
 1 

NATIONAL  AVIATION  UNIVERSITY 
 

ELECTRICAL ENGINEERING AND 
LIGHTING DEPARTMENT 

 
 
 

 
ZELENKOV A. A. 

 
 

TRANSIENT  ANALYSIS   
USING  STATE  VARIABLES 

 IN THE EXAMPLES 
 
 
 
 

Training book 
 
 
 
 
 
 
 
 

KYIV   2011 
 



 2 

NATIONAL  AVIATION  UNIVERSITY 
 

ELECTRICAL ENGINEERING AND LIGHTING  
DEPARTMENT 

 
 
 
 
 
 
 

ZELENKOV A. A. 
 
 
 
 
 

TRANSIENT  ANALYSIS   
USING  STATE  VARIABLES 

 IN THE EXAMPLES 
 
 
 
 

Training book 
 
 
 
 
 
 
 
 
 

KYIV   2011 
 

 



 3 

UDC 621.3(076) 
 

 
Reviewer G.T. Gorohov − PhD, associate professor, Senior 

– scientific worker of Ukraine Airforce scientific center. 
Approved by the CSF drafting editorial board jf Electronics 

and Control Systems Institute, May 2011. 
 
 
 
ZELENKOV A.A. 
 
 
Transient analysis using state variables in the examples: 

training book.: NAU, 2011. – 132 p. 
 

        
 
The manual “ Transient analysis using state variables in the 

examples” is in intended for the students of the senior courses of 
the electrical specialities, and those learning automatic control 
theory. 

The aim of this book is to help students to master the 
theory and methods of solving problems in applied electricity. 
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TRANSIENT ANALYSIS USING STATE 
VARIABLES 

 
5.1. INTRODUCTION  

When the dynamic behaviour of a circuit is under 
consideration, the equations representing the circuit, say in 
node or mesh analysis, are generally differential. They can 
then be transformed into one scalar differential equation of 
the second or higher order. However, the differential 
equations of a circuit may also be written as a set of first-
order differential equations, or when expressed in matrix 
form it results in a first-order vector differential equation of 
the form  

x˙ = f(x, w, t),  

where x is a vector of unknown variables called state 
variables, w represents the set of inputs and t is the time.  

The set of first- order differential equations written in 
such a form is called a state equation and the vector x 
represents the state of the network. State equations play an 
important role in the study of the dynamic behaviour of a 
circuit. There are three basic advantages in using the state 
equations in this form. (1) There is a nenormous amount of 
mathematical knowledge for solving such equations while 
the equations by themselves can be derived from formal 
topological properties of the circuit, using the matrix 
approach. (2) It can be easily and naturally extended to 
nonlinear and time-varying or switched networks and is, in 
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fact, the approach most often used in characterizing such 
networks and (3) it is easily programmed for and solved by 
computers. 

In this chapter, we shall formulate, derive and solve 
first-order vector differential equations, i.e. state equations. 
As before, we shall be limited here to linear, time-invariant 
circuits that may be reciprocal or nonreciprocal. On the 
other hand, this approach is applicable to circuits of any 
complicity, especially with computer-aided analysis. In this 
study, when using a computer is suggested, we are referring 
to the MATHCAD or MATHLAB programs which are also 
suitable for symbolic computation. 

  

 

 

 

 

 

 

 

 

 

 

 



 7 

5.2. THE CONCEPT OF STATE VARIABLES 

Two general methods of circuit analysis are usually 
studied in-depth in introductory courses in circuit analysis , 
namely nodal analysis and mesh analysis. Both of these 
methods are very useful for resistive DC and RLC AC 
circuits in their steady-state behaviour. The basic variables 
in these two kinds of circuits, node voltages and mesh 
currents, were constant quantities, i.e. with no variation in 
time. Thus, the nodal and mesh equations in such circuits 
happen to be algebraic equations, without derivatives and 
integrals. However, node voltages or mesh currents when 
used as basic variables in transient analysis are expressed as 
a function of time. Therefore, the node and loop equations 
here are in general differential equations of the second 
order.  

is1
i1

G1

G1L2

R1
C4 C5

 
 
                                       Fig.5.1 
 

Consider, as an example, the circuit in Fig. 5.1, in 
which the inductor current and two capacitor currents may 
be expressed as  

                            ( ) 0
0

21
2

2 τ1 Idvv
L

i
t

nnL +−= ∫ ,             (5.1a)        
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dt
dvC
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.                  (5.1b)  

 
Then the node equations may be written by inspection 

of the circuit as:  

( ) 0131
0

2
20

1
2

121 τ1τ1 IivGdv
L

dv
L

vGG sn

t

n

t

nn −−=−−++ ∫∫  

036
0

2
2

2
426

0
1

2
τ1τ1 IvGdv

Ldt
dvCvGdv

L n

t

n
n

n

t

n =−+++− ∫∫  

                             .1
3

53611 s
n

nn i
dt

dvCvGvG =+−−         (5.2) 

Once these equations are solved for the node voltages 
21, nn vv  and 3nv  the remaining variables are easily obtained.  
However, the presence of the integrals of unknowns in 

node equations  causes some difficulties in the solution. The 
integrals can be eliminated by differentiating the equations 
in which they appear, but this will increase the order of the 
derivatives. An easier way of analyzing would be if we 
avoid the appearance of the integrals al together. We note 
that an integral appears in the present example of node 
equations when the current of an inductor is eliminated by 
using equation 5.1a. In a similar way, the integrals appear in 
mesh equations when the voltages of the capacitors are 
eliminated by substituting their v – i relationship. Therefore 
these integrals will not appear if we leave both the capacitor 
voltages and inductor currents as variables using a mixed set 
of equations, i.e. based on Kirchhoff ’s laws.  

Let us illustrate this idea of using capacitor voltages 
and inductor currents as unknown variables in the same 
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example of the circuit in Fig. 5.1. We may write three 
independent KCL equations for the nodes 1n, 2n and 3n, and 
three KVL equations for loops (meshes) indicated by the 
dashed arrows:  

132
/
1 sL iiii −=++ , 

                             0642 =++− iiiL ,                          (5.3a) 

165
/
1 siiii =−+− , 

0342 =−+ vvv CL , 
                             0564 =++− CC vvv ,                     (5.3b) 

0153 =−− vvv C . 
 

Substituting equation 5.1b for 4i  
and 5i , taking into 

consideration that 2
2

2 L
L v

dt
diL =

 
and eliminating all branch 

voltages except for the capacitor voltages by using the v – i 
relationships, and after rearranging the terms, yields  

62
4

4 ii
dt

dvC L
C == , 

16
/
1

5
5 s

C iii
dt

dvC ++= , 

                             334
2

2 iRv
dt

diL C
L +−= ,                  (5.4) 

                             4566 CC vviR −= ,                         (5.5a) 

123
/
1 sL iiii −=+ , 

                             533
/
11 CviRiR =− ,                        (5.5b) 

 
These are six equations in six unknowns. However, 

we can reduce the number of equations that must be solved 
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simultaneously. We note that equations 5.5a and 5.5b are 
algebraic, i.e., they contain no derivatives or integrals. They 
can be used to eliminate the rest of the unknown variables in 
(5.4) except 54, CC vv

 
and 2Li , whose derivatives are 

involved in these equations. The algebraic equations 5.5a 
and 5.5b can be easily solved (the first one trivially) to yield  

5
6

4
6

6
11

CC v
R

v
R

i +−= , 

1
21

3
2

31

3
5

31

/
1

1
sLC i

RR
Ri

RR
Rv

RR
i

+
−

+
+

+
= ,                             

1
21

1
2

31

3
5

31
3

1
sLC i

RR
Ri

RR
Rv

RR
i

+
−

+
+

+
−= .              (5.6) 

 
Finally, these equations can be substituted into 

equation 5.4 to yield, after rearrangement,  

25
6

4
6

4
4

11
LCC

C iv
R

v
Rdt

dvC +−= , 

12
31

3
5

316

631
4

6

5
5 )(

1
sLCC

C ii
RR

Rv
RRR
RRRv

Rdt
dvC +

+
+

+
++

−−= , 

1
21

31
2

31

13
5

31

3
4

2
2 sLCC

L i
RR

RRi
RR

RRv
RR

Rv
dt

diL
+

−
+

+
+

−−= ,                  

(5.7a) 
 
or in matrix form, after dividing by the coefficients on the 
left,  
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+
⎥
⎥
⎥
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⎢
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⎥
⎥
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⎥
⎥
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312

3

2
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3

3165
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46464

2

5

4
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)(
        1
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)(
     1

1                  1              1

L

C

C

L

C

C

i
v
v

RRL
RR

RRL
R

L

RRC
R

RRRC
RRR

RC

CRCRC

i
v
v

dt
d

, 

                                1

312

31

5

)(

1          

0            

si

RRL
RR

C

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

+
−

+ .                    (5.7b) 

The resulting matrix equation 5.7b represents three 
first-order differential equations in three unknowns. It is 
called the state equation and the variables 54, CC vv

 
and 2Li  

are called the state variables.  
As can be seen, the advantage of this method is that no 

integrals appear, and subsequently no second derivatives 
occur as a result of the differentiation. The initial conditions, 
or initial state of the circuit, are the initial values of the 
capacitor voltages and inductor currents, which usually can 
be independently specified in the circuit, i.e. their values just 
after 0t  

are determined by their values just before  0t . This 
is the second reason for choosing capacitor voltages and 
inductor currents as unknown variables.  

