuits containing capacitances  

As an example of such a ‘‘disproval’’, consider the circuit in 
Fig.1.15(a). In this circuit, the voltage across the capacitance prior to 
switching is )0( −cv  = 0 and after switching it should be sc Vv =+ )0( , 
because of the voltage source. Thus, 

)0()0( −+ ≠ cc vv  

and the second switching law is disproved.  

V0

iC

V

a

V R 2LC

R 1

b

C

 
Fig.1.15 

This paradox can be explained by the fact that the circuit in Fig 
1.15(a) is not a physical reality, but only a mathematical model, since it 
is built of two ideal elements: an ideal voltage source and an ideal 
capacitance. However, every electrical element in practice has some 
value of resistance, and generally speaking some value of inductance 
(but this inductance is very small and in our future discussion it will be 
neglected). Because, in a real switch, the switching process takes some 
time (even very small), during which the spark appears, the latter is also 
usually approximated by some value of resistance. By taking into 
consideration just the resistances of the connecting wires and/or the 
inner resistance of the source or the resistance of the spark, connected in 
series, and a resistance, which represents the capacitor insulation, 
connected in parallel, we obtain the circuit shown in Fig. 1.15(b). In this 
circuit, the second switching law is correct and we may write  

)0()0( −+ = cc vv . 

Now, at the instant of switching, i.e., at t = 0, the magnitude of the 
voltage drop across this resistance will be as large as the source value. 
As a result the current of the first moment will be very large, however 
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not unlimited, like it is supposed to be in Fig.1.24(a). In order to 
illustrate the transient behaviour in the circuit discussed, let us turn to a 
numerical example. Suppose that a 1.0   nF condenser is connected to a 
100 V source and let the resistance of the connecting wires be about one 
hundredth of an ohm. In such a case, the ‘‘spike’’ of the current will be 
δI  = 100/0.01=10000 A, which  is a very large current in a 100V source 

circuit (but it is not infinite). This current is able to charge the above 
condenser during the time period of about s1110− , since the required 
charge is CCVq 729 101010 −− =⋅==  and 

s
i
qt 11

4

7
10

10
10 −

−
==

Δ
Δ

≅Δ . This period of time is actually equal to the 

time constant of the series RC circuit, sRC 1192 101010τ −−− =⋅== . 

From another point of view, the amount of the charge, which is 
transferred by an exponentially decayed current, is equal to the product 
of its initial value, 0I

 
and the time constant. Indeed, we have  

                    ∫ ∫
∞

∞−−
=−===

0
00

τ
0

τ
0 ττ)( IeIdteIidtq

tt

         (1.38) 

i.e., Cq 711 101010000 −− =⋅= , as estimated earlier. This result 
(equation 1.38) justifies using an impulse function d (see further on) for 
representing very large (approaching infinity) magnitudes applying very 
short (approaching zero) time intervals, whereas their product stays 
finite.  

Note that the second resistance 2R
 
is very large (hundreds of 

mega ohms), so that the current through this resistance, being very small 
(less than a tenth of a microampere), can be neglected. 

In conclusion, when a capacitance is connected to a voltage 
source, a very large current, tens of kiloamperes, charges the 
capacitance during a vanishing time interval, so that we may say that the 
capacitance voltage changes from zero to its final value, practically 
immediately. However, of course, none of the physical laws, neither the 
switching law nor the law of energy conservation, has been disproved. 
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As a second example, let us consider the circuit in Fig. 1.16(a). At first 
glance, applying the second switching law, we have  

                                    
0)0()0(

)0()0(

22

11

==
==

−+

−+

cc

scc

vv
Vvv

                            (1.39) 

But after switching, at t = 0, the capacitances are connected in 
parallel, Fig. 1.16(b), and it is obvious that  

                                    )0()0( 21 −+ = cc vv                              (1.40) 

which is in contrast to equation 1.39.  

a

C1

b

C2

R

V
C1 C2

V

R

 
Fig.1.16 

To solve this problem we shall divide it into two stages. In the 
first one, the second capacitance is charged practically immediately in 
the same way that was explained in the previous example. During this 
process, part of the first capacitance charge is transferred by a current 
impulse to the second capacitance, so that the entire charge is distributed 
between the two capacitances in reciprocal proportion to their values. 
The common voltage of these two capacitances, connected in parallel, 
after the switching at instant t = 0, is reduced to a new value lower than 
the applied voltage sV   

.In the second stage of the transient process in this circuit, the two 
capacitances will be charged up so that the voltage across the two of 
them will increase up to the applied voltage sV . To solve this second 
stage problem we have to know the new initial voltage in equation 1.40. 
We shall find it in accordance with equation 1.36b which, as was 
mentioned earlier, expresses the physical principal of continuous 
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electrical charges, i.e. the latter cannot change instantaneously. This 
requirement is general but even more stringent than the requirement of 
continuous voltages, and therefore is called the generalized second 
switching law. Thus,  

                   )0()0()0( 11 −−Σ+Σ == cvCqq                                 (1.41) 

This law states that: the total amount of charge in the circuit 
cannot change instantaneously and its value prior to switching is equal 
to its value just after the switching, i.e., the charge always changes 
gradually.  

Since the new equivalent capacitance after switching is 
21 CCCeq +=

 
, we may write  

)0()0()()0( 11121 −++Σ =+= cc vCvCCq . 

Since, in this example, sc Vv =− )0(1 , we finally have 

               scc V
CC

Cv
CC

Cv
21

1
1

21

1
1 )0()0(

+
=

+
= −+                 (1.42) 

With this initial condition, the integration constant can easily be found.  
It is interesting to note that by taking into consideration the small 

resistances (wires, sparks, etc.) the circuit becomes of second order and 
its characteristic equations will have two roots (different real negative 
numbers). One of them will be very small, determining the first stage of 
transients, and the second one, relatively large, will determine the 
second stage.  

Let us now check the energy relations in this scheme, Fig. 1.16, 
before and after switching. The energy stored in the electric field of the 
first capacitance (prior to switching) is 

2
1

2
11 2

1)0(
2
1)0( sce VCVCw == −−  and the energy stored in the electric 

field of both capacitances (after switching) is 

)0()(
2
1)0( 2

21 ++ += ce vCCw . Thus, the energy ‘‘lost’’ is 
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  (1.43) 

This energy actually dissipates in the above-discussed resistances.  
When two capacitances, connected in series, switch to the voltage 

source, as shown in Fig. 1.17(a), the transients will also consist of two 
stages. In the first stage, the current impulse will charge two 
capacitances equally to the same charge  

                                
21

21)0(
CC

CCVq s +
=+                               (1.44) 

but to different voltages, in reciprocal proportion to their values:  
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Fig.1.17 

However, in accordance with the correct equivalent circuit in 
Fig.1.17(b), the final steady-state voltages (at ∞→t ) across two 
capacitances must be determined by the voltage division in proportion to 
their resistances: 

    
21

2
2

21

1
1 )(     ,)(

RR
RVv

RR
RVv scsc +

=∞
+

=∞                (1.46) 

This change in voltages, from equation 1.45 to equation 1.46, 
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takes place during the second stage with the time constant 
21

21τ
GG
CC

+
+

=  

(proof of this expression is left to the reader as an exercise).  
Finally it should be noted that the very fast charging of the 

capacitances by the flow of very large currents (current impulses) results 
in relatively small energy dissipation, so that usually no damage is 
caused to the electrical equipment. Indeed, with the numerical data of 
our first example, we may calculate  

JRIdteRIw
t

d
5112422

δ
0

τ
2

2
δ 105,05,010)10(10

2
τ −−−

∞ −
⋅=⋅⋅=== ∫ . 

which is negligibly small. Checking the law of energy conservation, we 
may find that the energy being delivered by the source is  

2

000
s

V
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c

sss CVdvCVdt
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dvCVidtVw
s

==== ∫∫∫
∞∞

, 

and the energy being stored into the capacitances is 2
2
1

se CVw = , i.e., 

half of the  energy delivered by the source is dissipated in the 
resistances. Calculating this energy yields  

JCVw s
s

5
492

105,0
2

1010
2

−
−

⋅=
⋅

==Δ , 

as was previously calculated.  

(b) Circuits containing inductances  

We shall analyze the circuits containing inductances keeping in 
mind that such circuits are dual to those containing capacitances and 
using the results, which have been obtained in our previous discussion.  

Consider the circuit shown in Fig. 1.28 in which the current prior to 
switching is 0)0( IiL =−  

and after switching is supposed to be 
0)0( =+Li  ,so that the first switching law is disproved  
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)0()0( −+ ≠ LL ii  

However, by taking into consideration the small parameters G, 
LR

 
, and C, we may obtain the correct circuit, shown in Fig 

1.18(b), in which all the physical laws are proven.  

V

Ri

L

V

Ri

L

RL

C

G

a b  
Fig.1.18 

In this circuit, the open switch is replaced by a very small 
conductance G (very big resistance), so that we can now write 

)0()0( −+ = LL ii , but because of the vanishingly small time constant τ 
= GL , the current decays almost instantaneously.  

From another point of view the almost abrupt change of 
inductance current results in a very large voltage induced in inductance, 

dt
diLvL =

 
, which is applied practically all across the switch, and 

causes an arc, which appears between the opening contacts of the 
switch. Let us estimate the magnitude of such an overload across the 
coil in Fig.1.18(a), having 0.1H and 20 Ω, which disconnects almost 
instantaneously from the voltage source, and the current through the coil 
prior to switching was 5A. Assume that the time of switching is 

st μ10=Δ  (note that this time, during which the current changes from 
the initial value to zero, can be achieved  if the switch is replaced by a 
resistor of at least 50 kΩ , as shown in Fig.1.18(b)), then the 

overvoltage will be kV
t
iLV  501051,0 5

max =⋅⋅=
Δ
Δ

≅ . 
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Such a high voltage usually causes an arc, which appears between 
the opening contacts of the switch. This transient phenomenon is of 
great practical interest since in power system networks the load is 
mostly of the inductance kind and any disconnection of the load and/or 
short-circuited branch results in overvoltages and arcs. However, the 
capacitances associated with all the electric parts of power systems 
affect its transient behaviour and usually result in reducing the 
overvoltages. (We will analyze this phenomenon in more detail also 
taking into consideration the capacitances, see Chapter 2).  

Consider next the circuit in Fig. 1.19, which is dual to the circuit 
in Fig. 1.16. (It should be noted that the duality between the two circuits 
above, Figs 1.18 and 1.19, and the corresponding capacitance circuits, in 
Figs 1.14 and 1.16, is not full. For full duality the voltage sources must 
be replaced by current sources. However, the quantities, the formulas, 
and the transient behaviour are similar.) In this circuit, prior to 
switching 01 )0( IiL =−  

and 0)0(2 =−Li . Applying the first switching 
law we shall write  

                                  
0)0()0(

)0()0(
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==
==
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−+
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                               (1.47) 
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Fig.1.19 

After switching the two inductances are connected in series, Fig 
1.19(b), therefore  

                                   )0()0( 21 −+ = LL ii                             (1.48) 

which is obviously contrary to equation 1.47. However, we may 
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consider the transient response of this circuit as similar to that in 
capacitance and conclude that it is composed of two stages. In the first 
stage, the currents change almost instantaneously, in a very short period 
of time 0→Δt , so that voltage impulses appear across the inductances. 
In the second stage, the current in both inductances changes gradually 
from its initial value up to its steady-state value. In order to find the 
initial value of the common current flowing through both inductances 
connected in series ( just after switching and after accomplishing the 
first stage) we may apply the so-called first generalized switching law 
(equation 1.35b). This law states that: the total flux linkage in the circuit 
cannot change instantaneously and its value prior to switching is equal 
to its value just after switching, i.e. the flux linkage always changes 
gradually.  

If an electrical circuit contains only one inductance element, then  

)0()0(         )0()0( +−−+ =→= LLLL iiLiLi  

and the first switching law regarding flux linkages (equation1.35b) is 
reduced to a particular case with regard to the currents. For this reason 
the first switching law, regarding flux linkages, is more general. 

Applying the first generalized law to the circuit in Fig. 1.19, we 
have  

    )0()0()0()0( 22112211 ++−− +=+ LLLL iLiLiLiL                   (1.49) 

or since )0()0()0( 21 +++ == LLL iii  we have  

                                    
21

2211 )0()0()0(
LL

iLiLi LL
L +

+
= −−

+                                      

 
Substituting 0)0(2 =−Li  and 01 )0( IiL =−  

the above expression 
becomes  

                                  0
21

1)0( I
LL

LiL +
=+                              (1.50) 

This equation enables us to determine the initial condition of the 
inductance current in the second stage of a transient response.  
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The energy stored in the magnetic field of two inductances prior 
to switching is  

                
2

)0(
2

)0()0(
2

22
2
11 −−

− += LL
m

iLiLw                             (1.50a) 

and after switching  

                         
2

)0()()0(
2

21 +
+

+
= L

m
iLLw                              (1.50b) 

Then the amount of energy dissipated in the first stage of the 
transients, i.e., in circuit resistances and in the arc, with equations 1.50a 
and 1.50b will be  

 [ ]221
21

21 )0()0(
2
1)0()0( −−+− −

+
=−=Δ LLmmm ii

LL
LLwww   (1.51)   

For the circuit under consideration the above equation 1.51 
becomes  

                                     2
0

21

21
2
1 I

LL
LLwm +

=Δ                           (1.52) 

It is interesting to note that this expression is similar to formula 
1.43 for a capacitance circuit. Let us now consider a numerical example.  

Example 1.7  

In the circuit in Fig. 1.20(a) the switch opens at instant t = 0. Find 
the initial current )0( +i  in the second stage of the transient response 
and the energy dissipated in the first stage if the parameters are: 

Ω=  501R , Ω=  402R , mHL  1601 = , mHL  402 = , inV  = 200 V. 
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Fig1.20 

Solution. 

 The values of the two currents in circuit (a) are  

A
R
Vi in

L  4)0(
1

1 ==−  

and  

A
R
Vi in

L  5)0(
2

2 ==−  

Thus, the initial value of the current in circuit (b), in accordance 
with equation 1.49, is  

A
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Note that for the calculation of the initial current )0( +i  in circuit 
(b), we took into consideration that the current )0(2 −Li  is negative 
since its direction is opposite to the direction of )0( +i , which has been 
chosen as the positive direction. The dissipation of energy, in 
accordance with equation 1.51, is  
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2
2121 ≅
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=Δ −− . 

As a final example, consider the circuit in Fig. 1.21. This circuit of 
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two inductive branches in parallel to a current source is a complete dual 
to the circuit, in which two capacitances in series are connected to a 
voltage source.  

L2L1

G1 G2I

 
Fig1.21 

Prior to switching the inductances are short-circuited, so that both 
currents )0(1 −Li  and )0(2 −Li  are equal to zero. The current of the 
current source flows through the switch. (In the dual circuit, the voltages 
across the capacitances prior to switching are also zero.) At the instant 
of switching the currents through the inductances change almost 
instantaneously, so that their sum should be sI . This abrupt change of 
currents results in a voltage impulse across the opening switch. Since 
this voltage is much larger than the voltage drop on the resistances, we 
may neglect these drops and assume that the inductances are connected 
in parallel. As we know, the current is divided between two parallel 
inductances in inverse proportion to the value of the inductances. Thus,  

         
21

1
2

21

2
1 )0(       ,)0(

LL
LIi

LL
LIi sLsL +

=
+

= ++             (1.53) 

These expressions enable us to determine the initial condition in 
the second stage of the transient response. The steady-state values of the 
inductance currents will be directly proportional to the conductances 1G

 
and 2G . Hence, the induced voltages across the inductances will be 
zero (the inductances are now short-circuited) and the resistive elements 
are in parallel (note that in the capacitance circuit of Fig.1.17 the 
voltages across the capacitances in steady-state are also directly 
proportional, but to the resistances, which are parallel to the 
capacitances).Thus, 



 56

21

2
2

21

1
1 )(        )(

GG
GIi

GG
GIi sLsL +

=∞
+
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Knowing the initial and final values, the complete response can be 
easily obtained (see the next chapter).  