Further advantages in describing the network by first-
order differential equations are:  

• A simple systematic method for writing such 
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equations can be formulated by using the graph 
theory.  

• A systematic matrix solution may be applied for 
solving these first-order differential equations. It 
may be easily programmed for a numerical and 
symbolic solution with appropriate computer 
software. 

• It is quite easy to extend the state-variable 
representation to time-varying and nonlinear 
networks.  

 
The concept of state variables, or just state, satisfies   

two basic conditions of circuit analysis:  
•   If at any time, say 0t , the state is known (which is 
the initial condition or initial state), then the state 
equations uniquely determine the state at any time 

0tt >
 
for any given input. In other words, given the 

state of the circuit at time 0t  
and all the inputs, the 

behaviour of the circuit is completely determined for 
all 0tt >

 
.  

•  The state and the input uniquely determine the value 
of the remaining circuit variables.  

Proof (the first point). From the theory of differential 
equations we know that the initial values of the variables 
uniquely define, by differential equations, such as 5.7, the 
value of the variables for all 0tt ≥ . In other words, the state 
( ))(),( titv LC  can be expressed by the state equations in 
terms of the initial state.  

Proof (the second point). We may use the substitution 
(or compensation) principle, which states that in any linear 
circuit any voltage drop across a passive element, say the 
capacitance, may be substituted by an independent voltage 
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source equal to this drop. In addition, any current through a 
passive element, say the inductance, may be substituted by 
an independent current source equal to this current. Hence, 
we will replace all the inductors by independent current 
sources whose values )(tiL  are given by the found state 
variables and all the capacitors by independent voltage 
sources whose values are equal to the found state variables 

)(tvC . As a result, we will obtain a pure resistive network in 
which any variable can be determined by any well-known 
method of resistive circuit analysis.  

For example, let the desired output quantities be 3v
 

and 6v
 
in the circuit being considered in Fig. 5.1. Since 

333 iRv =  and 666 iRv = ,by multiplying the third and the first 
equations of  5.6 correspondingly by 3R

 
and 6R , we have  

1
31

31
2

31

31
5

31

3
3 sLC i

RR
RRi

RR
RRv

RR
Rv

+
−

+
+

+
−= , 

546 CC vvv +−= , 
where 54, cC vv

 
and 2Li  

represent the voltage and current 
sources, which substitute the elements 54,CC

 
and 2L

 
subsequently. The above expressions in matrix form are  

[ ]131

31

2

5

4

31

31

31

3

6

3

0        0               1         1

       0
s

L

C

C

iRR
RR

i
v
v

RR
RR

RR
R

v
v

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
+

−
+

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
++

−
=⎥

⎦

⎤
⎢
⎣

⎡
. 

 
(5.8) 

 
This matrix equation is called an output equation. 

Both the state equation 5.7b and the output equation 5.8 
equations may be written in compact matrix notation as  
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                            BWAXX
.

+=                                (5.9a) 

                            DWCXY +=                                (5.9b) 

where X is the state vector, W is the input and Y is the 
output vector. The meanings of matrixes, A, B, C and D, 
which are dependent upon circuit elements, are obvious 
from equations 5.7b and 5.8.  

Next, we shall consider the number of independent 
state variables that represent the transient behaviour of a 
network.  
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5.3.  ORDER  OF  COMPLEXITY  OF  A  NETWORK 

As is known, node-voltage, mesh-currents, and mixed 
variable equations (based on Kirchhoff’s two laws) 
completely represent any electrical circuit. Recall that the 
number of independent node-voltage equations, i.e., number 
of independent Kirchhoff’s current law (KCL) equations, is 
b − (n − 1), where b is the number of branches and n is the 
number of nodes. These numbers are determined only by the 
graph of the circuit and not by the types of the branches, i.e. 
they would not be influenced if the branches were all 
resistors, or if some were capacitors and/or inductors. 
However, in resistive circuits driven by DC sources the node 
or mesh equations are algebraic, with no variation in time. 
On the other hand, when capacitors or inductors are present, 
the equations will be differential. Hence, the question is how 
many independent variables represent the circuit in its 
transient (dynamic) behaviour. We know that each capacitor 
and each inductor introduces a variable in such behaviour 
since the v - i characteristic of each contains a derivative or 
integral. We also know that, for a unique solution of 
differential equations, the arbitrary constants have to be 
determined. 

The number of these constants is equal to the number 
of independent initial conditions that can be specified in a 
circuit. It is also known that the number of initial conditions 
is related to the energy-storing elements, capacitors and 
inductors, and in general is equal to the number of such 
elements in the circuit. The exceptions are the, so-called, 
all-capacitor loops and all-inductor cut-sets. Consider the 
circuit shown in Fig. 5.2. There are five energy-storing 
elements, but in this circuit there is an all-capacitor loop, 
consisting of two capacitors 1C

 
and 2C

 
and a voltage 

source, and an all-inductor cut-set (see dashed line in Fig. 
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5.2) consisting of three inductors 43, LL
 
and 5L . In this 

case, the capacitor voltages and inductor currents will be 
restricted by KVL and KCL, namely  
                                  sCC vvv =+1                             (5.10a) 

                                  354 LLL iii =+                           (5.10b) 

which means that one of the voltages and one of the currents 
can be determined if the other is known. This also means 
that the initial values of both 1Cv

 
and 2Cv

 
cannot be 

prescribed independently, nor can the initial values of all 
three currents 43, LL ii  and 5Li . Therefore, each of the 
constraint relationships, such as equations 5.10a and 5.10b, 
reduce the number of independent variables.  

In other words, the order of complexity of any network 
equals the total number of energy-storing elements minus 
the number of all-capacitor loops and the number of all-
inductor cut-sets. Thus, the order of complexity of the 
circuit of Fig. 5.2 is 5 − 1 −1 = 3. Note that (1) all-capacitor 
loops may also consist of ideal voltage sources and all-
inductor cut-sets may also include ideal current sources, 
and( 2) only independent all-capacitor loops and all-inductor 
cut-sets are taken into account. 
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5.4.  STATE  EQUATIONS  AND  TRAJECTORY 

Consider the circuit in Fig. 5.3. Let us use capacitor 
voltage Cv

 
and inductor current Li  

as state variables. 
Applying KCL to node 1n and KVL to the right loop and 
outer loop, we obtain  

1ii
dt

dvC L
C +−= , 

                                LC
L iRv

dt
diL 2−= ,                       (5.11) 

                                 sC vviR =+11 .                             (5.12) 

Eliminating the non-desirable variable 1i  
from 

equation 5.12 and substituting it into equation 5.11, after 
rearranging the terms, gives the state equations  

sLC
C v

CR
i

C
v

CRdt
dv

11

111
+−−= , 

                             LC
L i

L
Rv

Ldt
di 21

−= ,                       (5.13) 

or in matrix form  

                              )(BW)(AX)(X tt
dt

td
+=                (5.14) 

where:  

⎥
⎦

⎤
⎢
⎣

⎡
=

)(
)(

)(X
ti
tv

t
L

C  

is a vector of state variables,  
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⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−

−−
=

L
R

L

CCR

2

1

      1    

1    1

A  

is a constant 22×  matrix,  

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡−
=

0    

1
B 1R  

 
is a constant vector, 

)()(W tvt s=  
 is the scalar input, or input vector.  

For solving equation 5.14, the initial conditions of the 
inductor current and of the capacitor voltage have to be 
known. Thus, the pair 0)0( IiL =

 
and 0)0( VvC =

 
is called the 

initial state  

                                       ⎥
⎦

⎤
⎢
⎣

⎡
=

0

0
0X

V
I

.                           (5.15) 

The zero unput response, i.e., circuit response when 
W(t)  = 0 

                                     )(AX)(X t
dt

td
=                        (5.16) 

is completely determined by the initial state equation 5.15. 
Thus, if we consider [ ])(),( tvti CL  as the coordinates of a 
point on the CL vi −

 
plane, then as t increases from 0 to ∞  

the point [ ])(),( tvti CL  will trace a curve, which is called the 
state-space trajectory and the plane CL vi −

 
is called the 

state-space of the circuit. It is obvious that the trajectory 
curve starts at the initial point ( )00,VI  and ends at the origin 
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(0, 0) when ∞=t . Since )(tvC  and )(tiL  are the 
components of the state vector X(t), the trajectory defines it 

in the state space. The velocity of the trajectory ⎟
⎠
⎞

⎜
⎝
⎛

dt
dv

dt
di CL ,  

can be obtained from the state equation 5.16. In other words, 
the trajectory of the state vector in a two-dimensional space 
characterizes the behaviour of a second order circuit, i.e., for 
every t, the corresponding point of the trajectory specifies 

)(tiL  and )(tvC .  
As we have already mentioned, the state equations in 

matrix representation may be easily programmed to a 
numerical solution. Let us illustrate the approximate method 
for the calculation of the trajectory. We start at the initial 
point, determined by the initial state [ ]TLC iv )0(),0(X0 , and 
step forward a small interval of time to find an estimate of X 
at this new time. From this point we step forward again and 
estimate x after another short interval of time and so on. The 

estimate of X at the new time is found by evaluating 
dt
dX  at 

the old time using the differential equation 5.16 and 
estimating the new value of X by the formula  

                          
old

oldnew dt
dt ⎟

⎠
⎞

⎜
⎝
⎛Δ+=

XXX ,                (5.17)  

where Δt is the ‘‘step length’’. This step-by-step method is 
known as Euler’s method.  

Essentially, we are using a straight-line approximation 
to the function in each interval. In other words, this method 
is based on the assumption that if a sufficiently small 
interval of time Δt is chosen, then during that interval the 

trajectory velocity 
dt
dX  is approximately constant. Thus, the 
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straight-line segment, which approximates the trajectory on 
each step of calculation, is  

t
dt
d

const
Δ⎟

⎠
⎞

⎜
⎝
⎛=Δ

XX  

It is obvious that the approximation calculated in this 
manner reaches the exact trajectory when Δt approaches 
zero. In practice, the value of Δt that should be selected 
depends primarily on the accuracy required and on the 
length of the time interval over which the trajectory is 
calculated. Once the trajectory is computed, the response of 
the circuit is easily obtained by plotting each of the state 
variables LC iv ,

 
versus time.  

Example 5.1  

Let us employ Euler’s (first-order) method to calculate 
the state trajectory and capacitor voltage versus the time of 
the circuit shown in Fig. 5.3.  

Solution  

Let the values of the circuit elements be 1R
 
= 1 Ω, 2R

 
= 1 Ω, L = 1 H, C = 1 F and the initial state be 0I

 
= 1 A and 

0V
 
= 1 V.  

Then, substituting the above parameters in the matrix 
A, we have the state equation 5.16 as  

X
1      1   
1      1X
⎥
⎦

⎤
⎢
⎣

⎡
−
−−

=
dt
d , 

and the initial state is  
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⎥
⎦

⎤
⎢
⎣

⎡
=

1
1

)0(X . 

Let us pick Δt = 0,1 s. Using equation 5.17 yields the 
state at 0,1 s : 

⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
−
−−

+⎥
⎦

⎤
⎢
⎣

⎡
=

1  
8,0

1
1

1     1   
1     1

1,0
1
1

)1,0(X . 

Next, we can obtain the state at t = 2Δt = 0,2 s:  

⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
−
−−

+⎥
⎦

⎤
⎢
⎣

⎡
=

0,98
62,0

1  
8,0

1     1   
1     1

1,0
1  
8,0

)2,0(X . 

From these two steps, we can write the state at          
(k + 1)Δt in terms of the state at kΔt  

)(X
0,9       0,1
0,1    9,0

)(X
1     1   
1     1

1,01]1,0)1(X[ tktkk Δ⎥
⎦
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⎢
⎣

⎡ −
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⎠

⎞
⎜⎜
⎝

⎛
⎥
⎦

⎤
⎢
⎣

⎡
−
−−

+=+

 

If we use Δt = 0,01, the resulting trajectory will 
coincide with the exact trajectory. 

In conclusion, the general recurrence formula for 
approximating the trajectory may be written as 

                            )(A)X1(])1[(X tkttk ΔΔ+=Δ+        (5.18) 
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5.5. BASIC  CONSIDERATIONS  IN  WRITING 
STATE  EQUATIONS 

In this section, we shall introduce a systematic 
method for writing state equations. This method is based 
on the topological properties of the network and is called 
the ‘‘proper tree’’ method. However, we must first consider 
KCL and KVL equations based on a cut-set and loop 
analysis.  

5.5.1. Fundamental cut-set and loop matrixes  

As is known from matrix analysis, the matrix 
formulation of independent KCL equations is given by 
using the reduced incident matrix A. Recall that for any 
connected graph, having n nodes and b branches, A has     
n − 1 rows and b columns. Thus, the set of n − 1 linearly 
independent KCL equations, written on the node basis, has 
the matrix form  

                                       0Ai = .                               (5.19) 

However, equation 5.19 is not the only way of 
writing KCL equations. It may also be done on the cut-set 
basis. A cut-set is defined as a set of k branches with the 
property that if all k branches are removed from the graph, 
it is separated into two parts.  

As an example, consider the graph shown in Fig. 5.4. 
order method can be used. 
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Fig.5.4 

Two distinct cut-sets are shown by dashed lines, 
namely ),,( 7621 bbbC =  and ),,,( 65312 bbbbC = . Recall now 
the generalized version of the KCL. By enclosing one of the 
cut parts of the circuit in the balloon-shaped surface, (see 
the dotted-dash line in Fig. 5.4(b)) we can write a KCL 
equation for this particular cut-set  

05431 =+−+− iiii . 
The number of such KCL equations is obviously equal 
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to the number of distinct cut-sets. However, as we know, the 
number of independent KCL equations is n −1, where n is 
the number of nodes in the graph/circuit. Naturally, we are 
interested in writing linearly independent cut-set equations. 
For this purpose, we shall introduce the so-called 
fundamental cut-set. Choosing any tree in the graph, we 
define a fundamental cut-set as that associated with the tree 
branch, i.e. every tree branch together with some links 
constitutes a unique cut-set of the graph. Such a cut-set is 
shown, for example, in Fig. 5.5. As can be seen, removing 
the tree branch 3t  

separates the tree into two parts 1T
 
and 

2T . Then the links al  and bl  
together with twig 3t  constitute 

a unique cut-set. Indeed, removing any of the remaining 
links, even all of them (thin lines), cannot separate either 1T  
or 2T

 
into two parts. Therefore, the above cut-set is unique. 
Obviously, each of the fundamental cut-sets is 

independent of any other, because each of them contains one 
and only one twig. Since the number of twigs in any tree is  
n − 1, we can write n − 1 linearly independent KCL 
equations following n − 1 fundamental cut-sets. Note that 
the orientation of each fundamental cut-set is defined by the 
direction of the associated twig as shown in Fig.5.5.  