1.8. METHODS OF FINDING INTEGRATION CONSTANTS 

From our previous study, we know that the natural response is 
formed from a sum of exponential functions:  

                ∑=++=
n

ts
k

tsts
n

keAeAeAtf
1

21 ...)( 21                 (1.54) 

where the number of exponents is equal to the number of roots of a 
characteristic equation. In order to determine the integration constants 

nAAA ,...,, 21  it is necessary to formulate n equations, which must obey 
the instant of switching, t =0 (or t = 0t  

). By differentiation of the above 
expression (n − 1) times, we may obtain  
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where it has been taken into consideration that  
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The initial values of the natural responses are found as  

            

)0()0(
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                           (1.57) 

Thus, for the formulation in equation 1.55 of its left side 
quantities, we must know:  

• the initial values of the complete transient response f(0) and its 
(n − 1) derivatives, and  

• the initial values of the force response )0(ff  and its (n − 1) 
derivatives.  
 

The technique of finding the initial values of the complete 
transient response in has been discussed in the previous section. In brief, 
according to this technique: a) we have to determine the independent 
initial condition (currents through the inductances at and voltages across 
the capacitances at −= 0t ), and b) by inspection of the equivalent 
circuit which arose after switching, i.e., at t = 0, we have to find all other 
quantities by using Kirchhoff’s two laws and/or any known method of 
circuit analysis. For determining the initial values the forced response 
must also be found. Let us now introduce the procedure of finding 
integration constants in more detail. 

Consider a first order transient response and assume, for instance, 
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that the response we are looking for is a current response. Then its 
natural response is  

st
n Aeti =)( . 

 Knowing the current initial value )0( +i  and its force response 
)(ti f  we may find  

                                        )0()0( fiiA −= +                         (1.58) 

If the response is of the second order and the roots of the 
characteristic equation are real, then  

                                        tsts
n eAeAti 21

21)( +=                        (1.59) 

and after differentiation, we obtain  

tsts
n eAseAsti 21

2211
/ )( +=                     

(1.59a) 

Suppose that we found i(0) and )0(/i , and also )0(fi  and )0(/
fi , 

then with equation 1.57  

                                 
)0()0()0(

)0()0()0(
///
fn

fn

iii

iii

−=

−=
,                             (1.60) 

and in accordance with equation 1.55 we have two equations for 
determining two unknowns: 1A

 
and 2A
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/
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                           (1.61) 

The solution of equation 1.61 yields  
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If the roots of the characteristic equation are complex-conjugate, 
njs ωα2,1 ±=  , then 1A

 
and 2A

 
are also complex-conjugate, 

θ
2,1

jAeA ±=  and the natural response (equation 1.59) may be written 
in the form  

β)ωsin()( αωαθωαθ +=+= −−−−− tBeeeAeeeAeti n
ttjtjtjtj

n
nn   (1.62) 

where B = 2A and β = θ + 90°. Taking a derivative of equation 1.62 we 
will have  

                                    
β)ωcos(ωβ)ωsin(α)( αα/ +++−= −− teBteBti n

t
nn

t
n           (1.63)  

Equations 1.62 and 1.63 for instant t = 0, with the known initial 
conditions (equation 1.60), yield  
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By division of the second equation by the first one, we have  
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and the solution is  
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βsin
)0(niB =                   (1.65b) 

 The natural response (equation 1.62) might be written in a 
different form (which is preferred in some textbooks)  

                                     )ωcosωsin()0( α tNtMei nn
t

n += −                      
(1.66) 
where  

                             M = B cos β    and    N = B sin β                       (1.67)  

Then, by differentiating equation 1.66 and with the known initial 
conditions, the two equations for determining two unknowns, M and N, 
may be written as  

                                    
)0(αω

)0(
/
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n

iNM
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=−

=
                           (1.68a) 

and  

                                    
n

nn iiM
ω

)0(α)0(/ +
=                              (1.68b) 

Knowing M and N we can find B and β  and vice versa. Thus for 
instance  

221            tanβ NMB
M
N

+== −  

(substituting M and N from equation 1.68 into these expressions yields 
equation 1.65).  

If the characteristic equation is of an order higher than two, the 
higher derivatives shall be found and the solution shall be performed in 
accordance with equation 1.55. 

Example 1.8  

Using the results of Example 1.6 (Fig. 1.14), find the two 
integration constants of the natural response of current 0i .  
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Solution  

From Example 1.6 it is known that )0(0i  = −0.5 A and )0(/
0i  = 

−75 As− 1 .To find the two constants of the integration we have to 
know: 1) the two roots of the second order characteristic equation and 2) 
the forced response.  

1)In order to determine the characteristic equation we must short-
circuit the voltage sources and find the input impedance by opening, for 
instance, the inductance branch 

ld

ld

in
R
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R

R
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R
sLRZ

++

⎟
⎠
⎞

⎜
⎝
⎛ +

++= 1

1

2

2

1  

Equaling zero and substituting the numerical values, we obtain the 
characteristic equation  

                s2 = 350s + 9,17· 410  = 0, 1
2,1  247175 −±−= sjs  

2) From the circuit in the steady-state operation we have  

Ai f  1
10100

110
,0 −=

+
−

= . 

Now we can find the initial values of the natural response. With 
equation 1.60 and noting that 0/

,0 =fi , we have  
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 Since the roots are complex numbers, we shall use equation 1.65   
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2. TRANSIENT RESPONSE OF BASIC CIRCUITS 

2.1. INTRODUCTION 

In this chapter, we shall proceed with transient analysis and apply 
the classical approach technique, which was introduced in the previous 
chapter, for a further and intimate understanding of the transient 
behaviour of different kinds of circuits. It will be shown that by 
applying the so-called five-step solution we may greatly simplify the 
transient analysis of any circuit, upon any interruption and under any 
supply, so that the determination of transient responses becomes a 
simple procedure.  

Starting with relatively simple RC and RL circuits, we will 
progress to more complicated RLC circuits, wherein their transient 
analysis is done under both kinds of supplies, d.c. and a.c. The emphasis 
is made on the treatment of RLC circuits, in the sense that these circuits 
are more general and are more important when the power system 
networks are analyzed via different kinds of interruptions. All three 
kinds of transients in RLC circuit, overdamped, underdamped and 
critical damping, are analyzed in detail.  

In power system networks, when interrupted, different kinds of 
resonances, on a fundamental or system frequency, as well as on higher 
or lower frequencies, may occur. Such resonances usually cause excess 
voltages and/or currents. Thus, the transients in an RLC circuit under 
this resonant behaviour are also treated and the conditions for such 
overvoltages and overcurrents have been defined.  

It is shown that using the superposition principle in transient 
analysis allows the simplification of the entire solution by bringing it to 
zero initial conditions and to only one supplied source. The theoretical 
material is accompanied by many numerical examples.  

2.2. THE FIVE STEPS OF SOLVING PROBLEMS IN 
TRANSIENT ANALYSIS 

As we have seen in our previous study of the classical method in 
transient analysis, there is no general answer, or ready-made formula, 
which can be applied to every kind of electrical circuit or transient 
problem. However, we can formulate a five-step solution, which will be 
applicable to any kind of circuit or problem. Following these five steps 
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enables us to find the complete response in transient behaviour of an 
electrical circuit after any kind of switching (turning on or off different 
kinds of sources, short and/or open-circuiting of circuit elements, 
changing the circuit configuration, etc.). We shall summarize the five-
step procedure of solving transient problems by the classical approach 
as follows: 

• Determination of a characteristic equation and evaluation of its 
roots. Formulate the input impedance as a function of s by inspection of 
the circuit, which arises after switching, at instant t = +0

 
. Note that all 

the independent voltage sources should be short-circuited and the 
current sources should be open-circuited. Equate the expression of 

)(sZin  to zero to obtain the characteristic equation 0)( =sZin  . Solve 
the characteristic equation to evaluate the roots.  

The input impedance can be determined in a few different ways: 
a) As seen from a voltage source; b) Via any branch, which includes one 
or more energy storing elements L and/or C (by opening this branch). 
The characteristic equation can also be obtained using: c) an input 
admittance as seen from a current source or d) with the determinant of a 
matrix (of circuit parameters) written in accordance with mesh or node 
analysis.  

Knowing the roots ks
 
the expression of a natural response (for 

instance, of current) may be written as  

i (t) = ∑
k

ts
k

keA  , for real roots (see 1.31) 

or  

∑ +=
k

kknkn tBti )βωsin()( , , for complex roots (see 1.33) 

• Determination of the forced response. Consider the circuit, 
which arises after switching, for the instant time ∞→t , and find the 
steady-state solution for the response of interest. Note that any of the 
appropriate methods (which are usually studied in introductory courses) 
can be applied to evaluate the solution )(ti f .  
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• Determination of the independent initial conditions. Consider 
the circuit, which existed prior to switching at instant −= 0t . Assuming 
that the circuit is operating in steady state, find all the currents through 
the inductances )0( −Li  and all the voltages across the capacitances 

)0( −cv . By applying two switching laws (1.35) and (1.36), evaluate the 
independent initial conditions  

                          )0()0(    ),0()0( −+−+ == ccLL vvii                   (2.1) 

• Determination of the dependent initial conditions. When the 
desirable response is current or voltage, which can change abruptly, we 
need to find their initial values, i.e. at the first moment after switching. 
For this purpose the inductances must be replaced by current sources, 
having the values of the currents through these inductances at the 
moment prior to switching )0( −Li  and the capacitances 
should be replaced by voltage sources, having the values of the voltages 
across these capacitances prior to switching )0( −cv . If the current 
through an inductance prior to switching was zero, this inductance 
should be replaced by an open circuit (i.e., open switch), and if the 
voltage across a capacitance prior to switching was zero, this 
capacitance should be replaced by a short circuit (i.e., closed switch). 
By inspecting and solving this equivalent circuit, the initial values of the 
desirable quantities can be found. If the characteristic equation is of the 
second or higher order, the initial values of the derivatives must also be 
found. This can be done by applying Kirchhoff’s two laws and using the 
other known initial conditions. 

• Determination of the integration constants. With all the known 
initial conditions apply equations (1.58), (1.61) or (1.65), (1.68), and by 
solving them find the constants of the integration (see section1.8). The 
number of constants must be the same as the order of the characteristic 
equation. For instance, if the characteristic equation is of the first order, 
then only one constant of integration has to be calculated as 

                               )0()0( fiiA −= + ,                               (2.2a) 

and the complete response will be  
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                           st
ff eiititi )]0()0([)()( −+= +                    (2.2b) 

Keeping the above-classified rules in mind, we shall analyze (in 
the following sections) the transient behaviour of different circuits.  

2.3. FIRST ORDER RL CIRCUITS 

2.3.1. RL circuits under d.c. supply 

Let us start with a simple RL series circuit, which is connected to 
a d.c. voltage source, to illustrate how to determine its complete 
response by using the 5-step solution method. This circuit has been 
previously analyzed (in its short-circuiting behaviour) by applying a 
mathematical approach.  

• Determining the input impedance and equating it to zero yields  

                                 0)( =+= sLRsZin                               (2.3a) 

The root of these equations is  

                                          
L
Rs −=                                         (2.3b) 

Thus, the natural response will be  

                                  
t

L
R

n Aeti
−

=)(                                      (2.3c) 

• The forced response, i.e. the steady-state current (after the 
switch is closed, at ∞→t , the inductance is equivalent to a short 
circuit) will be  

                                   ∞== I
R

Vti s
f )(                                     (2.4) 

• Because the current through the inductance, prior to closing the 
switch, was zero, the independent initial condition is  

0)0()0( == −+ LL ii  
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• Since no dependent initial conditions are required, we proceed 
straight to the 5th step.  

• With equation 2.2a we have  

∞−=−= I
R

VA s0 , 

and 
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Note that the natural response, at t = 0, is exactly equal to the 
steady-state response, but is opposite in sign, so that the whole current at 
the first moment of the transient is zero (in accordance with the initial 
conditions). It should once again be emphasized that the natural 
response appears to insure the initial condition (at the beginning of the 
transients) and disappears at the steady state (at the end of the 
transients). It is logical therefore, to conclude that in a particular case, 
when the steady state, i.e., the forced response at t = 0, equals the initial 
condition, the natural response will not appear at all.  

The time constant in this example is  

sR
L 1   τgeneralin or      τ ==  

The time constant, in this example, is also found graphically as a 
line segment on the asymptote, i.e. on the line of a steady-state value, 
determined by the intercept of a tangent to the curve i(t) at t = 0 and the 
asymptote.  

Knowing the current response, we can now easily find the 
voltages across the inductance, Lv

 
and the resistance, Rv

 
:  

t
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and  
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⎟
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sR eVRiv 1 , 

where ∞= RIV . 
As we can see at the first moment the whole voltage is applied to 

the inductance and at the end of the transient it is applied to the 
resistance. This voltage exchange between two circuit elements occurs 
gradually during the transient. 

Before we turn our attention to more complicated RL circuits, 
consider once again the circuit of Fig1.6, which is presented here (for 
the reader’s convenience) in Fig.2.1(a). The time constant of this circuit 
has been found (see(1.20)) and is the same as in a series RL circuit. 

Therefore the natural response (step1) is 
t

L
R

Ae
−

. The forced response 
(step2) here is sfL Ii =,  and the initial value (step 3) is zero. Hence, the 

integration constant subsequently (step 5) is ss IIA −=−= 0 . Thus, 

the complete response will be ⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−=

− t
L
R

sL eIi 1 , which is in the same 

form as in the RL series circuit.  

LRI
iL

LRI
iL

1

2

ba  
Fig.2.1 

To complete our analysis of a simple RL series circuit, consider 
the circuit in Fig. 2.1(b), in which the switch changes its position from 
‘‘1’’ to ‘‘2’’ instantaneously and the inductance ‘‘discharges’’ through 
the resistance. In this case, the natural response, obviously, is the same 
as in the circuit (a), but the forced response is zero. Therefore, we have 
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t
L
R

s
t

L
R

L eIAei
−−

== , where sIA =
 
since the initial value of the 

inductance current (prior to switching) is sI . Verifying the voltage 
response is left to  the reader. 

Let us illustrate the 5-step method by considering more 
complicated circuits in the following numerical examples.  

Example2.1  

In the circuit, Fig. 2.2, find current )(2 ti  after opening the switch. 
The circuit parameters are 1V

 
= 20 V, 2V  

 
= 4 V, 1R

 
= 8 Ω, 2R

 
= 2 Ω, 

3R
 
= 4R

 
= 16 Ω and L = 1 mH.  

Solution  

1) We start our solution by expressing the impedance Z(s) of the 
circuit that arises after switching, at the instant t = +0 . We shall 
determine )(sZin  as seen from source 2V

 
.(However, the impedance 

)(sZin  can be found in a few different ways, as will be shown further 
on.) By inspecting the circuit we have  

43

43
2)(

RR
RRRsLsZin +

++= . 

R2R1

R3
R4V1 V2

L

 
Fig 2.2 

Substituting the numerical values and equating the expression to 

zero yields  

08210 3 =++− s . 
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 This equation has the root  
1 100 −−= ss  and t = 0.01 s, 

 and the natural response will be  
t

n Aei 100
,2

−= .  

2) The forced response, i.e., the steady-state current fi ,2  
, is found 

in the circuit, that is derived from the given circuit after the switching, at 
∞→t , while the inductance behaves as a short circuit  

A
R
Vi

eq
f  4,0

10
42

,2 === . 