 
 

Fig.5.5 
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We will next consider the oriented graph of Fig. 5.6a. 
A chosen tree is shown by heavy lines, and four 
fundamental cut-sets associated with four twigs (since a 
given graph has five nodes) are marked by dashed lines. For 
the sake of convenience, we first number the twigs from 1 to 
4 and the links from 5 to 7, and adopt a reference direction 
for the cut-set, which agrees with the tree branch defining 
the cut-set. Applying KCL to the four cut-sets, we obtain 

cut-set 1: 071 =+ ii  

cut-set 2: 0762 =++ iii  

cut-set 3: 07653 =−+− iiii  

cut-set 4: 0654 =+− iii , 

or in matrix form 

          

                        

0
0
0
0

 0    1   1  1   0   0   0
1  1  1   0   1   0   0
1     1    0   0   0   1   0
0    0    0   0   0   0   1

               

           
7    6   5    4   3   2   1                

               

7
6
5
4
3
2
1

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−−

−

t
t
t
t
t
t
t

linkstwigssetcut

 (5.20) 

 In general, the KCL equations based on the 
fundamental cut-sets may be written in the short form:  

                                          0Qi = ,                        (5.21) 
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where Q is the fundamental cut-set matrix associated with 
the tree. The order of the Q matrix is bn ×− )1( , and its jk-th 
element is defined as follows: 
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⎪
⎪

⎩

⎪
⎪

⎨

⎧

−

      
set -cut  tobelongnot  does branch  if     0

direction opposite       
  thehas and set -cut  tobelongs branch  if   1

direction       
same  thehas and set -cut  tobelongs branch  if      1

jk

jk

jk

q jk  

  

Note that the fundamental cut-set matrix in equation 
5.20 includes a unit sub-matrix of order (n − 1), which is the 
number of fundamental cut-sets and the number of twigs. 
Therefore,  

                                   [ ]lt Q,1Q = ,                           (5.22) 

where Q is a sub-matrix of the order ln ×− )1( , i.e. it 
consists of (n − 1) rows and of l (number of links) columns. 
The fundamental cut-set matrix Q will always have the form 
of equation 5.22 because each fundamental cut-set contains 
one and only one twig and its orientation agrees with the 
reference direction of the cut-set, by definition.  

Next, we shall introduce the loop matrix. Mesh 
analysis, which is commonly studied in introductory course 
sin circuit analysis, is not the only method of  writing a set 
of independent equations based on KVL. Another and 
actually more flexible method, which allows us to derive 
independent KVL equations, is based on the so-called 
fundamental loop. Every link of a co-tree (complement of 
the tree) together with some twigs, which are connected to 
the link, constitutes a unique loop associated with the link. 
Indeed, there cannot be any other path between two nodes of 
the tree, to which the link is connected. If there were two or 
more paths between two nodes of the tree, they will form a 
loop; this contradicts the main property of a tree. The set of 
fundamental loops is independent, since each of them 
contains one and only one link, i.e. every loop differs from 
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another by at least one branch. Therefore, each link uniquely 
defines a fundamental loop. Hence, the number of 
fundamental loops is equal to the number of links, i.e.          
b − (n −1). Each fundamental loop has a reference direction, 
which is defined by the direction of its associated link, as 
shown in Fig. 5.6b. 

So we use the fundamental loops to define b − (n −1)  
linearly independent KVL equations. For the graph in Fig. 
5.6b, we may write the following three independent KVL 
equations: 

Loop 1: 0543 =++ vvv , 

Loop 2: 06432 =+−−− vvvv , 

Loop 3: 07321 =+−−− vvvv , 

or in matrix form 

                        

0
0
0

1   0  0     1    1    1 1
0   1   0    1  1 1   0
0   0  1     1     1    0     0

               

           
7  6   5    4    3    2      1                

                    

7
6
5
4
3
2
1

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
=

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−−
−−−

−

v
v
v
v
v
v
v

linkstwigssetcut

 (5.23) 

In general, the KVL equations based on fundamental 
loops may be written in the short form:  

                                         0Bv =                          (5.24) 

where B is the fundamental loop matrix associated with the 
tree. The order of the B matrix is bl× , where l is the 
number of loops, and its jk-th element is defined as follows:  
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⎪
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direction       
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b jk  

 

Note that the fundamental loop matrix in equation 
5.23 includes a unit sub-matrix of order l, which is the 
number of fundamental loops and also the number of links. 
Therefore, we can express B in the form  

                                       [ ]lt 1   BB = ,                        (5.25) 

where tB  is a sub-matrix of )1( −× nl , i.e. it consists of l 
(number of links) rows and of   t = n − 1 (number of twigs) 
columns. The unit matrix in B results from the fact that each 
fundamental loop contains one and only one link and by 
convention the reference directions of the fundamental loops 
are the same as that of the associated links. 

Let us think that twig voltages are a set of the basic 
independent variables. Since each fundamental loop is 
formed from twigs and only one link, the link voltage can 
always be expressed in terms of twig voltages. Therefore, 
the branch voltages in any circuit can be determined by twig 
voltages, when the latter ones are used as independent 
variables. Indeed, in accordance with equations 5.24 and 
5.25  

                                    [ ] 0v
v1    B =⎥⎦
⎤

⎢⎣
⎡

l
t

lt ,                    (5.26) 

where the branch voltage vector v is partitioned into two 
sub-vectors: tv  and lv , which are, respectively, the twig-
voltage sub-vector and link-voltage sub-vector. Performing 
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the multiplication yields  

0vvB =+ ltt  

or 

                                        ttl vBv −=                       (5.27) 

This means that link voltages are determined by twig 
voltages. Obviously, we can write the twig branch-voltage 
sub-vector as  

                                          ttt v1v =                       (5.28) 

Combining equations 5.27 and 5.28, we have  

                                      t
t

t

l

t v
B
1   

v
v

⎥
⎦

⎤
⎢
⎣

⎡
−

=⎥
⎦

⎤
⎢
⎣

⎡
               (5.29) 

or simply  

                                         t
t

t v
B
1   

v ⎥
⎦

⎤
⎢
⎣

⎡
−

=                   (5.30)  

which states that all the branch voltages in any circuit can be 
expressed in terms of twig voltages.  

Now, let us again examine the fundamental cut-sets. 
Since each fundamental cut-set is formed from links and 
only one twig, we can express the twig-currents in terms of 
link-currents. Therefore, using the link-currents as basic 
independent variables, we can always determine the all 
branch currents by the independent variables. After 
partitioning the branch currents into twig-currents and link-
currents, with equations 5.21 and 5.22, we have  

                                      [ ] 0
i
i

Q    1 =⎥
⎦

⎤
⎢
⎣

⎡

l

t
lt ,                 (5.31) 
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where ti  and  li  are, respectively, the twig-current and link-
current sub-vectors. 

Then two matrixes in equation 5.31 can be multiplied 
to yield  

                                       0iQi =+ llt ,                        

or 

                                          llt iQi −= .                         (5.32) 

Combining equation 5.32 and the identity lll i1i = , 
yields 

                                      l
l

l

l

t i
1   
Q

i
i

⎥
⎦

⎤
⎢
⎣

⎡−
=⎥

⎦

⎤
⎢
⎣

⎡
                      (5.33) 

or  

                                            l
l

l i
1   
Q

i ⎥
⎦

⎤
⎢
⎣

⎡−
=                      (5.34) 

which again states that all branch currents in any circuit can 
be expressed in terms of link currents. A useful relation 
between two matrixes Q and B can now be determined. 
Recall Tellegen’s theorem in the form  

                                             0iv =T .                           (5.35)  

By taking the transpose of v (equation 5.30), we obtain  

              [ ]T
tt

T
T

t

tT
t

T

t
t

tT B1v
B
1   

vv
B
1   

v −⎥
⎦

⎤
⎢
⎣

⎡
−

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎥
⎦

⎤
⎢
⎣

⎡
−

= .  (5.36) 

After substituting equations 5.36 and 5.34 into 
equation 5.35 we have  
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           [ ] ltl
t

tT
tt

T i all and  vallfor   0i
1   
Q

B1v =⎥
⎦

⎤
⎢
⎣

⎡−
− .     (5.37) 

Sinse 0v ≠T
t  and 0i ≠l  then 

                              [ ]   0
1   
Q

B1 =⎥
⎦

⎤
⎢
⎣

⎡−
−

t

tT
tt                      (5.38) 

    Performing the multiplication, we obtain the 
identities    

                              T
tl BQ −=                           (5.39a) 

and 
                                        T

lt QB −= .                        (5.39b) 
This relationship between two sub-matrixes lQ  and 

tB
 
results from the fact that  both fundamental cut-set 

matrix lQ  and fundamental loop matrix tB  give the 
topological relation between graph branches and 
fundamental cut-sets and fundamental loops respectively. 
Also, note that both matrixes lQ  and tB  come from the 
same tree.  

Replacing tB−  by T
lQ  in equation 5.30, we obtain 

                                 t
T

tT
l

t vQv
Q

1  
v =

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
= ,                  (5.40)  

which can be interpreted as a matrix transformation of twig-
voltages into branch voltages. Similarly, replacing lQ−  by 

T
lB  in equation 5.34, we obtain 

                                    l
T

l
l

T
l iBi

1 
Bi =

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
=                    (5.41) 
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which is a matrix transformation of link-currents into branch 
currents.  

Finally, substituting equations 5.40 and 5.41 into 
Tellengen’s theorem (equation 5.35), we have  

                     ltl
TT

t i and   vallfor    ,0iQBv = ,          (5.42) 

which can be reduced to the following relation between the 
matrixes  
                                          0QB =T .                         (5.43)  

In conclusion, the following comments on loop and 
cut-set matrixes have to be made. The methods of circuit 
analysis based on loop and cut-set matrixes are more 
flexible, allowing more possible applications than the node 
and mesh analyses. So, as we remember, the mesh analysis 
based on mesh matrix M is restricted to the planar graph 
only, whereas the fundamental loop matrix B, based on tree, 
is applicable to any graph including non-planar, by means of 
allowing us to write a maximal number of linearly 
independent KVL equations.  

The concept of duality is usually applied (in 
introductory courses) to planar graphs and planar circuits by 
means of node and mesh terms. By now, we may extend this 
concept to fundamental matrixes B and Q, pertaining to 
non-planar graphs and circuits. So, the listing of dual terms 
can be extended as follows:  

Twig                                            – Link,  
Fundamental cut-set                    – Fundamental loop,  
Twig voltage, tv                          – Link current, li  

, 
Fundamental cut-set matrix, Q – Fundamental loop 

matrix, B.  

Thus, two graphs, 1G  and 2G
 

having the same 
number of branches, are dual if the number of fundamental 
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cut-sets of one of them is equal to the number of 
fundamental loops of the second and their Q and B matrixes 
are identical, namely  
                                          21 BQ = . 

5.5.2 ‘‘Proper tree’’ method for writing state 
equations 

Our aim now is to write the state and output equations 
in the form of equation 5.9  
 
                                )(BW)(AX)(X ttt +=&               (5.44a)  

                                )(DW)(CX)(Y ttt +=              ( 5.44b)  

where X is the state vector containing all the capacitor 
voltages and all the inductor currents, W is the input vector 
containing all the independent voltage and current sources, 
driving the circuit and Y is the desired output vector. A, B, 
C and D are constant matrixes whose elements depend on 
circuit parameters. Equation 5.44a is a first order matrix 
differential equation with constant matrix coefficients. X&  is 
the first derivative of the state vector X, i.e. it consists of the 

derivatives of the state variables 
dt

dvC  and 
dt
diL  .We note 

that these quantities are given by currents in the capacitors 

dt
dvC C  and voltages across inductors 

dt
diL L .  

To evaluate capacitor currents in terms of other 
currents, we must write cut-set equations and to evaluate 
inductor voltages in terms of other voltages we must write 
loop equations. Therefore, it turns out that we could do this 
if, using the concept of cut-set and loop analysis, we chose a 
tree which includes all the capacitors but no inductors. Such 
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a tree is called a proper tree. We can complete the proper 
tree if the number of twigs is larger than the number of 
capacitors by adding resistors and voltage sources. Thus, the 
inductors, the remaining resistors and possibly the current 
sources will constitute the co-tree links.  

Following this method, we may write a fundamental 
cut-set equation for each capacitor-twig, in which the 

capacitor current 
dt

dvC C  is expressed in terms of other 

currents. We may write a fundamental loop equation as well 

for each link inductor in which the inductor voltage 
dt
diL L  

is expressed in terms of other voltages. We shall also take 
into consideration that the basic variables in cut-set/loop 
analysis are twig voltages and link currents. Hence, we shall 
use the appropriate v – i relationships for resistive and active 
elements. Thus for twig resistors we use the form Rivt =  
and for the link resistors Gvil = . For the same  reason we 
put the voltage sources into the twigs and the current 
sources into the links (to fulfill these requirements, we can 
use a source transformation and shifting techniques). At this 
point, let us illustrate the above description by the following 
example. For the sake of generality, we will divide the 
solution procedure into five steps. Consider the circuit 
shown in Fig. 5.7(a). 
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Step 1. Choosing the state variables  

The circuit contains two capacitors and one inductor. 
Therefore, the state variables are 21, CC vv

 
and 4Li , and the 

state vector is  

                                       
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

4

2

1

X

L

C

C

i
v
v

.                          (5.45) 

 

Step 2. Choosing the proper tree  

The proper tree picked for the circuit includes two 
capacitors and resistor R

3 
.  
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Step 3. Writing the fundamental cut-set equations  

These equations are written in such a way that the 
capacitor currents are defined by other link currents and/or 
current sources (if such a represent), and the remaining 
currents are written in terms of inductor currents and/or 
current sources. 

                    65
1

1   :1 ii
dt

dvCsetcut C −−=−  

                    754
2

2   :2 iii
dt

dvCsetcut L
C −+−=−     (5.46)  

                    4533 : 3 LiivGsetcut =+−                      (5.47)  

Step 4. Writing the fundamental loop equations  

The loop equations are written in such a way that the 
inductor voltages are defined by other twig voltages and/or 
voltage sources (if such are present), and the remaining 
voltages are written in terms of capacitor voltages and/or 
voltage sources  

                     32
4

4 : 1 vv
dt

diLLoop C
L −=                    (5.48)  

                  21553   : 2 CC vviRvLoop −=+−              (5.49)  

                     1166   : 3 sC vviRLoop −=   
                    2277   : 4 sC vviRLoop −=                      (5.50)  

 

The last two steps lead to state equations  

                                65
1

1  ii
dt

dvC C −−=   
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                       754
2

2  iii
dt

dvC L
C −+−=  

                             32
4

4 vv
dt

diL C
L −=                       (5.51) 

Step 5. Expressing the right-hand side of the state 
equations in terms of state variables and/or inputs.  

In this example, currents 765 ,, iii
 
and voltage 3v

 
have 

to be expressed in terms of the capacitor voltages 21, Cc vv  
and the inductor current 4Li . By solving equations 5.50, we 
have  

1
6

1
6

6
11

sC v
R

v
R

i −= , 

                                2
7

2
7

7
11

sC v
R

v
R

i −=                    (5.52) 

equations 5.47 and 5.49 form a set of two algebraic equations 
of two unknowns:  
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.             (5.53) 

Solving equation 5.53 yields  

4
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                                              (5.54)  
Finally, equations 5.52 and 5.54 can be substituted 
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into equation 5.51 to yield, after rearrangement and dividing 
through the equations by appropriate 421 ,, LCC   
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where  

                                        
351

1
GR

a
+

= .  

Note that state equations here are written in the matrix 
form of equation 5.44a where the input vector (in this 
example) is [ ]Tss vv 21   W =  and the meanings of matrixes A 
and B are obvious.  

Suppose now that the remaining branch variables, i.e. 
653 ,, iiv

 
and 7i  

are a desired output. Then, using equations 
5.54 and 5.52, we can express the output in terms of the 
state variables and the input as  
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This is an output equation in the form of equation 

5.44b, where the output vector is [ ]Tiiiv 7653       Y =  and the 
meanings of the constant matrixes are obvious.  

Let us note that the capacitor charges and the inductor 
fluxes can also be used as state variables. Then in the above 
example the state vector will be  

[ ]Tqq 421 λ    X = , 

where 221111   , CC vCqvCq ==  and 444λ LiL=  

Substituting 
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2
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in equation 

5.55, and after simplification, we obtain  
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which is the state equation using the charges and fluxes as 
state variables.  

It is worth while mentioning that some other variables 
in the circuit may be used as state variables. For example, a 
current through a resistor in parallel with a capacitor or 
voltage across a resistor in series with an inductor can be 
treated as state variables. Also any linear combination of 
capacitor voltages or inductor currents may be used as state 
variables. This can be helpful in writing state equations 
when the circuit consists of all-capacitor loops or all-
inductor cut-sets. The next step would be to solve the state 
equations. However, before doing so, we shall consider the 
general approach for deriving state equations in matrix 
form. 
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5.6. A  SYSTEMATIC  METHOD  FOR  WRITING  A  
STATE  EQUATION  BASED  ON CIRCUIT  MATRIX  

REPRESENTATION 

Consider a network whose elements are inductors, 
capacitors, resistors and independent sources. As stated, we 
assume that capacitors do not form a loop and inductors do 
not form a cut-set. We also assume that the network graph is 
connected and as a first step we will pick a proper tree. We 
can obviously include all capacitors into the tree branches, 
since they do not form any loop. Usually, it might be 
necessary  to  add  some  resistors  and/or  voltage sources in 
order to complete the tree. Then all the inductors will be 
assigned to the links. In the next step we shall partition the 
circuit branches into four sub-sets: the capacitive twigs, the 
resistive twigs, the inductive links and the resistive links. 
For the sake of specifics, we shall use an example to 
illustrate this procedure. Consider again the circuit shown in 
Fig. 5.7(a). The KCL equations for the fundamental cut-sets, 
in accordance with equation 5.31, are  

                                 [ ] 0

i
i
...
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lt                         (5.58) 

where subvectors of twig and link currents are  

⎥⎦
⎤

⎢⎣
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⎡=

R
L

l
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C

t i
ii    , i

ii    

and LGC i ,i ,i
 
and Ri  

are in turn subvectors representing 
currents in capacitive and resistive (conductive) twigs and 
inductive and resistive links, respectively. In our example, 
these four subvectors are  
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and the equation 5.58 becomes (5.60) 
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The KVL equations may be written in the form (see 
equation 5.26)  
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where   
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v
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are subvectors of twig and link voltages and 
 , v, v, v,v RLGC  

are in turn subvectors representing 
voltages across the capacitive and resistive (conductive) 
twigs and inductive and resistive links, respectively. For the 
circuit in Fig. 5.7 the voltage subvectors are 
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where 6vsR  
represents 1sv

 
and 7sRv

 
represents 2sv . The 

KVL equation 5.61 becomes  

       0
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Note that T
lt QB −= . 