3) The independent initial condition, i.e., )0(Li  is found in the 
circuit prior to switching. Using Thevenin’s equivalent for the left part 
of the circuit, as shown in (d), we have  

A
RR
VVii

Th

Th  1
42

104)0()0(
2

2
22 −=

+
−

=
+
−

== −+ . 

4) None of the dependent initial conditions is needed.  

5) In order to evaluate constant A, we use equation 2.2a: 
AiiA f  4,14,01)0()0(2 −=−−=−= + . Thus the complete response is  

Aeti t  4,14,0)( 100
2

−−= . 

Example 2.2  

For the circuit shown in Fig. 2.3 find the current response )(1 ti  
after closing the switch. The circuit parameters are: 21 RR =

 
= 20 Ω, 1L

 
= 0.1 H , 2L

 
= 0.4 H , sV  = 120 V.  
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R1
V

R2

L2

L1

 
Fig 2.3 

Solution 

1) The input impedance is found as seen from the 2L
 
branch (we just 

‘‘measure’’ it from the open switch point of view), with the voltage source 
short-circuited  

11

11
22)(

sLR
sLRRsLsZin +

++=  

Equating this expression to zero and after simplification, we get 
the characteristic equation  

0
21

21

21

2112112 =+
++

+
LL
RRs

LL
LRLRLRs , 

or by substituting the numerical data  

010103 422 =+⋅+ ss . 

Thus, the roots of this equation are  

1
2

1
1  262          2,38 −− −=−= ssss , 

and the natural response is  

tt
n eeAi 2622,38

1,1
−− += . 

2) By inspecting the circuit after the switch is closed, at ∞→t , 
we may determine the forced response  
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A
R
Vi s

f  6
20

120

1
,1 === . 

3) By inspection of the circuit prior to switching we observe that 

AiL  6
20

120)0(1 ==−  and 0)0(2 =−Li . Therefore, the independent 

initial conditions are 

0)0(           , 6)0( 21 == ++ LL iAi . 

4) Since the characteristic equation is of the second order, and the 
desired response, which is a current through a resistance, can be 
changed abruptly, we need its two dependent initial conditions, namely:  

0
1    and   )0(

=tdt
dii . 

By inspection of the circuit for instant += 0t , we may find )0(1i  
= 6 A. (Note that in this specific case the current 1i  

does not change 
abruptly and, therefore, its initial value equals its steady-state value, but 
because the circuit is of the second order, the transient response of the 
current is expected.)  

By applying KCL we have 211 LL iii −=
 
and after the differentiation 

and evaluation of t = 0 we obtain  

)0(1)0(1
2

2
1
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2

0

1

0
LL

ttt
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L
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Ldt
di

dt
di
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===

. 

Since sR Vv =)0(1 , then )0(1Lv  = 0 and 120)0()0( 21 == LR vv V. 
Therefore, we have  

300
4,0

1200
0

−=−=
=tdt

di
, 

and we may obtain two equations  
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di
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diAsAs
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. 

Solving these two equations yields 34,11 −=A , 34,12 =A  and 
the answer is 

Aeeti t  34,134,16)( 2622,38
1

−− +−=  

Example2.3  

Consider the circuit of the transformer of Example1.2, which is 
shown here in Fig.2.4 in a slightly different form. For measuring 
purposes, the transformer is connected to a 120 V d.c.-source. Find both 
current 1i  

and 2i  
responses.  

20V

20Ω 1Ω 9Ω

0.005H0.02H0.06H

i1 i2

0.03H

 
Fig.2.4 

1) The characteristic equation and its roots have been found in 
Example 1.2: 1

2
1

1  1160  , 86 −− −=−= ssss . Therefore, the natural 
responses are  

tt
n

tt
n

eBeBi

eAeAi
1160

2
86

1,2

1160
2

86
1,1

−−

−−

+=

+=
. 

2) The forced responses are found by inspection of the circuit 
after switching ( ∞→t  ):  
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s
f iA

R
Vi . 

3) The independent initial conditions are zero, since prior to 
switching no currents are flowing through the inductances: 

0)0()0(    ,0)0()0( 2211 ==== −+−+ iiii . 

4)In order to determine the integration constant we need to 
evaluate the current derivatives. By inspection of the circuit in Fig.2.4, 
we have )0(1Lv  = 120 V, )0(2Lv  = 0, and  

0

120

0

1

0

2
2

0

2

0

1
1

=+

=+

==

==

tt

tt

dt
diM

dt
diL

dt
diM

dt
diL

. 

Solving these two relatively simple equations yields  

6000   ,5000
0

2

0

1 −==
== tt dt

di
dt
di

. 

5) With the initial value of 
20200)0()0()0( ,11,1 −=−=−= fn iii  and the initial value of its 

derivative  

500005000
0

,1

0

1

0

,1 =−=−=
=== t

f

tt

n

dt
di

dt
di

dt
di

. 

we obtain two equations in the two integration constants of current 1i  

,5000
20

2211

21

=+
−=+

AsAs
AA

 

for which the solution is: 7,191 −=A , 3,02 −=A . In a similar way, the 
two equations in the two integration constants of current 2i  
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,6000
0

2211

21

−=+
=+
BsBs

BB
 

for which the solution is 52,01 −=B , 52,02 =B .  
Therefore, the current responses are  

.52,052,0

3,04,1920
116086

2

116086
1

tt

tt

eei

eei
−−

−−

+−=

−−=
 

Note that the second exponential parts decay much faster than the 
first ones. Note also that the second exponential term in 1i  

is relatively 
small and might be completely neglected.  

Example2.4  

As a final example of inductive circuits let us consider the 
‘‘inductance’’ node circuit, which is shown in Fig. 2.5. Find the currents 
1i  

and 2i  
after switching, if the circuit parameters are: 21 LL =

 
= 0.05 

H, 3L
 
= 0.15 H , 321 RRR ==

 
= 1 Ω and sV  = 15 V.  

V

R1

L1

R2

L2

R3

L3
i1 i2

 
Fig.2.5 

Solution  

1) Let us determine the characteristic equation by using mesh 
analysis. The impedance matrix is  
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⎥
⎦

⎤
⎢
⎣

⎡
++−
+−+

=

=⎥
⎦

⎤
⎢
⎣

⎡
++++−

+−+++

22,0         )115,0(
)115,0(        22,0    

           

)(           )(     
)(          )(

323233

313131

ss
ss

RRLLsRsL
RsLRRLLs

 

 
Equating the determinant to zero and after simplification, we 

obtain the characteristic equation  

035,0017,0 2 =++ ss ,  
for which the roots are 

. 20       6,8 11
1

−− −−= sss  

Thus, the natural responses of the currents are  

.20
2

6,8
1,2

20
2

6,8
1,1

tt
n

tt
n

eBeBi

eAeAi
−−

−−

+=

+=
 

2) The steady-state values of the currents are zero, since after 
switching the circuit is source free.  

3) The independent initial conditions can be found by inspection 
of the circuit in Fig. 2.5 prior to switching and keeping in mind that all 
the inductances are short-circuited  

. 5
2

10)0()0(        

 10
5,1

15
//

)0()0(

22

321
11

Aii

A
RRR

Vii s

===

==
+

==

−

−

 

Note that only two initial independent currents can be found 
(although the circuit contains three inductances), since the third current 
is dependent on two others. However, because the circuit is of the 
second order, the two initial values are enough for solving this problem.  

4) Next, we have to find the initial values of the current 
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derivatives for which we must find the voltage drops in the inductances 
)0(1Lv  and )0(2Lv  for the instant of switching, i.e., t = 0. By 

inspection of the circuits in Fig. 2.5, we have  

             
).0()0(                         

,15)0()0(       ,15)0()0(

32

3121

LL

LLLL

vv
vvvv

=
−=+−=+

       (2.6) 

With KCL we may write 321 iii +=
 
and by differentiation  

.or        
3

3

2

2

1

1321
L
v

L
v

L
v

dt
di

dt
di

dt
di LLL +=+=  

With equation 2.6b we have  

11
132

32
32

32
1

1
 75,60

)(
or        ,111

LLLLL vv
LLL

LLvv
LL

v
L

=
+

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+= , 

and with equation 2.6a 1Lv
 
= −8.57 V and 2Lv  

 
= −6.43 V. Therefore,  

. 6,128
05,0
43,6

 4,171
05,0
57,8

1

1

2

2

0

2

1

1

0

1

−

−

−=−==

−=−==

=

=

As
L
v

dt
di

As
L
v

dt
di

L

t

L

t  

5) We may now obtain a set of equations to evaluate the 
integration constant  

,4,171
10

2211

21

−=+
=+
AsAs

AA
 

for which the solution is 5,21 ≅A , 5,72 ≅A . In a similar way we can 
obtain 

,6,128
5

2211

21

−=+
=+
BsBs

BB
 

and the solution is 5,21 −≅B , 5,72 ≅B . Therefore, two current 
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responses are  

.5,75,2

5,75,2
206,8

2

206,8
1

tt

tt

eei

eei
−−

−−

+−=

+=
 

2.3.2 RL circuits under a.c. supply 

As we already know, the natural response does not depend on the 
source function, and therefore the first step of the solution, i.e. 
determining the characteristic equation and evaluating its roots, is the 
same as in previous cases. This is also understandable from the fact that 
the natural response arises from the solution of the homogeneous 
differential equation, which has zero on the right side. The forced 
response can be determined from the steady-state solution of the given 
circuit. The symbolic, or phasor, method should be used for this 
solution.  

To illustrate the above principles, let us consider the circuit shown 
in Fig.2.6. The solution will be completed by applying the five steps as 
previously done. In the first step, we have to determine the characteristic 
equation and its root. However, for such a simple circuit it is already 
known that s = −R/L. Therefore the natural responseis 

                                 
R
LAei

t

n ==
−

      τ,τ .                            (2.7) 

In the next step, our attention turns to obtaining the steady-state 
current.  

v(t)
i(t)

R

L

 
Fig.2.6 

Applying the phasor method we have  
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)φψ(
)ω( 22

−∠
+

== v
mm

m
LR

V
Z

V
I , 

where vj
mm eVV ψ=  and ij

m IeI ψ=  are voltage and current phasors 

respectively and )/ω(tanψψφ 1 RLiv
−=−=  is the phase angle 

difference between the voltage and current phasors. Thus,  

                                     )ψωsin( imf tIi += ,                           (2.8) 
where  

22 )ω( LR

VI m
m

+
= . 

In the next two steps, 3 and 4, we shall determine the only initial 
condition, which is necessary to find the current through the inductance. 
Since prior to switching this current was zero, we have 

0)0()0( == −+ ii . In the final step, with this initial value we may 
obtain the integration constant  

                                        imf IiiA ψsin)0()0( −=−= .           (2.9) 

Thus, the complete response of an RL circuit to applying an a.c. 
voltage source is  

                                        

τψsin)ψωsin()(
t

imimnf eItIiiti
−

−+=+= .                        (2.10) 

Example 2.5  

In an RL circuit of Fig. 2.6, the switch closes at t = 0. Find the 
complete current response, if R = 10 Ω, L = 0.01 H , and 

)151000sin(2120 °+= tvs  V.  

 
Solution. 
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1) The time constant of the circuit is  

ms
R
L  110

10
01,0τ 3 ==== −  

and the natural response is  

t
n Aei 1000−= . 

2) The steady-state current is calculated by phasor analysis. The 
impedance of the circuit is Z(jω) = R + jωL = 10 + j10 = Ω∠ °45210 , 

the voltage source phasor is 
°

= 152100 j
sm eV  . Thus, the current 

phasor will be  

A
Z

V
I sm

f
°

°

°
−∠=

∠
∠

== 3010
45210
152100

 

and the current versus time is 

Ati f  )301000sin(10 °−=  

3)The initial condition is zero, i.e., 0)0()0( == −+ ii . 

4) Non-dependent initial conditions are needed.  
5) The integration constant can now be found 

5)30sin(100)0()0( =−−=−= °
fiiA  and the complete response is  

Aetti t10005)301000sin(10)( −° +−= . 

Example2.6  

At the receiving end of the transmission line in a no-load 
operation, a short-circuit fault occurs. The impedance of the line is 

Ω+= )51( jZ  and the a.c. voltage at the sending end is 10 kV at 60 
Hz.    a)  Find the transient short-circuit current if the instant of short- 
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circuiting is when the voltage phase angle is 1) φ
4
π
+− ; 2) φ

2
π
+−  

and b) estimate the maximal short-circuit current and the applied voltage 
phase angle under the given conditions.  

Solution  

a) First we shall evaluate the line inductance L = x/ω = 5/2π60 = 
0,01326 ≅  13,3 mH. The voltage at the sending end versus time is 

)ψωsin(210 vs tv += .  

 1) The time constant of the line (which is represented by RL in 
series) is τ = L /R = 13,3/1 = 13,3 ms or s = −1/τ = − 75,2 1−s  and the 
natural current is  

t
n Aei 2,75−= . 

2) The steady-state short current (r.m.s.) is found using phasor 
analysis:  

°
° −∠=

∠
∠

=
+
∠

= 7,78ψ96,1
7,781,5

ψ10
51
ψ10

v
vv

f j
I . 

Thus 

°−+= 7,78ψ377sin( vmf tIi , 

where 296,1=mI  A and ω = 2π60 = 377 rad/s.  

3) Because of the zero initial condition, 0)0()0( == −+ ii .  

5) We omit step 4) (since no dependent initial conditions are 
needed) and evaluate constant A for two cases:  

(1) vψ  = −180°/4+78,7° = 33,7° 

and 
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mmf IIiia
2
2)7,787,33sin(0)0()0( =−−−=−= °° . 

Therefore, the complete response is  

t
mmsc eItIi 2,75

2
2

4
πωsin −+⎟
⎠
⎞

⎜
⎝
⎛ −=  

 (2) vψ  = −180°/2 + 78,7° = − 11,3 °  

and  

mmf IIiia =−−−=−= °° )7,783,11sin(0)0()0( . 

Therefore, the complete response is  

t
mmsc eItIi 2,75

2
πωsin −+⎟
⎠
⎞

⎜
⎝
⎛ −= . 

b) The maximal value of the short-circuit current is dependent on 
the initial phase angle of the applied voltage and will appear if the 
natural response is the largest possible one as in (2), i.e., when mIA = . 
The instant at which the current reaches its peak is about half of the 
period after switching. To find the exact time we have to equate the 
current derivative to zero. Thus,  

dt
di

dt
di

dt
di

dt
di

dt
di nfnfsc −==+= or      ,0 . 

Performing this procedure we may find  

τφ)ψsin(
τ
1φ)ψωcos(ω

t

vmvm eItI
−

−=−+ , 

or in accordance with (2)  
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ωτ
ω

ωτ
1

2
πωcos

t

et
−

=⎟
⎠
⎞

⎜
⎝
⎛ −  

Taking into consideration that  

5ωτ =⋅=
R
L

L
x

 

we may solve the above transcendental equation finding  

radt  03,3ω (max) ≅ . 

Therefore, the short-circuit current will reach its maximal value at 
radt  03,3ω (max) ≅ , and this value will be  

mm IeII 54,1
2
π03,3sin 5

03,3

max ≅⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
+⎟

⎠
⎞

⎜
⎝
⎛ −=

−
. 

Example 2.7  

The switch in the circuit of Fig. 2.7 closes at t = 0, after being 
open for a long time. Find the transient current )(3 ti , if 321 RRR ==  = 

10 Ω, L = 0.01 H and 2120=smV  V at f = 50 Hz and vψ  = 30°.  

V R3

R1

R2

L
 

Fig2.7 

Solution.  

1) The simplest way to determine the characteristic equation is by 
observing it from the inductive branch  
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0//)( 312 =++= RRRsLsZ . 

With the given data we have 0,01s + 15 = 0, or  1 1500 −−= ss , 
 and  

t
n Aei 1500

,3
−= . 