Next we shall use the v - i, or i - v characteristics to 
introduce branch equations. We will employ the concept of 
a generalized branch, i.e. combining passive and active 
elements together. However, we must now take into 
consideration four different branches: two for twigs and two 
for links, as shown in Fig. 5.8.  
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Fig.5.8 

As was mentioned earlier, we shall assume that the 
voltage sources are located in the link branches and the 
current sources are located in the twig branches. Therefore, 
in matrix form we have:  

          capacitor twigs            sCcC dt
d ivCi +=

 
 

          inductor links             sLLL dt
d viLv +=           (5.64)     

resistor twigs               sGGG iGvi +=  

resistor links               sRRR v+= Riv               (5.65)  
 

where the matrixes C, L, G and R are the branch parameter 
matrixes; namely, the twig capacitance matrix, the link 
inductance matrix, the twig conductance matrix and the link 
resistance matrix, respectively. Note that C, L, G and R are 
square diagonal matrixes, but if the circuit consists of 
coupled elements (mutual inductances and/or dependent 
sources), L, G and R might not be diagonal any more. For 
the example in Fig. 5.7  
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The vectors sLsR   v,v
 

and sCsG i  ,i
 

represent the 
independent voltage and current sources, which in the 
present example are  
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Equation 5.64 can be rewritten to yield  

           sLLLsCCC dt
d

dt
d vviL    ,iivC −=−= .

               
(5.69) 

To bring these equations to the form of state 
equations, we must eliminate the variables. For this purpose, 
we shall solve the KCL equation 5.58 and KVL equation 
5.61 equations together with the branch equations 5.64 and 
5.65.  

Equations 5.58 and 5.61 can be rewritten as  
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and  
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where in the following solution matrixes lQ  and tB
 
are 

partitioned into submatrixes. The order of each of the 
submatrixes in equations 5.70 is determined by the number 
of twigs (which is the number of rows) and by the number 
of corresponding links (which is the number of columns) in 
equation 5.70a and vice versa in equation 5.70b. For 
example, the number of rows in Q

CL 
(equation 5.70a) is 

equal to the number of capacitor currents in i
C 

(capacitor 

twigs) and the number of its columns is equal to the number 
of inductor currents in i

L 
(inductor links). It can also be 

shown that there are simple relations between lQ  and tB  
submatrixes, namely 

   ,QB  ,QB  ,QB  ,QB T
GRRG

T
CRRC

T
GLLG

T
CLLC −=−=−=−=  

                                            (5.71) 
The undesirable variables i

C 
and v

L 
in equation 5.69 can now 

be expressed from equation 5.70 to yield  
 
                           RCRLCLC iQiQi −−=                    (5.72a)  
                          GLGCCLL vQvBv −−= ,               (5.72b)  
and after substituting these two expressions into equation 
5.69, we obtain  

                     sCRCRLCLCdt
d iiQiQvC −−−=   

                     sLGLGCCLLdt
d vvBvBiL −−−=          (5.73)   
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However, we still need to eliminate Ri  
and Gv . 

Substituting Gi  
and Rv

 
from equation 5.70 into equation 

5.65, and after rearrangement, results in two simultaneous 
matrix equations in two unknowns Ri  

and Gv ,  
 
                               MvBRi =+ GRGR                      (5.73a) 
                                NGviQ =+ GRGR                      (5.73b)  
where  
                               sRCRC vvBM −−=  
and 
                                sGLGL iiQN −−=                       

 
(5.74)  

Solving these two equations by the substitution 
method yields  
                         ( )MNGBRi 11 +−= −−

RGeqR ,             (5.75a)  

                        ( )NMRQGv 11 +−= −−
RGeqG ,             (5.75b)  

where  

                          GRRGeq QGBRR 1−−= ,                  (5.76a) 

                           RGRGeq BRQGG 1−−= .                (5.76b)  

Finally, we substitute equation 5.75 with equation 5.74 in 
equation 5.73 to obtain, after rearrangement, the state 
representation is follows  
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where the matrix terms are  
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Let us now use the above expressions to calculate the A 

and b matrixes in our example. First we determine the 
submatrixes of the lQ  matrix 
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Therefore the A matrix is  
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which agrees with the results previously obtained (see 
equation 5.55).  

To find the b matrix we will calculate equation 5.79. 
Since only the sRv  vector is present we need only two 
elements of  b:  

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
=

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎦

⎤
⎢
⎣

⎡
−

=
   1       0   

0      1     

 1       0        0  

0      1       0  

0        0      

1    0   1
0    1    1  

b

6
3

6
3

7

6

3

1
14

R
aG

R
aG

R

R

aG
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[ ][ ][ ] [ ]0  0  

1     0         0

0      1       0

0       0      1

0   0   11b

7

6

5

5
1
24 a

R

R

R

aR −=

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−= . 

 
Therefore, the reduced b matrix is  

 

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−=
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
=

−

0           0        

1       0      

0       1      

b

b
L     0
0     C

b

4

272

3

161

3

1
24

1
14

1

L
a

CRC
aG

CRC
aG

, 

which also agrees with the results in equation 5.55. Note 
that a voltage source in link 5 is absent ( )0

5
=sRv , therefore 

the above matrix can be reduced even more, namely  

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

0             0   

1          0   

0          1

b
27

16

CR

CR

, 

 
which is exactly the same as in equation 5.55.  

Comparing the systematic method for writing state 
equations with the intuitive approach, which we first 
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presented in the previous sections, we may conclude that it 
is rather complicated. In many practical instances, the final 
results can be arrived at much easier and faster by following 
the intuitive approach. However, the systematic method has 
an appreciable advantage for computer-aided analysis, since 
it can be easily programmed.  
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5.7. COMPLETE SOLUTION OF THE STATE MATRIX 
EQUATION 

We will now turn to the solution of the state equation 
of the form of equation 5.44a, repeated here for 
convenience:  

                            )(BW)(AX)(X ttt +=& .                   (5.80) 

5.7.1 The natural solution  

We will begin by considering the natural or zero-input 
(non-forced) solution; that is W(t) = 0. Equation 5.80 then 
simplifies to  

                0)(AX)(Xor         )(AX)(X =−= tttt && .        (5.81)  
 

It is customary to compare a vector problem with its 
scalar version. In this case, the scalar version of equation 
5.81 is  

                                    )()( tax
dt

tdx
=                            (5.82) 

The solution of equation 5.82, that satisfies the initial 
condition  x(0), is  

)0()( xetx at= . 
Suppose we try the same form for the solution of 

equation 5.81, that is  
                                     )0(Xe)(X Att = .                       (5.83)  

where tAe  is called the matrix exponential and is an 
example of a function of matrix A.  

 



 57

5.7.2. Matrix exponential  

In mathematics the matrix exponential is defined 
similarly to a scalar exponential (or complex exponential), 
i.e. in terms of the power series expansion:  

∑
∞

=
=+++++=

0

k2
2

A A
!

...A
!

...A
!2

A
!1

1e
k

k
kk

t
k
t

k
ttt         (5.84) 

Since A is a square matrix of order n, the matrix 
exponential tAe  is also a square matrix of order n.  

Example 5.2  

As an example, let us take the matrix of Example 5.1, 
namely  

⎥
⎦

⎤
⎢
⎣

⎡
−
−−

=
1     1  
1    1

A  

then  

 ⎥
⎦

⎤
⎢
⎣

⎡
−

=⎥
⎦

⎤
⎢
⎣

⎡
−
−−

⎥
⎦

⎤
⎢
⎣

⎡
−
−−

=
0     2
2     0  

1     1  
1    1

1     1  
1    1

A2  

⎥
⎦

⎤
⎢
⎣

⎡ −
=

2        2
2     2

A3  

and  

=+⎥
⎦

⎤
⎢
⎣

⎡ −
+⎥

⎦

⎤
⎢
⎣

⎡
−

+⎥
⎦

⎤
⎢
⎣

⎡
−
−−

+⎥
⎦

⎤
⎢
⎣

⎡
= ...

2      2
2   2

60     2
2      0  

21     1  
1    1

1    0
0    1

e
32

A tttt  

 

               

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

++−++−

+−+−++−
=

...
3

1      ...
3

... 
3

      ...
3

1

33
2

3
2

3

ttttt

ttttt
             5(85) 
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As can be seen from equation 5.85, each of the 

elements of the matrix tAe  is a continuous function of  t. 
Term-by-term differentiation of the matrix exponential 
(equation 5.84) results in  
 

            
( )

t

t

ttt

ttt
dt
d

A3
3

2
2

4
3

3
2

2A

Ae...A
!3

A
!2

A1A

...A
!3

A
!2

AAe

=⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
++++=

=++++=

,        (5.86)         

i.e., the formula for the derivative of a matrix exponential is 
the same as it is for a scalar exponential. Substituting 
equation 5.83 into the matrix differential equation 5.81, 
results in identity:  

X(0)AeX(0)Ae AA tt = . 

Thus, we have established that equation 5.83 is indeed 
the solution to equation 5.81.  

We must now show that the inverse of a matrix 
exponential exists and equals 
 

                                      ( ) tt A1A ee −−
= . 

 For the latter we can write  

...
!

A)1(...
!3

A
!2

AA1e
3

3
2

2A +−++−+−=−

k
tttt

k
kkt  

Now let this series be multiplied by the series for the 
positive exponential in equation 5.84. This term-by-term 
multiplication results in 1 since all other terms are cancelled. 
Thus,  
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1e AA =− tte . 

This result tells us that the matrix tAe−  is the inverse 
of tAe , since by definition the product of the matrix by its 
inverse gives a unit matrix. This result can be used, first of 
all, to show that in general if the initial vector X(0) is known 
for some time, for instance 0t , namely )(X 0tnat  then the 
solution will be  

                              )(Xe)(X 0
)A( 0 tt tt

n
−=                     (5.87) 

Indeed, substituting 0tt = , results in identity:  

)(X1)(Xee)(X 00
AA

0
00 ttt tt

n == − , 

where we have used  
BABA eee ⋅=+ .  

(This can be verified by using equation 5.84 for both 
sides of equality.)  

5.7.3. The particular solution 

To find the complete solution to equation 5.80, we 
must now find the particular solution to the differential 
equation, i.e. the forced response. For this purpose, assume a 
solution of the form  

                                   )(Qe)(X A tt t
p = ,                      (5.88) 

where Q(t) is an unknown function to be determined. In 
order to be a solution, equation 5.88 has to satisfy the 
differential equation. Substituting equation 5.88 in equation 
5.80 gives  
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[ ] )(BW)(QAe)(Qe AA ttt
dt
d tt += , 

 or  

)(BW)(QAe)Qe)(QAe AAA tt
dt

(tdt ttt +=+  

Thus  

                               )(BWe)Q A t
dt

(td t−=                    (5.89)        

Integrating, we obtain  

∫ −+=
t

t
dtt

0

ττ)(BWe)(Q)(Q Aτ
0  

Thus, the particular solution is  

∫ −+==
t

t

ttt
p dttt

0

ττ)(BWe)(Qe)(Qe)(X τ)(A
0

AA . 

To evaluate )(Q 0t , we use the complete solution 
being evaluated at 0t  

00

0
0

ττ)(BWe                    

)(Qe)(Xe)(X)(X)(X

τ)(A

0
A

0
)(A

tt

t

t

t

ttt
pntt

d

ttttt

=

−

−
=

∫+

++=+=

.
 
 

or  

0)(Qe)(X)(X 0
A

00
0 ++= ttt t , 

which implies that 0)(Q 0 =t . 

Hence, finally the complete solution of the state 
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equation 5.80 is  

            ∫ −− +=
t

t

ttt dtt
0

0 ττ)(BWe)(Xe)(X τ)(A
0

)(A .       (5.90)
 
 

 To evaluate this solution the basic calculation is a 
determination of the matrix exponential tAe . This will be 
discussed in the next subsection.  
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5.8. BASIC  CONSIDERATIONS  IN  
DETERMINING  FUNCTIONS  OF  A  MATRIX 

In this section, we shall examine two methods of computing 
tAe  in closed form. This matrix exponential is a particular 

function of a matrix. The simplest functions of a matrix are 
powers of a matrix and polynomials. As we have seen, the 
matrix exponential can be represented by an infinite series 
of such functions. The matrix polynomial has the form  

            1A...AA)A( 01
1

1 aaaf n
n

n ++++= −
−            (5.91) 

The generalization of polynomials is an infinite series:  

      ∑
∞

=
=+++++=

0

2
210 A...A...AA1)A(

k

k
k

k
k aaaaaf .   

                                             (5.92)  
 
The function  f(A) is itself a matrix, and in the last 

case each of the matrix elements is an infinite series. This 
matrix series is said to converge if each of the element series 
converges.  

We will begin with a brief description of some of the 
properties of matrixes that will be useful in our studies.  
 

5.8.1. Characteristic equation and eigenvalues  

An algebraic equation that often appears in network 
transient analysis is  

                                         AXλX =                              (5.93)  

where A is a square matrix of order  n. The problem is 
to find scalars λ and vectors X that satisfy this equation. A 
value of λ for which a nontrivial solution of X exists, is 
called an eigenvalue, or characteristic value of A. 
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The corresponding vector X is called an eigenvector, 
or characteristic vector, of A. After collecting the terms on 
the left-hand side, we have  

                                      0A]Xλ1[ =−                        (5.94)  

This equation will have a nontrivial solution for X 
only if the matrix A]λ1[ −  is singular, i.e.,  

                                0A]λ1det[ =− .                           (5.95)  

This equation is known as the characteristic equation 
associated with A. It is also closely related to the auxiliary 
(characteristic) equation of the corresponding differential 
equation of order n for the system. The determinant on the 
left-hand side of equation 5.95 is actually a polynomial of 
degree  n  in  λ  and is called the characteristic polynomial 
of A. For each value of  λ  that satisfies the characteristic 
equation, a nontrivial solution of equation 5.94 can be 
found. To illustrate this procedure, consider the following 
example.  

Example 5.3  

Let us find the eigenvalues and eigenvectors of a 
matrix of the second order  

                                      ⎥
⎦

⎤
⎢
⎣

⎡
=

 4    3
1    2

A  

The characteristic polynomial is also of order two:  
 

λ)()1λ)(5(λ                           

5λ6λ
4λ       3

1     2λ
det

4   3
1   2

1   0
0   1

λdet 2

g=−−=

=+−=⎥
⎦

⎤
⎢
⎣

⎡
−−
−−

=
⎭
⎬
⎫

⎩
⎨
⎧

⎥
⎦

⎤
⎢
⎣

⎡
−⎥

⎦

⎤
⎢
⎣

⎡
. 
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Thus, 05λ6λ2 =+−  is the characteristic equation of 
the matrix. The roots of the characteristic equation, or the 
eigenvalues, are 5λ1 =  and 1λ2 = . 

 To obtain the eigenvector corresponding to the 
eigenvalue 5λ1 = , we solve equation 5.94 by using the given 
matrix A. Thus  

⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡

⎭
⎬
⎫

⎩
⎨
⎧

⎥
⎦

⎤
⎢
⎣

⎡
−⎥

⎦

⎤
⎢
⎣

⎡
0
0

4   3
1   2

5   0
0   5

2

1

x
x

 

or  

12
2

1 3         
0
0

1    3
1   3  

xx
x
x

=→⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
−

−
. 

Therefore  

[ ] 11
1

1

2

1  of any valuefor          
3
1

3
xx

x
x

x
x

→⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
. 

The eigenvector corresponding to the eigenvalue 
1λ2 =  is obtained similarly.  