2) The forced response of the current will be found by nodal 
analysis  

°

+
+

∠ ∠==

⎥
⎦

⎤
⎢
⎣

⎡
+

+
+

=
°

6,351,41
111

314,01
12
30120

321
1 j

L

s
a

RjxRR
R

V
V , 

where Lx
 
= ωL = 314·0,01 = 3,14 Ω. Thus   

)6,35ωsin(211,4     and   6,3511,4 ,3
3

3
°° +=∠== ti

R
V

I f
a . 

3) The independent initial condition may be obtained from the 
circuit prior to switching:  

°∠=
++

= 1,2192,5
21 L

s
L jxRR

V
I . 

Therefore, )0( −Li  = 5.92 2  sin 21,1 ° = 3.0 A. 

4) With the superposition principle being applied to the circuit in 
Fig. 2.7, we obtain  

Aiii  74,2
2
3

20
260)0()0()0( //

3
/
33 =−=+= . 

Note that the current 3i  
is a resistance current and it changes 

abruptly.  

5) The integration constant is now found as  
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64,06,35sin211,474,2)0()0( ,33 −=−=−= °
fiiA . 

Therefore,  
Aetti t1500

3 64,0)6,35ωsin(211,4)( −° −+= . 

Example 2.8  

As our next example consider the circuit in Fig. 2.8 and find the 
current through the switch, which closes at t = 0 after being open for a 
long time. The circuit parameters are: 1R

 
= 2 Ω, 1x

 
= 10 Ω, 2R

 
= 20 Ω, 

2x
 
= 50 Ω and 15=mV  V at f = 50 Hz and vψ  = −15°.  

R1

R2

L1

L2

V

 
Fig2.8 

Solution  

1) After short-circuiting, the circuit is divided into two parts, so 
that each of them has two different time constants:  

. 125
τ
1     , 96,7

20314
50

ω
τ

, 9,62
τ
1     , 9,15

2314
10

ω
τ

1

2
2

2

2

2

2
2

1

1
1

1

1

1

1
1

−

−

−=−==
⋅

===

−=−==
⋅

===

ssms
R
x

R
L

ssms
R
x

R
L

 

Thus, the natural response of the current contains two parts:  

tt
nsw eAeAi 125

2
9,62

1,
−− += . 

2) The right loop of the circuit is free of sources, so that only the 
left side current will contain the forced response:  
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22,1
102

15

+
=fi sin (314t − 15°− 1tan−  10/2) = 1,47 sin (314t − 

93.7°) A. 

3) The independent initial conditions, i.e., the currents into two 
inductances prior to switching, are the same:  

222
6022

15)0()0()0(
+

=== −−+ LLL iii sin (− 15° − 1tan−  60/22) = 

-0,234 A. 

4–5) Since non-dependent initial conditions are required, we may 
now evaluate the integration constants: 

)0()0( ,11 fL iiA −=  = −0.234 − 1,47 sin(−93,7) = 1,23, 

0)0(2 −= LiA  = −0,234. 

Therefore, the answer is:  

Aeetiii tt
sw

1259,62
21 234,023,1)7,93314sin(47,1 −−° ++−=−= . 

Example 2.9  

Our final example of RL circuits will be the circuit shown in Fig. 
2.9, in which both kinds of sources, d.c. and a.c., are presented. 
Consider the above circuit and find the transient current through 
resistance 1R

 
. The circuit parameters are: 21 RR =  = 5 Ω, L = 0.01 H , 

sI
 
= 4 A d.c. and )(tvs  = 100 2 sin (1000t + 15°) V.  

V I

R1

R2

L

 
Fig.2.9 
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Solution  

1)The characteristic equation for this circuit may be determined as  

01001,0      0)( 21 =+→=++= ssLRRsZ , 

which gives s = − 1000 1−s  or τ = 1 ms.  
Thus,  

t
n Aei 1000

,1
−= . 

2) The forced response (using the superposition principle) is  

22 1010

21002
+

+−=+= vsIsf iii sin (1000t + 15°− 45°) =  

= −2 + 10 sin(1000t − 30°) A. 

3) The inductance current prior to (and after) switching is 
AIii sLL  4)0()0( === −  

4) The initial value of the current through 1R
 
(the dependent 

initial condition) is found in the circuit of Fig.2.9. By inspection of this 
circuit, we shall conclude that this current is zero (since both branches 
with current  sources, which possess an infinite inner resistance, behave 
as an open circuit for the voltage source, and the two equal current 
sources are connected in the right loop in series without sending any 
current to the left loop). Thus, 0)0(1 =i .  

5) The integration constant, therefore, is obtained as  

=−= )0()0( ,11 fiiA  0 + 2 − 10 sin (− 30°) = 7 A. 

Hence,  

)(1 ti  = −2 + 10sin(1000t −30°) + 7 te 1000− A. 
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2.4. RC CIRCUITS 

We shall approach the transient analysis of RC circuits keeping in 
mind the principle of duality. As we have noted the RC circuit is dual to 
the RL circuit. This means that we may use all the achievements and 
results we obtained in the previous section regarding the inductive 
circuit for capacitance circuit analysis. For instance, the time constant of 
a simple RL circuit has been obtained as Lτ  

 
= L /R, for a simple RC 

circuit it must be cτ  
= C/G (i.e., L is replaced by C and R by G, which 

are dual elements). Since G = 1/R, the time constant of an RC circuit 
can, of course, be written as cτ  

= RC. In the following sections, more 
examples of such duality will be presented.  

2.4.1 Discharging and charging a capacitor 

Consider once again the RC circuit (also see section1.3.1) shown 
in Fig.2.10, in which R and C are connected in parallel. Prior to 
switching the capacitance was charged up to the voltage of the source 

sV . After opening the switch, the capacitance discharges through the 
resistance.  

V

R

C

 
Fig.2.10 

The time constant of the circuits is τ = RC and the initial value of 
the capacitance voltage is 0cV

 
= sV . The forced response component of 

the capacitance voltage is zero, since the circuit after switching is source 
free. Thus,  

                                        RC
t

cc eVtv
−

= 0)( .                              (2.11) 

The current response will be  
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                        RC
t

cc
c e

R
V

dt
dvCti

−
−== 0)( .                         (2.12) 

Note that 1) the current changes abruptly at t = 0 from zero (prior 

to switching) to 
R

Vc0  and 2) its direction is opposite to the charging 

current.  
Let us now show that the energy stored in the electric field of the 

capacitance completely dissipates in the resistance, converging into 
heat, during the transients. The energy stored is 

                                         
2

2
0c

e
CVw =                              (2.13) 

The energy dissipated is 

                              

22

2
0

0

22
0

0

22
0

0

2
cRC

t
cRC

t
cc

R
CVe

R
RCVdte

R
Vdt

R
vw =−=== ∞−∞ −∞

∫∫      (2.14) 

Hence, the energy conservation law has been conformed to. 
Consider next the circuit of Fig. 2.11, in which the capacitance is 
charging through the resistance after closing the switch. The natural 
response of this circuit is similar to the previous circuit, i.e.,  

RC
t

nc Aev
−

=,  

V

R

C

 
Fig2.11 

However, because of the presence of a voltage source, the forced 
response (step 2) will be sfc Vv =,  , since in the steady-state operation 
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the current is zero (the capacitance is fully charged), and the voltage 
across the capacitance is equal to the source voltage.  

Next, we realize that the initial value of the capacitance voltage, 
prior to switching (step 3), is zero, and the constant of integration (step 
5) is obtained as ss VVA −=−= 0 .  

The complete response, therefore is  

                              ⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−=−=

−−
RC
t

s
RC
t

ssc eVeVVtv 1)( .            (2.15) 

The current response can now be found as  

                               RC
t

sc
c e

R
V

dt
dvCti

−
==)( .                                (2.16) 

2.4.2 RC circuits under d.c. supply 

Let us now consider more complicated RC circuits, fed by a d.c. 
source. If, for instance, in such circuits a few resistances are connected 
in series/parallel, we may simplify the solution by determining eqR  and 
reducing the circuit to a simple RC-series, or RC-parallel circuit. An 
example of this follows.  

Example 2.10  

Consider the circuit of Fig. 2.12 with 4321 RRRR ===  = 50 Ω, 
C = 100 μF and sV  = 250 V. Find the voltage across the capacitance 
after the switch opens at t = 0.  

V
C

R1

R4

R3R2
 

 
Fig2.12 

Solution  

After the voltage source is ‘‘killed’’ (short-circuited), we may 
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determine the equivalent resistance, which is in series/parallel to the 
capacitance, Fig. 2.12: 3421 //)//( RRRRReq += , which, upon 

substituting the numerical values, results in eqR  = 30 Ω. Thus, the time 
constant (step 1) is  

61010030τ −⋅⋅== CReq  = 3 ms, and 3
,

t

nc Aev
−

= , (t is in ms). 

By inspection of the circuit in its steady-state operation ( ∞→t  ) 
the voltage across the capacitor (the forced response) can readily be 
found (step 2): fcv ,  

= 50 V. The initial value of the capacitance voltage 
(step 3) must be determined prior to switching:  

V
RR

RVvv scc  125)0()0(
43

3 =
+

== −+  

Hence, the integration constant (step 5) is found to be 
fcc vvA ,)0( −=

 
= 125 − 50 = 75, and the complete response is  

                                         37550)(
t

c etv
−

+= . 

With the above expression of the integration constant (see step 5), 
the complete response in the first order circuit can be written in 
accordance with the following formula (given here in its general 
notation, for either voltage or current):  

                 τ
0,0 )()(

t

ffnf effffftf
−

−+=+= ,               (2.17) 

where 0f  
 
and 0,ff

 
are the initial values of the complete and the forced 

responses respectively. Or in the form  

                                    τ
0

τ1)(
tt

f efeftf
−−

+⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−= ,             (2.18) 
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and for zero initial conditions ( 0f  
= 0)  

                                         ⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−=

−
τ1)(
t

f eftf .                     (2.19) 

In the following examples, we shall consider more complicated 
RC circuits.  

Example 2.11  

At the instant t = 0 the capacitance is switched between two 
voltage sources, as shown in Fig. 2.13. The circuit parameters are 1R

 
= 

20 Ω, 2R
 
= 10 , 43 RR =

 
= 100 Ω, C = 0,01 F, and the voltage sources 

are 1sV
 
= 60 V and 2sV

 
= 120 V. Find voltage )(tvc  and current )(2 ti  

for t > 0.  

V1 V2

R1

R2 R3
R4

C
UC

 
 

Fig.2.13 

Solution  

1) The input impedance is:  

432 ////1)( RRR
sC

sZin += . 

Upon substitution of the numerical data and equating it to zero 
yields  
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12  12           0
6

50101 −−=→=+ ss
s

 

and the natural response becomes  

t
nc Aev 12

,
−= . 

2) The forced response is found as the voltage drop in two parallel 
resistances 4,3R

 
= 50 Ω. With the voltage division formula, we obtain  

V
RR

R
Vv sfc  100

5010
50120

4,32

4,3
, =

+
=

+
=  

3) The initial value of the capacitance voltage must be determined 
from the circuit prior to switching. Applying the voltage division once 
again, we have  

Vvv cc  50
10020

10060)0()0( =
+

== −+ . 

5) (Step 4 is omitted, as it is unnecessary). In accordance with 
equation 2.17 we obtain  

Veetv tt
c  50100)10050(100)( 1212 −− −=−+= . 

Current 2i  
can now be easily found as  

Ae
dt

dvC
R
viiti tcc

cR  52)( 12

4,3
2

−+=+=+=  

Note that the current 2i  
changes abruptly from zero to 7 A. Our 

next example will be a second order RC circuit. 

Example 2.12 
Consider the second order RC circuit shown in Fig. 2.14, having 

21000=sv
 
= 200 Ω, == 42 RR  100 Ω, 21 CC =  == 100 μF and 

two sources sV  = 300 V and sI  = 1 A. The switch opens at t = 0 after 
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having been closed for a long time. Find current )(2 ti  for t > 0.  

R4

R3R2

R1I V

C1

C2

i1 i2 i3

 
Fig2.14 

Solution  

1) We shall determine the characteristic equation by using mesh 
analysis for the circuit in Fig. 2.14 after opening the switch and with 
‘‘killed’’ sources  

011

0111

33
2

2
2

3
2

221
21

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++−

=−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+++

iR
sC

i
sC

i
sC

iRR
sCsC

 

Equating the determinant for this set of equations to zero, we may 
obtain the characteristic equation (note that 21 CC =

 
= C)  

0112 2

321 =⎟
⎠
⎞

⎜
⎝
⎛−⎟

⎠
⎞

⎜
⎝
⎛ +⎟
⎠
⎞

⎜
⎝
⎛ ++

sC
R

sC
RR

sC
 

Upon substituting the numerical data the above becomes 
0107006 42 =++ ss , and the roots are 1

1  7,16 −−= ss  and 
1

2  100 −−= ss . Therefore, the natural response becomes  

                           tt
n eAeAi 100

2
7,16

1,2
−− +=  A  
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2) By inspection of the circuit in Fig. 2.14, in its steady-state 
operation (after the switch had been open for a long time), we may 
conclude that the only current flowing through resistance 2R

 
is the 

current of the current source, i.e., sf Ii =,2  
= 1 A.  

3) In order to determine the independent initial condition, i.e. the 
capacitance voltages at t = 0, we shall consider the circuit equivalent for 
this instant of time. Using the superposition principle, we may find the 
current through resistance 3R

 
as  

A
RRR

RI
RRR

Vi s
s  5,0

400
1001

400
300

432

4

432
3 −=

++
−

++
= , 

and the voltage across capacitance 2C
 

as 
VRiVVv scc  2005,020030033202 =⋅−=−== . In a similar way  

A
RRR

RRI
RRR

Vi s
s  5,1

432

32

432
4 =

++
+

+
++

= , 

and  

44101 )0( RiVv cc ==  = 100·1.5 = 150 V.  

4) Since the response that we are looking for is the current in a 
resistance, it can change abruptly. For this reason, and also since the 
response is of the second order, we must determine the dependent initial 

conditions, namely )0(2i  and 
0

2

=tdt
di

 This step usually has an 

abundance of calculations. (This is actually the reason why the 
transformation methods, in which there is no need to determine the 
dependent initial conditions, are preferable). However, let us now 
perform these calculations in order to complete the classical approach.  

In order to determine )0(2i  we must consider the equivalent 
circuit, which fits instant t = 0. With the mesh analysis we have 

20102221 )0(])0([ ccs VVRiIiR −=+− , or 
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A
RR

RIVVi scc  5,0)0(
21

12010
2 =

+
+−

= . 

For the following calculations, we also need the currents through 
the capacitances, i.e., through the voltage sources, which represent the 
capacitances. First, we find current 3i  

:  

A
R
VVi cs  5,0

200
200300

3

20
3 =

−
=

−
=  

then  

Aiii
AiIi

c

sc

 1)0()0()0(
 5,0)0()0(

322

21

=+=
=−=

 

In order to determine the derivative of 2i , we shall write the KVL 
equation for the middle loop : 

0)( 222211 =++−−− csc vRiiIRv . 

After differentiation we have  

)()( 21
1212

21 ccC
cc ii

dt
dv

dt
dv

dt
diRR −=−=+ , 

or  

7,16)(
)(

1
21

210

2 −=−
+

=
=

cc
t

ii
CRRdt

di
. 

5) In accordance with equation 1.61 we can now find the 
integration constants  

7,16

5,0)0()0(

0

,2

0

2
2211

,2221

−=−=+

−=−=+

== t

f

t

f

dt
di

dt
diAsAs

iiAA

 

or  
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7,161007,16
5,0

21

21

−=−−
−=+

AA
AA

, 

to which the solution is 3,0    and    8,0 21 =−= AA . 

Thus the complete response is  

Aeeti tt  3,08,01)( 1007,16
2

−− +−=  

2.4.3. RC circuits under a.c. supply 

If the capacitive branch (series connected RC) switches to the a.c. 
supply of the form )ψωsin( vsms tVv += , the forced response of the 
capacitance voltage will be  

                                   )
2
πφψωsin(,, −−+= vmcfc tVv            (2.20) 

Here phase angle vψ  (switching angle), is appropriate to the 
instant of switching t = 0 

                              
22 )ω/1(ω

1

CR

V
C

V sm
cm

+
=                  (2.21a) 

and 

                               )ω/1(tanφ 1 CR−= −                          (2.21b) 

Since the natural response does not depend on the source, it is 

RC
t

fc Aev
−

=, . 

With zero initial conditions, i.e., )0(cv , the integration constant 
becomes  

                  π/2)φψsin()0()0( , −−−=−= vcmfcc VvvA .    (2.22) 

 Thus, the complete response of the capacitance voltage will be 
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⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−−−−−+=

−
RC
t

vvcmc etVtv π/2)φψsin(π/2)φψωsin()(  (2.23) 

and of the current  

                                       

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−−+−+=

−
RC
t

vvmc e
RC

tIti π/2)φψsin(
ω

1φ)ψωsin()(   (2.24) 

where  

                           
2)ω/1(1

ω
RCR

VCVI sm
cmm

+
==                    (2.25) 

and  

                             π/2)φψsin(
ω

−−= v
m
RC
IA                           (2.26) 

Since, during the transient behaviour, the natural response is 
added to the forced response of the voltage and current, it may happen 
that the complete responses will exceed their rated amplitudes. The 
maximal values of overvoltages and current peaks depend on the 
switching angle and time constant. If switching occurs at the moment 
when the forced voltage equals its amplitude value, i.e. when the 
switching angle φψ =v  and with a large time constant, the overvoltage 
may reach the value of an almost double amplitude, cmV2 . . It should be 
noted that the current in this case will almost be its regular value, since 
at the switching moment its forced response equals zero, and the initial 
value of the natural response (equation2.26) is small because of the 
large resistance due to the large time constant. On the other hand, if the 
time constant is small due to the small resistance R, the current peak, at t 
= 0, may reach a very high level, many times that of its rated amplitude. 
However the overvoltage will not occur.  

We shall now consider a few numerical examples.  
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Example 2.13  

In the circuit of Fig. 2.15, with 21 RR =
 
= 5 Ω, C = 500 μF and 

)2/πωsin(2100 += tvs , find current i(t) after switching.  

Solution  

There are two ways of finding the current: 1) straightforwardly 
and 2) first to find the capacitance voltage and then to perform the 

differentiation 
dt

dvCi c= . We will present both ways.  

R2

R1 C

v(t)

i
 

Fig2.15 

1)The time constant (step1) is 
36 105,2105005τ −− ⋅=⋅⋅== RC , therefore 1 400 −= ss  and the 

natural response is t
n Aei 400−= . The forced response (step 2) is  

)8,14117,5sin(ωφ)2/πωsin( °+=−+= ttIi mf , 

where  

AIm  5,17
)105314/1(5

2100
242
=

⋅⋅+
=

−
 

and  

°
−

− −=
⋅⋅−

= 8,51
5

)105314/(1tanφ
4

1 . 

The initial value of the capacitance voltage (the initial 
independent condition, step 3) must be found in the circuit of Fig. 2.15 
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prior to switching  

Vvc  8,40
2
π

10
37,6tan

2
πsin

37,610

37,62100)0( 1
22

=⎟
⎠
⎞

⎜
⎝
⎛ −

−
−

+

⋅
= −

− , 

where  

Ω=
⋅⋅

= −  37,6
105314

1
4cx  

The initial value of the current, which is the dependent initial 
condition (step 4) may be found from the equivalent circuit, for the 
instant of switching, t = 0:  

Ai  1,20
5

8,402100)0( =
−

=  

The integration constant and complete response (step 5) will then 
be  

)0()0( fiiA −=  = 20,1 − 17,5 sin 141,8° =  9,3 A, 

and  

i(t) = 17,5 sin(314t + 141,8°) + 9,3 te 400−  A. 

2) The difference in the calculation according to way 2) is that we 
do not need Step 4. Step 1 is the same; therefore, the natural response of 
the capacitance voltage is t

nc Aev 400
,

−= , and we continue with Step 2:  

Vt

tv fc

)8,51314sin(3,11                 

)2/π8,51π/2314sin(
37,65

37,62100
22,

°

°

+=

=−++
+

⋅
=

 

Step 3 has already been performed so we can calculate the 
complete response as  

)(tvc  = 111,3 sin( 314t + 51,8°) − 46,7 te 400−  V,  



 100

where  
)0()0( , fcc vvA −=  = 40,8−111,3sin51,8°= − 46,7. 

The current can now be evaluated as  

Aet
dt

dvCi tc  3,9)2/π8,51314sin(5,17 400−° +++==  

where 

AA

Im

 3,9)7,46)(400(105

5,173,111314105
4

4

=−−⋅=

=⋅⋅⋅=
−

−

, 

which is the same as previously obtained.  

Example 2.14  

In the circuit of Fig. 2.16, the switch closes at t = 0. Find the 
current in the switching resistance 3R . The circuit parameters are: 

321 RRR ==
 
= 10 Ω, C = 250 μF and )ψωsin(2100 vs tv +=  at f = 

60 Hz. To determine the switching angle vψ , assume that at the instant 
of switching sv  = 0 and its derivative is positive.  

Solution  

The voltage is zero if vψ  is 0° or 180°. Since the derivative of the 
sine wave at 0° is positive (and at 180° it is negative), we should choose 

vψ  = 0°.  

i3v(t) R1 R2

C
R3

 
Fig2.16 

To determine the time constant (step 1) we shall first find the equivalent 
resistance 312 // RRRReq +=

 
= 10 + 5 = 15 Ω. Thus, τ = CReq = 
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61025015 −⋅⋅  = 3,75 ms and 1 267
τ
1 −−=−= ss . Therefore, the 

natural response is  

AAei t
n  267

,3
−=  

2) The forced response shall be found by using node analysis  

0
321
=+

−
+

−
R
V

jxR
V

R
VV a

c

asa . 

Upon substituting 4105,2377
1

−⋅⋅
 = 10,6 for cx

 
, °∠0141  for 

sV  and 10 for 3R and 1R
 
the above equation becomes   

0
106,101010

141
=+

−
+

− aaa V
j

VV
 

to which the solution is  

°° −∠==−∠= 42,1159,5        ,42,119,55
3

3 R
V

IV a
a . 

The forced response, therefore, is 

fi ,3  
 
= 5,59 sin(377t − 11,42° ) A. 

3) The initial value of the capacitance voltage is found by 
inspection of the circuit prior to switching. By using the voltage division 
formula we have  

°−∠=
−
−

=
−+

−
= 07,6266

6,1020
)6,10(141)(

21 j
j

jxRR
jxV

V
c

cs
c . 

Therefore,  

)0(cv  = 66sin(−62,07°) = −58,3 V. 

4) The initial value of the current may now be found by inspection 
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of the circuit in Fig. 2.16, which fits the instant of switching, t = 0. At 
this moment, the value of the voltage source is 0)0( =sv  and the 
capacitance voltage is )0(cv  = − 58,3 V. Using nodal analysis again, we 
have  

0
1010

3,58
10

=+
+

+ aaa VVV , 

to which the solution is aV  = −19,4 V and the initial value of current is 

A
R
Vi a  94,1)0(

3
3 −== . 

5) The integration constant will be )0()0( ,33 fiiA −=  = −1,94 − 
5,59sin(−11,42°) = − 0,83, and the complete response is 

Aetti t267
3 83,0)42,11377sin(59,5)( −° −−=  

Example 2.15  

As a last example in this section, consider the circuit in Fig.2.17, 
in which R = 100 Ω, C = 10 μF and two sources are 

21000=sv sin(1000t + 45°) V and sI  = 4 A d.c. Find the response of 
the current through the voltage source after  
opening the switch.  

C
v(t) I

 
Fig2.17 

Solution  

The time constant (step 1) is τ = RC = 35 1010100 −− =⋅  = 1 ms 
or 1 1000 −−= ss  and t

n Aei 1000−= . The forced current (step 2) is 
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found as a  steady-state current in Fig. 2.17 after opening the switch 

°
°

∠=
−
∠

=
−

= 9010
100100

4521000
jjxR

V
I

c

s  

in which 

Ω=
⋅

== −  100
1010
1

ω
1

53C
xc  

Thus,  

fi  = 10 sin( 1000t + 90° ) A. 

The initial value of the capacitance voltage (step 3) must be 
evaluated in the circuit 2.17 prior to switching. By inspecting this 
circuit, and noting that the resistance and the current source are short-
circuited, we may conclude that this voltage is equal to source voltage 

)0()0( sc vv = .  
By inspection of the circuit in Fig.2.17, we shall find the initial 

value of current  i  (step4), which is equal to the current source flowing 
in a negative direction, i.e., i(0) = − 4A. (Note that two voltage sources 
are equal and opposed to each other.) 

Finally the complete response (step 5) in accordance with 
equation 2.17 will be:  

Aeteiiiti tst
ff  14)901000sin(10)]0()0([)( 1000−° −+=−+= , 

where fi (0) = 10sin90° = 10 A. Note that the period of the forced 
current is 

ms π2s10π2
1000
π2 3 =⋅== −T . 

2.5.  RLC CIRCUITS 

This section is devoted to analyzing very important circuits 
containing three basic circuit elements: R, L , and C. These circuits are 
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considered important because the networks involved in many practical 
transient problems in power systems can be reduced to one or to a 
number of simple circuits made up of these three elements. In particular, 
the most important are series or parallel RLC circuits, with which we 
shall start our analysis.  

From our preceding study, we already know that the transient 
response of a second order circuit contains two exponential terms and 
the natural component of the complete response might be of three 
different kinds: overdamped, under-damped or critical damping. The 
kind of response depends on the roots of the characteristic equation, 
which in this case is a quadratic equation. We also know that in order to 
determine two arbitrary integration constants, 1A

 
and 2A

 
,we must find 

two initial conditions: 1) the value of the function at the instant of 

switching, f(0), and 2) the value of its derivative, 
0=tdt

df
 

In the following section, we shall deepen our knowledge of the 
transient analysis of second order circuits in their practical behaviour 
and by solving several practical examples  

2.5.1 RLC circuits under d.c. supply 

We shall start our practical study of transients in second order 
circuits by considering examples in which the d.c. sources are applied. 
At the same time, we must remember that only the forced response is 
dependent on the sources. Natural responses on the other hand depend 
only on the circuit configuration and its parameter and do not depend on 
the sources. Therefore, by determining the natural responses we are 
actually practicing solving problems for both kinds of sources, d.c. and 
a.c. However, it should be mentioned that the natural response depends 
on from which source the circuit is fed: the voltage source or the current 
source. These two sources possess different inner resistances 
(impedances) and therefore they determine whether the source branch is 
short-circuited or open, which influences of course the equivalent 
circuit.  

In our next example, we shall elaborate on the methods of 
determining characteristic equations and show how the kind of source 
(voltage or current) and the way it is connected may influence the 
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characteristic equation. Let us determine the characteristic equation of 
the circuit, shown in Fig. 2.18, depending on the kind of source: voltage 
source or current source and on the place of its connection: (1) in series 
with resistance 1R

 
, (2) in series with resistance 2R

 
, (3) between nodes 

m–n.  

R2R3

L C

R1 R2R3

L C

R1

a b  
Fig.2.18 

 
 (1) Source connected in series with resistance 1R  

 
If a voltage source is connected in series with resistance 1R

 
, Fig. 

2.18(a), we may use the input impedance method for determining the 
characteristic equation. This impedance as seen from the source is  

)//(1)( 321 sLR
sC

RRsZ +⎟
⎠
⎞

⎜
⎝
⎛ ++= . 

Performing the above operation and upon simplification and 
equating  Z(s)  to zero we obtain  
                                                

0)(                         
])[()(

31

313221
2

21

=++
++++++

RR
sLCRRRRRRLCsRR

               (2.27) 

and the roots of (2.27) are  

LC
k

CRL
R

CRL
R

s eqeq 11
4
11

2
1

2

1212
2,1 −⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+±⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+−= . 

where  
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21

31
2112

21
    ,    ,

RR
RRkRRR

RR
RR

R ji
eq +

+
=+=

+
=
∑

. 

If a current source is connected in series with resistance 1R
 
we 

may use the input admittance method. By inspection of Fig.2.18(b), and 
noting that the branch with resistance 1R

 
is opened ( 01 =Y ), we have  

01
1

10)(
32

=
+

+
+

+=
sLR

sC
R

sY , 

or, after simplification,  

                                 01)( 32
2 =+++ CsRRLCs                    (2.28) 

and the roots of (2.28) are  

3223

2
2323

2,1        ,1
4
1

2
1 RRR

LCL
R

L
Rs +=−⎟

⎠
⎞

⎜
⎝
⎛±−= . 

Since the characteristic equations 2.27 and 2.28 are completely 
different, and therefore their roots are also different, we may conclude 
that the transient response in the same circuit, but upon applying 
different kinds of sources, will be different.  

 (2) We leave this case to the reader to solve as an exercise.  
 (3) Source is connected between nodes m–n.  

If a voltage source is connected between nodes m–n, the circuit is 
separated into three independent branches: 1) a branch with resistance 

1R
 
,in which no transients occur at all; 2) a branch with 2R

 
and C in 

series, for which the characteristic equation is 2R Cs + 1 = 0; and 3) a 
branch with 3R

 
and L in series, for which the characteristic equation is 

Ls + 3R  
 
= 0.  

If a current source is connected between nodes m–n, by using the 
rule inY

 
(s) = 0 we may obtain  
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01
1

11

321
=

+
+

+
+=

sLR
sC

RR
Yin . 

Performing the above operations and upon simplification, we 
obtain  
                                              

0)(                          
])[()(

31

313221
2

21

=++
++++++

RR
sLCRRRRRRLCsRR

                  (2.29) 

Note that this equation (2.29) is the same as (2.27), which can be 
explained by the fact that connecting the sources in these two cases does 
not influence the configuration of the circuit : the voltage source in (1) 
keeps the branch short-circuited and the current source in (3) keeps the 
entire circuit open-circuited. In all the other cases the sources change the 
circuit configuration. 

In the following analysis we shall discuss three different kinds of 
responses: overdamped, underdamped, and critical damping, which may 
occur in RLC circuits. Let us start with a free source simple RLC circuit.  

(a) Series connected  RLC  circuits  

Consider the circuit shown in Fig. 2.19. At the instant t = 0 the 
switch is moved from position ‘‘1’’ to ‘‘2’’, so that the capacitor, which 
is precharged to the initial voltage 0V

 
, discharges through the resistance 

and inductance. Let us find the transient responses of )(tvc , i(t) and 
)(tvL .  

R L

C
iC

V0

1 2

i

 
 

Fig.2.19 

The characteristic equation is  
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            01           01 2 =++→=++
LC

s
L
Rs

sC
sLR               (2.30) 

The roots of this equation are  

                                  
LCL

R
L

Rs 1
22

2

12 −⎟
⎠
⎞

⎜
⎝
⎛±−=                 (2.31a) 

or as previously assigned (see section 1.6.2)  

                                   22
12 ωαα ds −±−=                            (2.31b) 

where α = R/2L is the exponential damping coefficient and 

LCd
1ω =  isthe resonant frequency of the circuit.  

An overdamped response. Assume that the roots (equation 2.30) 
are real (or more precisely negative real) numbers, i.e., dωα >

 
or 

C
LR 2> . The natural response will be the sum of two decreasing 

exponential terms. For the capacitance voltage it will be  
tsts

nc eAeAv 21
21, += . 

Since the absolute value of 2s
 
is larger that that of 1s , the second 

term, containing this exponent, has the more rapid rate of decrease.  
The circuit in Fig. 2.19 after switching becomes source free; 

therefore, no forced response will occur and we continue with the 
evaluation of the initial conditions. For the second order differential 
equation, we need two initial conditions. The first one, an independent 
initial condition, is the initial capacitance voltage, which is 0V . The 

second initial condition, a dependent one, is the derivative 
dt

dvc , which 

can be expressed as a capacitance current divided by C 
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                                0)0(1
,

0

, ==
=

nc
t

nc i
Cdt

dv
.                         (2.32) 

This derivative equals zero, since in a series connection 
)0()0( Lc ii =  and the current through an inductance prior to switching 

is zero. Now we have two equations for determining two arbitrary 
constants  

                                       
02211

021

=+
=+
AsAs
VAA

                                 (2.33) 

The simultaneous solution of equations 2.33 yields  

                             
21

10
2

12

20
1        , 

ss
sVA

ss
sVA

−
=

−
=                    (2.34) 

Therefore, the natural response of the capacitance voltage is  

                               ( )tsts
nc eses

ss
Vv 21

12
12

0
, −

−
=                    (2.35) 

The current may now be obtained by a simple differentiation of 
the capacitance voltage, which results in  

                 

( )

( ).
)(

            

)(

21

21

12

0

12

21
0

tsts

tstsc
n

ee
ssL

V

ee
ss

ssCV
dt

dvCti

−
−

=

=−
−

==

                (2.36) 

 (The reader can easily convince himself that 21ss
 
= 1/LC.) Finally, the 

inductance voltage is found as  

                 ( ).)( 21
21

12

0
,

tstsn
nL eses

ss
V

dt
diLtv −

−
==                (2.37) 

The overdamped response is also called an aperiodical response. 
The energy exchange in such a response can be explained as follows. 
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The energy initially stored in the capacitance decreases continuously 
with the decrease of the capacitance voltage. This energy is stored in the 
inductance throughout the period that the current increases. Then, the 
current decreases and the energy stored in the inductance decreases. 
Throughout the entire transient response, all the energy dissipates into 
resistance, converting into heat.  

An underdamped response. Assume now that the roots of 
equation 2.30 are complex conjugate numbers, i.e., dωα <

 
or 

C
LR 2< , and njs ωα2,1 ±−=   

where  22 αωω −= dn  is the frequency of the natural response, or 
natural frequency, and α = R/2L is, as previously, the exponential 
damping coefficient. As we have observed earlier (see section 1.6.2), the 
natural response of, for instance, the capacitance voltage in this case 
becomes a damped sinusoidal function of the form (1.33):  

                            β)ωsin()( α
, += − tBetv n

t
nc                         (2.38) 

where the arbitrary constants B and β can be found as was previously by 
solving two simultaneous equations  

0,βcosωβsinα
βsin 0

=+−
=

n

VB
 

to which the solution is (also see (1.65)):  

α
ωtanβ       ,

βsin
10 nVB −==  

 By using trigonometrical identities we may also obtain: 

n

d

n

n

n

n

V
V

B
ω
ω

ω
ωα

ωα

ω

βtan1

tanββsin

0

22
0

222

=
+

=

+
=

+
=

. 
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We may also look for the above response in the form of two 
sinusoids as in (1.66):  

                      )ωcosωsin()( α
, tNtMetv nn

t
nc += −               (2.39) 

In this case, the arbitrary constants can be found, as in (1.68), with  

0
0

, =
=t

nc

dt
dv

 

and  

.
ω
α     ,)0(     ,)0( 00,0, VMVvNVv
n

ncnc ====  

This results in  

,
ω
ω1

ω
α    ,

α
ωtanβ 02

2

0
221

n

d

n

n VVNMB
M
N

=+=+=== −  

which is as was previously found. Therefore,  

                    ,cosωωsin
ω
α)( 00, ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+= − tVtVetv nn

n

st
nc       (2.40a) 

or  

                           β)ωsin(
ω
ω)( 0, += − teVtv n

st

n

d
nc .              (2.40b) 

The current becomes  

                     ν)βωsin(
ω

)( α0, ++== − te
L

V
dt

dv
Cti n

t

n

nc
n , 

where 
α

ωνtan
−

= n  and, since °=+= 180νβ   ,
α
ωβtan n .  Therefore, 

                            te
L

Vti n
t

n
n ωsin

ω
)( α0 −−=                          (2.41) 
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The inductance voltage may now be found as  

                          ).βωsin(
ω
ω α0

, −== − teV
dt
diLv n

t

n

dn
nL       (2.42) 

This kind of response is also called an oscillatory or periodical 
response.  

The energy, initially stored in the capacitance, during this 
response is interchanged between the capacitance and inductance and is 
accompanied by energy dissipation into the resistance. The transients 

will finish, when the entire capacitance energy 
2

0CV
 is completely 

dissipated.  

Critical damping response: If the value of a resistance is close to 

C
L2 , i.e., 

C
LR 2→ , the natural frequency 0

4
1ω 2

2
→−=

L
R

LCn  

and the ratio in equation 2.41 
0
0

ω
ωsin

→
n

nt
 is indefinite. Applying 

l’Hopital’s rule, gives  

( )
.1

1
ωcos

)ω(
ω

ωsin
ω

ω
ωsin

0ω

0ω

0ω
lim ===⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

→

→

→ n

n

n

tt

d
d

t
d

d
t n

n
n

n
n

n

n  

Therefore in this critical response the current will be  

                                       t
n te

L
Vti α0)( −−= ,                           (2.43) 

which is also aperiodical. The capacitance voltage can now be found as  

),1α(
α
11)(1)( α
2

0
, −−⎟

⎠
⎞

⎜
⎝
⎛−== −∫ te

L
V

C
dtti

C
tv t

nnc  



 113

or since LC
1α2 = ,  

                                         t
nc etVv α

0, )α1( −+= .                       (2.44) 

Finally, the inductive voltage is  
                            

( ) tttn
nL etVteeV

dt
diLtv α

0
αα

0, )α1(α)( −−− −−=−−== .        (2.45) 

The position of the roots on the complex plane (in other words the 
dependency of a specific kind of natural response on the relationship 
between the circuit parameters), is related to the quality factor of a 
resonant RLC circuit. Indeed, by rewriting the critical damping 

condition as 
LCL

R 1
2

=  we have Q
R

C
L

==
2
1

, this in terms of the 

resonant circuit is the quality factor. (In our future study, we shall call 

C
LZc =  a surge or natural impedance.) Hence, if  Q < ½ , the natural 

response is overdamped, if Q  > 1/2 it is underdamped and if  Q = 1/2  
the response is critical damping . Hence, the natural response becomes 
an underdamped oscillatory response, if the resistance of the RL C 
circuit is relatively low compared to the natural impedance.  

Two negative real roots are located on the negative axis (in the 
left half of the complex plane), which indicates the overdamped 
response. Note that | s

2 
| > | s

1 
| and therefore tse 2  decreases faster than 

tse 1 . Two equal negative roots s
1 

= s
2 

= −α, which indicate the critical 

damping, are still located on the real axis at the boundary point, i.e., no 
real roots are possible to the right of this point. In the third case the two 
roots become complex-conjugate numbers, located on the left half circle 
whose radius is the resonant frequency dω  

. This case indicates an 
underdamped response, having an oscillatory waveform of natural 
frequency. Note that the two frequencies ± djω

 
represent a dissipation-

free oscillatory response since the damping coefficient a is zero. This is, 
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of course, a theoretical response: however there are very low resistive 
circuits in which the natural response could be very close to the 
theoretical one.  

(b) Parallel connected RLC circuits 

The circuit containing an RLC in parallel is shown in Fig. 2.20. At 
the instant of t = 0 the switch is moved from position ‘‘1’’ to position 
‘‘2’’, so that the initial value of the inductance current is Li . In such a 
way, this circuit is a full dual of the circuit containing an RLC in series 
with an initial capacitance voltage. In order to perform the transient 
analysis of this circuit we shall apply the principle of duality. As a 
reminder of the principle of duality: the mathematical results for RLC in 
series are appropriate for RLC in parallel after interchanging between 
the dual parameters ( LCCLGR →→→   ,  , ), and then the solutions 
for currents are appropriate for voltages and vice versa. The roots of the 
characteristic equation will be of the same form: 

22
2,1 ωαα ds −±−= , but the meaning of a is different: 

C
G
2

α =  

(instead of 
L

R
2

α =  for a series circuit), however, it is more common to 

write the above expression as 
RC2
1α = . The resonant frequency 

LCd
1ω =  remains the same, since the interchange between L and C 

does not change the expression.  

L RI0

iL

1

2
iC

C
iR

 
 

Fig2.20 
 

Underdamped response: The common voltage of all three 
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elements is appropriate to the common current in the series circuit, 
therefore (see equation 2.36) :  

                        ( ).
)(

)( 21

12

0 tsts
n ee

ssC
Itv −
−

=                        (2.46) 

 The inductor current is appropriate to the capacitor voltage in the 
series circuit, therefore (see (2.35))  

                          ( ).)( 21
12

12

0
,

tsts
nL eses

ss
Iti −
−

=                    (2.47) 

In a similar way, we shall conclude that the capacitor current is 
appropriate to the inductance voltage (see equation 2.37)  

                          ( ).)( 21
21

12

0
,

tsts
nc eses

ss
Iti −
−

=                     (2.48) 
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In order to check these results we shall apply the KCL for the 
common node of the parallel connection and by noting that 

R
v

i tn
nR

)(
, = , we may obtain  

,0,,, =++ nRncnL iii  

or  

( ) ,01                 

11

21

212121

12
12

0

2112
12

0

=−⎟
⎠
⎞

⎜
⎝
⎛ ++

−
=

=⎟
⎠
⎞

⎜
⎝
⎛ −+−+−

−

tsts

tstststststs

ee
RC

ss
ss

I

e
RC

e
RC

eseseses
ss

I

 

since 
RC

ss 1α212 −=−=+ .  

Overdamped response: The analysis of the overdamped 
response in a parallel circuit can be performed in a similar way to an 
underdamped response, i.e., by using the principle of duality. This is left 
for the reader as an exercise.  

(c) Natural response by two nonzero conditions  

Our next approach in the transient analysis of an RLC circuit shall 
be the more general case in which both energy-storing elements C and L 
are previously charged. For this reason, let us consider the current in 
Fig. 2.21. In this circuit prior to switching, the capacitance is charged to 
voltage 0cV

 
and there is current 0LI

 
flowing through the inductance. 

Therefore, this circuit differs from the one in Fig. 2.21 in that the initial 
condition of the inductor current is now 0)0( LL Ii =− , but not zero.  
The capacitance current is now, after switching, 

00 )0()0( LLc Iii −=−= . By determining the initial value of the 
capacitance voltage derivative in equation 2.32, we must substitute 

0LI−
 
for )0(ci . 
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R L

C
iCVS

iL

 
 

Fig2.21 

Therefore,  

                                           ,1
0

0
L

t

c I
Cdt

dv
−=

=
 

and the set of equations for determining the constants of integration 
becomes  

                                        
,1

02211

021

L

c

I
C

AsAs

VAA

−=+

=+
                         (2.49) 

to which the solution is  

                                        

21

1

1

0
02

12

2

2

0
01         
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s
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IVA

ss
s
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IVA L

c
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c −⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=          (2.50) 

The natural responses of an RLC circuit will now be  
                                 

tsL
c

tsL
cnc e

ss
s

Cs
IVe

ss
s
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IVtv 21

21

1

1

0
0

12

2

2

0
0,  )(

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++

−⎟⎟
⎠
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⎜⎜
⎝

⎛
+=    (2.51) 

 or in a slightly different way  

                                 

( ) ( ),
)(

)( 2121

12

0
12

12

0
,

tstsLtstsc
nc ee

ssC
Ieses

ss
Vtv −

−
+−

−
=         (2.52) 
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which differs from equation 2.35  by the additional term due to the 
initial value of the current 0LI . The current response will now be  
                                 

( ) ( ),
)(

)( 2121
21

12

0

12

0 tstsLtstsc
n eses

ss
Iee

ssL
Vti −

−
+−

−
=           (2.53) 

and the inductance voltage  
                                 

( ) ( ),)( 2121 2
2

2
1

12

0
21

12

0
,

tstsLtstsc
nL eses

ss
LIeses

ss
Vtv −

−
+−

−
=      (2.54) 

The above equations 2.52–2.54 can also be written in terms of 
hyperbolical functions. Such expressions are used for transient analysis 
in some professional books. We shall first write roots 1s  

and 2s
 
in a 

slightly different form  

                           22
2,1 ωα      γγα ds −=±−=                     (2.55a) 

then  

LC
ssss d

1ωγα    γ,2 222
2112 ==−=−=− , 

and  
                                       

( ) ]γsinhγ[coshαγγαγα2,1 tteeeeeee ttttttts ±=+== −−−±−   (2.55b) 
With the substitution of equation 2.55(a) for 2,1s  

and taking into 
account the above relationships, after a simple mathematical 
rearrangement, one can readily obtain  
                                      

tL
cnc et

C
IttVtv α0

0, γsinh
γ

γsinh
γ
αγcosh)( −

⎥
⎦

⎤
⎢
⎣

⎡
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⎝
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+= ,          (2.56) 

and  
                                      

t
L

c
n ettIt

L
Vti α

0
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⎥
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It should be noted that 
Cγ
1

 and Lγ  (like 
Cω
1

 and Lω ) are 

some kinds of resistances in units of Ohms. For the overdamped 
response  

ωα2,1 js ±−= , 

which means that c must be substituted by jω and the hyperbolic sine 
and cosine turn into trigonometric ones  

t
n

n

L
nncnc et

C
IttVtv α0

0, ωsin
ω

ωsin
γ
αωcos)( −

⎥
⎦
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⎡
+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+= , 

or  
                                        

t
ncn

n

L

n

c
nc etVt

C
IVtv α

0
00

, ωcosωsin
ωω

α)( −
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⎡
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⎝

⎛
+= ,            (2.58) 

(which, by assumption 00 =LI , turns into the previously obtained one 
in equation 2.40a.)  

At this point we shall once more turn our attention to the energy 
relations in the RLC circuit upon its natural response. As we have 
already observed, the energy is stored in the magnetic and electric fields 
of the inductances and capacitances, and dissipates in the resistance. To 
obtain the relation between these processes in a general form we shall 
start with a differential equation describing the above circuit:  

0=++ Riv
dt
diL c . 

 Multiplying all the terms of the equation by 
dt
dvCi c= , we 

obtain  

02 =++ Ri
dt
dvCv

dt
diLi c

c . 



 120

Taking into consideration that  

)(
2
1 2f

dt
d

dt
dff =  

we may rewrite  

0
22

2
22

=+⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
RiCv

dt
dLi

dt
d c , 

or  

                                    2
22

22
RiCvLi

dt
d c −=⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
+ .                      (2.59) 

The term inside the parentheses gives the sum of the stored 
energy and, therefore, the derivative of this energy is always negative 
(if, of course, i ≠ 0), or, in other words, the total stored energy changes 
by decreasing. The change of each of the terms inside the parentheses 
can be either positive or negative (when the energy is exchanged 
between the inductance and capacitance), but it is impossible for both of 
them to change positively or increase. This means that the total stored 
energy decreases during the transients and the rate of decreasing is equal 
to the rate of its dissipating into resistance ( 2Ri  ).  

At this point, we will continue our study of transients in RLC 
circuits by solving numerical examples.  

Example 2.16  

In the circuit of Fig. 2.22 the switch is changed instantaneously 
from position ‘‘1’’ to ‘‘2’’. The circuit parameters are: 1R

 
= 2 Ω, 2R

 
= 

10 Ω, L = 0.1 H , C =  
0,8 mF and V = 120 V. Find the transient response of the inductive 
current.  
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Fig.2.22 
  

Solution  

The given circuit is slightly different from the previously studied 
circuit in that the additional resistance is in series with the parallel-
connected inductance and capacitance branches.  

In order to determine the characteristic equation and its roots 
(step 1),we must indicate the input impedance (seen from the inductance 
branch)  

sC
RsLRsZ 1//)( 12 ++= , 

which results in  

011

1

21

1

22 =
+

+⎟⎟
⎠

⎞
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⎛
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RRs
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⎛
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s
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d
4

1

21 105,71ω ⋅=
+
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Thus,  

1
2

1
1   600   ,  125 −− −=−= ssss  

and  

tt
nc eAeAtv 600

2
125

1, )( −− += . 

Since the circuit after switching is source free, no forced response 
(step 2) is expected. The initial conditions (step 3) are:  

. 10)0()0(

, 100)0()0(

21

21

2

A
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Vii
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The initial value of the current derivative (step 4) is found as  

01010100)0()0()0( 2

0
=

⋅−
=

−
==

= LL
iRv

L
v

dt
di LcL

t

L . 

By solving the two equations below (step 5)  
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we have (see equation 2.36)  
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Thus,  

. 6,26,12)( 600125 Aeeti tt
L

−− −=  

In the next example, we will consider an RLC circuit, having a 
zero independent initial condition, which is connected to a d.c. power 
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supply.  

Example 2.17  

In the circuit with R = 100 Ω, 1R
 
= 5 Ω, 2R

 
= 3 Ω, L = 0,1 H , C 

= 100 μF and sV  = 100 V, shown in Fig. 2.23, find current )(tiL . The 
voltage source is applied at t = 0, due to the unit forcing function u(t).  

R2
R1

R

L C

i1
i2VS

i

 
 

Fig.2.23 
Solution  

The input impedance seen from the inductive branch is  

R
sC

RsLRsZ //1)( 21 ⎟
⎠
⎞

⎜
⎝
⎛ +++= , 

or, after performing the algebraic operations and equating it to zero, we 
obtain the characteristic equation 
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where  

2

2121
RR

RRRRRRReq +
++

= . 

Substituting the numerical values yields  

0102,102,176 42 =⋅++ ss  

to which the roots are:  
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1
2,1  3071,88 −±−= sjs . 

Since the roots are complex numbers, the natural response is  
β)307sin()( 1,88

, += − tBeti t
nL . 

The forced response is  

A
RR

Vi s
fL  952,0

1
, =

+
=  

The independent initial conditions are zero, therefore 0)0( =cv  
and 0)0( =Li . The dependent initial condition is found in circuit, 

which is appropriate to the instant of switching t = 0:  

.2,29
)(

)0()0(

2
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0
=

+
===

= LRR
RV

L
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L
v

dt
di sL

t

L  

The integration constant can now be found from  

2,2902,29βcosωβsinα

952,0952,00)0()0(βsin
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−=−=−=

== t

f

t
n

f

dt
di
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diBB

iiB

 

to which the solution is  

.968,0
4,79sin

952,0

4,79
88

952,0
2,29

307tanβ 1

−=−=

=
+−

=

°

°−

B

 

Therefore, the complete response is  

Ateiii t
nLfLL  )4,79307sin(968,0952,0 1,88

,,
°− +−=+=  

Example 2.18  
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In the circuit with 21 RR =
 
= 10 Ω, L = 5 mH , C = 10 μF and sV  

= 100 V, in Fig. 2.24, find current )(2 ti  after the switch closes.  

L

C

R1

R2
i1 i2

i3VS

 
 

Fig.2.24 
 

Solution  

The input impedance seen from the source is 

sC
RsLRsZin

1//)( 21 ++= . 

Then the characteristic equation becomes  
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2
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RRs
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Substituting the numerical values and solving this characteristic 
equation, we obtain the roots:  

13
2,1  10)26( −±−= sjs  

 The natural response becomes  
β).2000sin(6000

,2 += − tBei t
n  

 The forced response is  

. 5
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,2 A
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Vi s
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+
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The independent initial conditions are  

.0)0(      , 5)0()0(
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+

== c
s

L vA
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Vii  
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In order to determine the initial conditions for current 2i  
, which 

can change abruptly, we must consider the given circuit at the moment 
of t = 0. Since the capacitance at this moment is a short-circuit, the 
current in 2R

 
drops to zero, i.e., 2i  

= 0. With the KVL for the right loop 
we have  

,        0 2222 cc viRviR =→=−  

and  

.1055
1010
1)0(11 4

53
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⋅

== −
=

i
CRdt
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t
 

Here )0()0( 13 ii =  = 5 A, since )0(2i  = 0.  

Our last step is to find the integration constants. We have  

,1052000cosββsin6000

5)0()0(βsin

4
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to which the solution is  

.2,11
)6,26sin(
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Therefore, the complete response is  

. )6,262000sin(2,115 2000
2 Atei t °− −+=  

Example 2.19  

Consider once again the circuit shown in Fig.2.18, which is 
redrawn here, Fig.2.25. This circuit has been previously analyzed and it 
was shown that the natural response is dependent on the kind of applied 
source, voltage or current. We will now complete this analysis and find 
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the transient response a) of the current i(t) when a voltage source of    
100 V is connected between nodes m–n, Fig.2.25(a); and (b) of the 
voltage v(t) when a current source of 11 A is connected between nodes 
m–n, Fig.2.25(b). The circuit parameters are 21 RR =

 
= 100 Ω, 3R

 
= 10 

Ω, L = 20 mH and C = 2 μF .  

R2 R3

LC
R1

a

i1
i2 i3

i

VS

b

IS
R2 R3

LC
R1

i1
i2 i3

i

 
Fig 2.25 

 

Solution  

(a) In this case an ideal voltage source is connected between 
nodes m and n. Therefore each of the three branches operates 
independently, and we may find each current very simply:  
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Therefore, the total current is  

. 1011 5005000
321 Aeeiiii tt −− −+=++=  

 (b) In this case, in order to find the transient response we shall, as 
usual, apply the five-step solution. The characteristic equation (step 1) 
for this circuit has already been determined in equation 2.27. With its 
simplification, we have  
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Upon substituting the numerical data the solution is  

. 25002750 1
2,1

−±−= sjs  

Thus the natural response will be  

β).2500sin(2750 += − tBev t
n  

The forced response (step 2) is  

. 100
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100011

31

31 V
RR

RRIv sf ==
+

=  

The independent initial conditions (step 3) are zero, i.e., cv
 
(0) = 

0, Li  
(0) = 0. Next (step 4) we shall find the dependent initial 

condition, which will be used to determine the voltage derivative:  

the voltage drop in the inductance, which is open circuited  
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, 5505011)0(
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=  

the capacitance current, since the capacitance is short-circuited  

, 5,5
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1

1 A
RR

RIi sc ==
+

=  

the initial value of the node voltage (which is the voltage across 
the inductance) v(0) = Lv

 
(0) = 550 V.  

In order to determine the voltage derivative we shall apply 
Kirchhoff ’s two laws  

,        21 ccRscLR viRiRvIiii +===++  

and, after differentiation, we have  
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By taking into consideration that  
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the solution for 0
0
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=tdt
dv

 
becomes 
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which, upon substitution of the data, results in  
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The integration constant, can now be found by solving the 
following set of equations  

.0βcos2500βsin2750

450100550)0()0(βsin

00
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== t

f

t

f

dt
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vvB

 

The solution is  

.669
3,42sin

450        3,42
75,2
52tanβ 1 ==
⋅

= °
°− B  

Therefore, the complete response is 

. )3,422500sin(669100)( 2750 Vtetv t °− ++=  
Note that this response is completely different from the one 

achieved in circuit(a). However, the forced response here, i.e., the node 
voltage, is 100 V, which is the same as the node voltage in circuit (a) 
due to the100 V voltage source. 

2.5.2. RLC circuits under a.c. supply 

The analysis of an RLC circuit under a.c. supply does not differ 
very much from one under d.c. supply, since the natural response does 
not depend on the source and the five-step solution may again be 
applied. However, the evaluation of the forced response is different and 
somehow more labor consuming, since phasor analysis (based on using 
complex numbers) must be applied. Let us now illustrate this approach 
by solving numerical examples.  

Example 2.20  

Let us return to the circuit shown in Fig. 2.26 of Example 2.22 
and suppose that the switch is moved from position ‘‘2’’ to ‘‘1’’, 
connecting this circuit to the a.c. supply: )ψωsin( vms tVv += , having 

mV  = 540 V at f = 50 Hz and vψ  = 0°.  
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 Find the current of the inductive branch, Li  
, assuming that the 

circuit parameters are: 1R
 
= 2 Ω, 2R

 
= 10 Ω, L = 0.1 H and the 

capacitance C = 100 μF, whose value is chosen to improve the power 
factor.  

 
R1

C R2

L

i

iC

iL

VS

 
 

Fig.2.26 
 
 

Solution  

The characteristic equation of the circuit has been found in 
Example 2.22, in which 
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Thus, the roots are  
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1
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and the natural response is  
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The next step is to find the forced response. By using the phasor 
analysis method we have  

, 6,724,16
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The forced response is  

).6,72314sin(4,16,
°−= ti fL  

Since no initial energy is stored either in the capacitance or in the 
inductance, the initial conditions are zero: cv (0) = 0 and Li (0) = 0. By 
inspection of the circuit for the instant t = 0, Fig.2.26(b), in which the 
capacitance is short-circuited, the inductance is open-circuited and the 
instant value of the voltage source is zero, we may conclude that Lv (0) 
= 0 . Therefore, the second initial condition for determining the 
integration constant is  

.0)0(

0
==

= L
v

dt
di l

t

L  

Thus, we have 

,1540)6,72cos(3144,160

65,15)6,72sin(4,160)0()0(

0

,

0
2211

,21

−=−⋅−=−=+

=−−=−=+

°

==

°

t

fL

t

L

fLL

dt
di

dt
diAsAs

iiAA

 

and  
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.007,0       72,15 21 ≅−== AA  

Therefore, the complete response is 

. 7,15)6,72314sin(4,16)( 120 Aetti t
L

−° +−=  

The time constant of the exponential term is τ = 1/120 = 8,3 ms. 

Example 2.21  

A capacitance of 200 μF is switched on at the end of a 1000 V,  
60 Hz transmission line with R = 10 Ω and load 1R

 
= 30 Ω and L = 0,1 

H , Fig. 2.27. Find the transient current i, if the instant of switching the 
voltage phase angle is zero, vψ =0. 
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Fig.2.27 
 

Solution  

The characteristic equation is obtained by equating the input 
impedance to zero  

.0ωα2 22 =++ dss  
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which results in the roots  
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Thus, the natural response is  

β).200sin()( 400 += − tBeti t
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The forced response is found by phasor analysis  
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where  
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Therefore, 

. )50377sin(22,47 Ati f
°+=  

The independent initial conditions are cv  
(0) = 0, Li  

(0) = 25,7 

sin 43,3° = 17,6 A, since prior to switching:  

.3,43
40

7,37tanφ      7,25
7,3740

21000

)(
1

2222
1

,
°− ===

+
=

++
=

L

s
mL

xRR

V
I

 

The next step is to determine the initial values of i(0) and 

0=tdt
di

.Since the input voltage at t = 0 is zero and the capacitance 

voltage is zero, we have i(0) = [v(0) − cv (0)]/R = 0. The initial value of 
the current derivative is found with Kirchhoff ’s voltage law applied to 
the outer loop  

,0=++− cs vRiv , 

and, after differentiation, we have  
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because ci (0) = − Li (0) = − 17,6 (note that i(0) = 0). Hence, we now 
have two simultaneous equations for finding the integration constants  
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for which the solution is  
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Thus, the complete response is 

. )2,158200sin(6,137)50377sin(8,66 400 Ateti t °−° +−+=  

2.5.3 Transients in RLC resonant circuits 

An RLC circuit whose quality factor Q is high (at least as large as 
1/2) is considered a resonant circuit and, when interrupted, the transient 
response will be oscillatory. If the natural frequency of such oscillations 
is equal or close to some of the harmonics inherent in the system 
voltages or currents, then the resonant conditions may occur. In power 
system networks, the resonant circuit may arise in many cases of its 
operation.  

In transmission and distribution networks, resonance may occur if 
an extended under ground cable (having preponderant capacitance) is 
connected to an overhead line or transformer (having preponderant 
induction). The natural frequency of such a system may be close to the 
lower harmonics of the generating voltage. When feeder cables of high 
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capacitances are protected against short-circuit currents by series 
reactors of high inductances, the resonance phenomenon may also arise. 
Banks of condensers, used, for example, for power factor correction, 
and directly connected under full voltage with the feeding transfor-mer, 
may form a resonance circuit, i.e., where no suffcient damping 
resistance is present. Such circuits contain relatively small inductances 
and thus the frequency of the transient oscillation is extremely high. 

Very large networks of high voltage may great capacitance the 
transmission lines and the inductance of the transformers, that their 
natural frequency approaches the system frequency. This may happen 
due to line-to-ground fault and would lead to significant overvoltages of 
fundamental frequency. More generally, it is certain that, for every 
alteration in the circuits and/or variation of the load, the capacitances 
and inductances of an actual network change substantially. In practice it 
is found, therefore, that the resonance during the transients in power 
systems, occur if and when the natural system frequency is equal or 
close to one of the generalized frequencies. During the resonance some 
harmonic voltages or currents, inherent in the source or in the load, 
might be amplified and cause dangerous overvoltages and/or 
overcurrents.  

It should be noted that in symmetrical three-phase systems all 
higher harmonics of a mode divisible by 2 or 3 vanish, the fifth and 
seventh harmonics are the most significant ones due to the generated 
voltages and the eleventh and the thirteenth are sometimes noticeable 
due to the load containing electronic converters.  

We shall consider the transients in the RLC resonant circuit in 
more detail assuming that the resistances in such circuits are relatively 

low, so that cZR << , where 
C
LZc = , which is called a natural or 

characteristic impedance (or resistance); it is also sometimes called a 
surge impedance.  

(a) Switching on a resonant RLC circuit to an a.c. source  
The natural response of the current in such a circuit, Fig. 2.28  

may be written as  

                                        β)ωsin(α += − teIi n
t

nn                        (2.60) 
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Fig.2.28 

 
The natural response of the capacitance voltage will then be  
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upon simplification, combining the sine and cosine terms to a common 
sine term with the phase angle δ)90( +° ,  

                       δ),90(βωsin[α
,, +−+= °− teVv n

t
ncnc            (2.61) 

where  

                                  
C
LIV nnc +, ,                                (2.62a) 

                                  
nω
αtanδ 1−= ,                                (2.62b) 

and 

                                   .1ωωα 222
LCdn +=+                     (2.63) 

The natural response of the inductive voltage may be found 
simply by differentiation:  

β)],ωcos(ωβ)ωsin(α[α,
, +++−== − tteLI

dt
di

Lv nnn
t

n
nL

nL  

or after simplification, as was previously done, we obtain  
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                  δ)].90(βωsin[α
, +++= °− te

C
LIv n

t
nnL           (2.64) 

It is worthwhile to note here that by observing equation 2.61 and 
equation 2.64 we realize that ncv ,  is lagging slightly more and nLv ,  is 
leading slightly more than 90° with respect to the current. This is in 
contrast to the steady-state operation of the RLC circuit, in which the 
inductive and capacitive voltages are displaced by exactly ± 90° with 
respect to the current. The difference, which is expressed by the angle δ 
,is due to the exponential damping. This angle is analytically given by 
equation 2.62b and indicates the deviation of the displacement angle 
between the current and the inductive/capacitance voltage from 90°. 
Since the resistance of the resonant circuits is relatively small, we may 
approximate  
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For most of the parts of the power system networks resistance R 

is much smaller than the natural impedance C
L  so that the angle d is 

usually small and can be neglected.  
By switching the RLC circuit, Fig. 2.28, to the voltage source  

                                   )ψωsin( vms tVv +=                              (2.66) 

the steady-state current will be  

                                    )ψωsin( iff tIi +=                             (2.67) 

the amplitude of which is 
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and the phase shift is 

                        
R
C

L
vi

ω
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tanφ     φψψ 1
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=−= −               (2.69) 

The steady-state capacitance voltage is  

                              ).90ψωtsin(
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°−+= i
f
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For the termination of the arbitrary constant, β, we shall solve a 
set of equations, written for )0(ni  and )0(,ncv  in the form:  
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Since the independent initial conditions for current and 
capacitance voltage are zero and the initial values of the forced current 
and capacitance voltage are iff Ii ψsin)0( = , and 

i
f
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             (2.71) 

The simultaneous solution of these two equations, by dividing the 
first one by the second one, results in  

                                       .ψtan
ω
ωβtan i
n

=                             (2.72) 

Whereby the phase angle β of the natural current can be 
determined and, with its value, the first equation in 2.71 give the initial 
amplitude of the transient current  



 141

2

2 ω
ω

ψtan
11ψsin

βsin
ψsin

⎟
⎠
⎞

⎜
⎝
⎛+−=−= n

i
if

i
fn III  

or  

                         i
n

ifn II ψcos
ω
ωψsin 2

2
2 ⎟

⎠
⎞

⎜
⎝
⎛+−=              (2.73) 

The initial amplitude of the transient capacitance voltage can also 
be found with equation 2.62(a)  
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or, with the expression 
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fc ω, =  (see equation 2.70), we may obtain  
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From the obtained equations 2.72, 2.73 and 2.74 we can 
understand that the phase angle, β, and the amplitudes, nI  and ncV ,  

, of 
the transient current and  
capacitance voltage depend on two parameters, namely, the instant of 
switching, given by the phase angle iψ  

of the steady-state current and 
the ratio of the natural, nω  to the a.c. source frequency, ω. Using the 
obtained results let us now discuss a couple of practical cases.  

(b) Resonance at the fundamental (first) harmonic 

In this case, with ωω =n  the above relationships become very 
simple. According to equation 2.72  

                                 ii ψβ         ψtanβtan =→=                   (2.75) 
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i.e., the initial phase angles of the natural and forced currents are equal. 
According to equations 2.73 and 2.74  

                              fcncfn VVII ,,         −=−=                        (2.76) 

which means that the amplitudes of the natural current and capacitance 
voltages are negatively equal (in other words they are in the opposite 
phase) to their steady-state values. Since the frequencies ω and nω  are 
equal, we can combine the sine function of the forced response (the 
steady-state value) and the natural response, and therefore the complete 
response becomes  
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The plot of the transient current is shown in Fig2.29. 

t

it
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Fig.2.29 

As can be seen, in a resonant circuit the current along with the 
voltages reach their maximal values during transients after a period of 
3–5 times the time constant of the exponential term. Since the time 
constant here is relatively low, due to the small resistances of the 
resonant circuits the current and voltages reach their final values after 
very many cycles. It should be noted that these values of current and 
voltages at resonance here, are much larger than in a regular operation.  
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(c) Frequency deviation in resonant circuits  

In this case, equations 2.75 and 2.76 can still be considered as 
approximately true. However since the natural and the system 
frequencies are only approximately (and not exactly) equal, we can no 
longer combine the natural and steady-state harmonic functions and the 
complete response will be of the form  
                                 

[ ]
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Since the natural current / capacitance voltage now has a slightly 
different frequency from the steady-state current / capacitance voltage, 
they will be displaced in time soon after the switching instant. 
Therefore, they will no longer subtract as in equation 2.77, but will 
gradually shift into such a position that they will either add to each other 
or subtract, as shown in Fig.2.30. 

 
i

0 t

 
 

Fig.2.30 
 
 As can be seen with increasing time the addition and subtraction 

of the two components occur periodically, so that beats of the total 
current / voltage appear. These beats then diminish gradually and are 
decayed after the period of the 3–5 time constant. It should also be noted 
that, as seen in Fig. 2.30, the current/capacitance voltage soon after 
switching rises up to nearly twice its large final value; so that in this 
case switching the circuit to an a.c. supply will be more dangerous than 
in the case of resonance proper. By combining the trigonometric 
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functions in equation 2.78 (after omitting the damping factor te α−  and 
the  phase angle iψ , i.e., supposing that the switching occurs at iψ ) we 
may obtain 
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             (2.79) 

These expressions represent, however, the circuit behaviour only 
a short time after the switching-on, as long as the damping effect is 
small. In accordance with the above expressions, and by observing the 
current change in Fig. 2.30, we can conclude that two oscillations are 
presented in the above current curve. One is a rapid oscillation of high 
frequency, which is a mean value of ω and nω , and the second one is a 
sinusoidal variation of the amplitude of a much lower frequency, which 
is the difference between ω and nω , and represents the beat frequency.  

2.5.4. Switching-off in RLC circuits 

We have seen above that very high voltages may develop if a 
current is suddenly interrupted. However, the presence of capacitances, 
which are associated with all electric circuit elements may change the 
transient behavior of such circuits. Thus, the raised voltages charge all 
these capacitances and thereby the actual voltages will be lower. To 
show this, consider a very simple approximation of such an arrangement 
by the parallel connection of L and C, as shown in Fig. 2.31 

L

RC

+

-

i

 
Fig.2.31 

After instantaneously opening the switch, the current of the 
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inductance flows through the capacitance charging it up to the voltage of 

cV  
. The magnetic energy stored in the inductance, 2

2
1

Lm LIW = , where 

LI  
is the current through the inductance prior to switching, will be 

changed into the electric energy of the capacitance 2
2
1

ce CVW = . Since 

both amounts of energy, at the first moment after switching, are equal 
(by neglecting the energy dissipation due to low resistances), we have  

22

22
Lc LICV

= , 

and the maximal transient overvoltage appearing across the switch is  

                                           Lc I
C
LV =                                     (2.80) 

Recalling from section 1.7.4, Fig. 1.18(a), that the overvoltage, by 
interrupting the coil of 0,1 H with the current of 5 A, was 50 kV, we can 
now estimate it more precisely. Assuming that the equivalent 
capacitance of the coil and the connecting cableis C = 6 nF, and is 
connected in parallel to the coil, as shown in Fig. 2.31,  

. 4,205
106

1,0
9 kVVc =

⋅
= −  

Hence, for reducing the overvoltages, capacitances should be 
used. Subsequently, by connecting the additional condensers of large 
magnitudes, the overvoltage might be reduced to moderate values.  

For a more exact calculation, we shall now also consider the 
circuit resistances. By using the results obtained in the previous section, 
we shall take into consideration that when the circuit is disconnected, 
the forced response is absent. However, the independent initial values 
are not zero, hence the initial value of the transient (natural) current 
through the inductive branch is found as  

                                      ,0)0(0 −= LiI                                    (2.81a) 
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and similarly for the capacitance voltage  

                                       0)0(0 −= cvV                                   (2.81b) 

With the current derivatives  
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we have two equations for determining two integration constants 
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By dividing equation 2.82b by equation 2.82a, and substituting 
R/2L for α and  

2

2
1

⎟
⎠
⎞

⎜
⎝
⎛−
L
R

LC
 

for nω  upon simplification we obtain  

                                   .

2

2βtan

0

0

2

R
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R
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L

−

⎟
⎠
⎞

⎜
⎝
⎛−

=                            (2.83a) 

For circuits having small resistances, namely if 
C
LR

<<
2

, the 

above equation becomes  
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                                      .

2
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0
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−
=                            (2.83b) 

Using equation 2.83 with equation 2.82a, we may obtain (the 
details of this computation are left for the reader to convince himself of 
the obtained results)  
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and with equation 2.62a  
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The above relationships express, in an exact and approximate 
way, the amplitudes of transient oscillations of the current and 
capacitance voltage. They are valid for switching-off in any d.c. as well 
as in any a.c. circuit. 
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Example 2.22  

Assume that, for reducing the overvoltage, which arises across the 
switch, by disconnecting the previously considered coil of 0,1 H 
inductance and 20 Ω inner resistance, the additional capacitance of 0,1 
μF is connected in parallel to the coil, Fig. 2.31. Find the transient 
voltage across the switch, if the applied voltage is 100 V dc.  

Solution  

We shall first find the current phase angle. Since 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=<<⎟

⎠
⎞

⎜
⎝
⎛ = 31010

2 C
LR

, using equation 2.83b and taking into 

consideration that sVV =0  and 
R
VI s=0   

.
α
ω

2

1

2

βtan n
R

L
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RR

C
L

==
−

=  

The damping coefficient and the natural frequency are  

s
rad

LC
s

L
R

n  101ω      100
1,02

20
2

α 41 ===
⋅

== −  

therefore,  

.4,89100tan
α
ωtanβ 11 °−− === n  

In accordance with the approximate expression (equation 2.85), 
we have  

V
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C
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⎜
⎝
⎛ −−=  

 Note that this value is less than the previous estimation. The 
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capacitance voltage versus time (equation 2.61) therefore, is  

kV δ)210sin(5)90δβωsin()( 4100α
,, −−≅−−+−= −°− teteVtv tt
ncnc

, 

where δ is a displacement angle (equation 2.62b): δ = 

°− ≅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
6,0

ω
αtan 1

n
 (note that  β = 90° − δ = 89,4° as calculated above). 

The negative sign of the capacitance voltage indicates the discharging 
process. The voltage across the switch can now be found as the 
difference between the voltages of the source and the capacitance. Thus,  

, )2,110sin(105100)( 41003 VtetvVv t
cssw

°− −⋅+=−=  

which for t = 0 gives swv  zero. Instead, swv  = 100 + 5· 310  sin(−1,2°) 
≅  0.  

As can be seen this voltage does not suddenly jump to its maximal 
value, but rises as a sinusoidal and reaches the peak after one-quarter of 
the natural period (which in this example is about 1,57 ms). 
Withinthistime, the contacts of the switch (circuit breaker) must have 
separated enough to avoid any sparking or an arc formation.  

The circuit in Fig. 2.32 represents a very special resonant circuit, 

in which 
C
LRR == 21 . As is known, the resonant frequency of such 

a circuit may be any frequency, i.e., the resonance conditions take place 
in this circuit, when it is connected to an a.c. source of any frequency. If 
such a circuit is interrupted, for instance by being switched off, the two 
currents ci  

and Li  
are always oppositely equal. In addition, since the 

time constants of each branch are equal ( cL CR
R
L ττ 2
1

===
 
), both 

currents decay equally. Therefore, no current will flow through the 
switch when interrupted, providing its sparkless operation.  
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Fig.2.32 
 
 

(a) Interruptions in a resonant circuit fed from an a.c. source  

Finally, consider a resonant RLC circuit when disconnected from 
an a.c. source. The initial condition in such a circuit may be found from 
its steady-state operation prior to switching. Let the driving voltage be 

)ψωsin( vms tVv += , then the current and the capacitance voltage 
(see, for example, the circuit in Fig. 2.31) are  

)ψωsin( im tIi +=  

                                       ),ψωsin( vmc tVv +=                            (2.86) 
where  

                  
R
L

LR

VI m
m

ωtanφ         
)ω(

1
22

−=→
+

=               (2.87) 

The initial conditions may now be found as  

                                   0ψsin)0( IIi im ==  

                                 .ψsin)0( 0VVv vmc ==                              (2.88) 

Since the forced response in the switched-off circuit is zero, the 
initial values (equation 2.88) are used as the initial conditions for 
determining the integration constants in equation 2.82. Therefore, by 
substituting equation 2.88 in equations 2.83–2.85, and upon 
simplification and approximation for very small resistances, we obtain  
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where it is taking into account that the ratio                                              
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I
V

m

m =  
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where the second approximation (the right hand term) is done for ≅φ  

90°, i.e., 1φsin ≅  and iiv ψcos)90ψsin(ψsin =+= ° .  
As can be seen from the above expressions, the natural current 

and capacitance voltage magnitudes are dependent on the phase 
displacement angle ϕ (or the power factor of the circuit), on the ratio of 
the natural frequency nω  and the system frequency ω, and on the 
current phase angle iψ , which is given by the instant of switching. 
Therefore, in RLC circuits with a natural frequency higher than the 
system frequency (which usually happens in power networks), the 
transien tvoltage across the capacitance may attain its maximal value, 
which is as large as the ratio of the frequencies. This occurs in highly 
inductive circuits with ≅φ 90° due to the interruption of the current 
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while passing through its amplitude, i.e., when iψ  = 90°. However, the 
switching-off practically occurs at the zero passage of the current, i.e., 
when iψ  = 0. In this very favorable case the  transient voltage 
amplitude, with equation 2.91, will now be equal to the voltage before 
the interruption. The voltage across the switch contacts reaches a 
maximum, which, with small damping, is twice the value of the source 
amplitude  

,2max, ssw Vv =  

and then decays gradually. The initial angle of the transient response in 
this case, with equation 2.89, will be 0≅ . 

 Suppose that the circuit in Fig. 2.31, which has been analyzed, 
represents, for instance, the interruption at the sending end of the 
underground cable or overhead line having a significant capacitance to 
earth, while the circuit in Fig. 2.33 may represent the interruption at the 
receiving end of such a cable or overhead line.  

L
C

R
+

-

~

 
 

Fig.2.33 

One of such interruptions could be a short-circuit fault and its 
following switching-off. The analysis of this circuit is rather similar to 
the previous one. The difference, though, is that here the initial 
capacitance voltage is zero and the forced response is present. 
Therefore, the initial conditions for the transient (natural) response will 
be  

                                 
,)0()0()0(

)0()0()0(

0,,

0,

Vvvv

Iiii

fccnc

fLnL

=−=

=−=
              (2.92) 

and for the current derivative, we have  
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The current through the inductance prior to switching might be 
found as a short-circuit current  

                      ),φψωsin(
)ω( 22 scv

m
sc t

LR

Vi −+
+

=          (2.93a) 

where  

                                     
R
L

sc
ωtanφ 1−=                                 (2.93b) 

and vψ  is a voltage source phase angle at switching instant t = 0.  

Since switching in a.c. circuits usually occurs at the moment when 
the current passes zero, we shall assume that I

0 
= 0 and y(0) = y− Q= 0 

(or the voltage phase angle at the switching moment is equal to the 
short-circuit phase angle).  

Thus,  

                               scvI φψ            00 =→=                       (2.94) 

The forced response of the current and the capacitance voltage are 
found in the circuit after the disconnection of the short-circuit current, 
i.e. in the open-circuit, in which the cable or the line is disconnected (no 
load operation). In this regime the entire circuit is highly capacitive 

( L
C

ω
ω
1

>> ). Therefore, we have  

                         .90φ        ω °−≅→≅ fmf CVI                   (2.95) 

Now, the two equations for finding the integration constant are  

                                  

vf
o

vffn IIiI ψcos)90ψsin()0(0βsin −=+−≅−=  
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, ψsinωψsinβ)cosωβsinα( vfn
vm

nn I
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VI −=+−           (2.96) 

for which the solution is  

                         .
αωψtan)ω(ω

ωωβtan 22 ++

−
=

vn

n                     (2.97) 

Since in power system circuits the natural frequency usually is 
much higher than the system frequency, the above expression might be 
simplified for low resistive circuits to  

                                  .
ψtanω

ωβtan
vn

−
≅                                (2.97a) 

Thus, the oscillation amplitudes of the natural current and 
capacitance voltage are  
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where mf CVI ω= .  
 
 