     
0
0

3    3
1      1 

2

1
⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
−−
−

x
x

. 

from which  

[ ] 11
1

1

2

1  of any valuefor          
1
1    

xx
x
x

x
x

→⎥
⎦

⎤
⎢
⎣

⎡
−

=⎥
⎦

⎤
⎢
⎣

⎡
−

=⎥
⎦

⎤
⎢
⎣

⎡
 

The first method to be discussed for finding functions 
of a matrix is based on the Caley-Hamilton theorem.  
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5.8.2 The Caley-Hamilton theorem 

This theorem states that every square matrix satisfies 
its own characteristic equation. For example, if we substitute 
A for λ in the characteristic equation of Example 5, we 
obtain the matrix equation 

015A6A)A( 2 =⋅+−=g , 

where, again, 1 is an identity matrix and 0 is a matrix 
whose elements are all zero. Thus 

⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
+⎥

⎦

⎤
⎢
⎣

⎡
−⎥

⎦

⎤
⎢
⎣

⎡
=

=⎥
⎦

⎤
⎢
⎣

⎡
+⎥

⎦

⎤
⎢
⎣

⎡
−⎥

⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡

0    0
0    0

5    0
0    5

24    18
6     12

19    18
6      7 

1    0
0    1

5
4    3
1    2

6
4    3
1    2

4    3
1    2

   
 

The equation is certainly satisfied in this example.  
The Caley-Hamilton theorem permits us to reduce the 

order of a matrix polynomial of any higher order to be of an 
order no greater than n − 1, where n is the order of the 
matrix. For example, if A is a square matrix of order 3, then 
its characteristic equation is  

                   0λλλλ)( 01
2

2
3 =+++= aaag                  (5.96)  

and by the Caley-Hamilton theorem we have  

01AAA 01
2

2
3 =+++ aaa  

Then 

                              1AAA 01
2

2
3 aaa −−−=                  (5.97) 

 
Thus, 3A  A3 may be expressed in terms of the 

matrixes of an order not higher than 2 and identity matrix. 
Hence, the given polynomial of order 3 is reduced to a 
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polynomial of order 2. To extend these results to polynomials 
of an even higher order, we multiply equation 5.97 
throughout by A to obtain  

                           AAAA 0
2

1
3

2
4 aaa −−−=                  (5.98) 

Substituting equation 5.97 for 4A , we obtain  

          ( ) ( ) 1AAA 02012
2

1
2
2

4 aaaaaaa +−+−= .         (5.99a) 

To generalize these results, let us develop an iterative 
formula for expressing higher powers of A.W  e assign the 
obtained coefficients in equation 5.99 by upper script, as 
follows  

                        1AAA 0
)1(

1
2)1(

2
4 aaa ++=                  (5.99b) 

Multiplying this expression throughout by A, and 
collecting like terms, yields  

( ) ( ) ( )
1AA                           

1AAA
)2(

0
)2(

1
2)2(

2

)1(
20

)1(
0

)1(
21

2)1(
1

)1(
22

5

aaa

aaaaaaaa

++=

=−++−++−=
, 

where again )2(
0

)2(
1

)2(
2 ,, aaa  are the new coefficients and 

012 ,, aaa
 
are as before the coefficients of the characteristic 

equation 5.96. Now the iterative formula for this case, n = 3, 
can be written as  

( ) ( )
( ) 1AA 1              

AAA
)(

0
)(

1
2)(

2
)1(

20

)11(
0

)1(
21

2)1(
1

)1(
22

3

kkkk

kkkkk

aaaaa

aaaaaa

++=−+

++−++−=
−

−−−−+

. 

                                       (5.100) 

Note that this formula also works fine for the first 
calculation of 4A  (equation 5.99) if the coefficients in 
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equation 5.97 are assigned as 

0
)0(

01
)0(

12
)0(

2   and    , aaaaaa −=−=−= . 
 Generalizing this result (equation 5.100) for any 

matrix of order  n, we can write  

        
( )

( ) ( )1...A

AA        
)1(

10
2)1(

3
)1(

12

1)1(
2

)1(
11

−
−

−−
−

−
−−

−−
−

−
−−

+

−+++−+

++−=
k

n
nk

n
k

nn

nk
n

k
nn

kn

aaaaa

aaa
  

                                           (5.101)         

This gives us an expression for ,...2,1,0  ,A =+ kkn  in 

terms of 1  andA  ,...,A,A 21 −− nn .  
Continuing this process, we see that any power of A 

can be represented as a weighted polynomial in A of an 
order, at most  n − 1. Hence, functions of matrixes, 
including tAe , that can be expressed as a polynomial  

           ∑
∞

=
=++++=

0
10 Aα...Aα...Aα1α)A(

k

k
k

k
kf   (5.102)  

may be reduced to the expression  
  

          ∑
−

=

−
− =+++=

1

0

1
110 AβAβ...Aβ1β)A(

n

k

k
k

n
nf     (5.103)      

Here, the coefficients 110 β ,...,β ,β −n  are functions of 
,...α,α  and,...,, 10  110 −naaa  Their approximate calculation 

can be carried out by the iterative method used in the 
calculation of higher powers of A in equation 5.101 and by 
using equation 5.102. However this straightforward method 
can be lengthy.  

Example 5.4  

(a) Let us first calculate a simple matrix function    
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f(A) = 4A , where A is the matrix of the previous example. 
Since the characteristic equation of A is 05λ6λ2 =+− , we 
have  

15A6A2 ⋅−= ,  

where 61 −=a  and 50 =a .  

Using an iterative formula, and noting that in the first 
calculation 0

)0(
01

)0(
1   , aaaa −=−= , yields  

[ ] ( )
[ ] ,130A311)65(A566  

1AA )0(
10

)0(
0

)0(
11

3

⋅−=⋅−+−⋅=

=−++−= aaaaa   

where  and . Hence, 

, 

and finally  

 

(b) As a second example, let us calculate a matrix 
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potential  for t = 1 s, using the approximation 
up to fifth term:  

 

and finally  

. 

We shall next develop an easier, one-step method for 
finding β-coefficients in the function of matrix expression 
(equation 5.103). Let us return to the characteristic equation 
of matrix A  

            .  

                                            (5.104)  
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The eigenvalues , which are the roots 
of the characteristic equation 5.104, obviously satisfy the 
equation 5.104 as well as matrix A (in accordance with the 
Caleg-Hamilton theorem). Therefore, using the same 
procedure as before, we can derive an expression similar to 
equation 5.103 for the eigenvalues instead of the matrix by 
itself, namely:  

. 

                                               (5.105)  

It is understandable that this expression holds for any 
λ that is a solution of the characteristic equation 5.104, that 
is for any eigenvalue of the matrix A.  

(a) Distinct eigenvalues  

Assume first that the eigenvalues are distinct; that is, 

that none is repeated. Substituting  in 
equation 5.105 gives  n  equations in  n  unknown :  
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                …………………………………………. 

                 
                                            (5.106) 

The coefficients  can then be obtained 
as the solution to this linear system of scalar equations, i.e. 
the inversion of the set of equations 5.106 gives the solution. 
With the known β-coefficients, the function of the matrix 
representation problem is solved:  

                                   .                    (5.107)     

Example 5.5. 
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 Let us illustrate this process with the same simple 
example (as in Example 5.4):  

(a) Find , if . 

The characteristic equation is (see Example 5.3)  

. 
Thus, the eigenvalues are  

.  
In accordance with equation 5.106, we have  

 

Solving these simple equations for unknowns 

 
and 1β , gives  

156β      ,155β 10 =−= . 
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The solution for 4A  is found by using equation 5.107  
A1561155A)A( 4 ⋅+⋅−==f  

which is the same as the results obtained in the previous 
example.  

(b) Find tf Ae)A( =  for the same matrix A.  
The equations for unknowns 0β  

and 1β  in this case will 
be  

.ββ

5ββ

10

5
10

t

t

e

e

=+

=+
 

Solving this equation gives  
tttt eeee

4
5

4
1β   ,

4
1

4
1β 5

0
5

1 +−=−= . 

Thus, the matrix exponential is  

.
4   3
1   2

4
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1   0
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⎦
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By an obvious rearrangement, this becomes  

              .

4
1

4
3        

4
3

4
3

4
1

4
1        

4
3

4
1

e
55

55

A

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

+−

−+
=

tttt

tttt

t

eeee

eeee
.         (5.108) 

 It is interesting to compare these results with those 
obtained in the previous example. The approximate, up to 
fifth term, evaluation of the exponents 5e  and 1e  (t = 1 s) 
gives  
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4,655
!4

15
!3

15
!2

151 4325 =++++≅e  

71,2
!4

1
!3

1
!2

1111 =++++=e . 

Substituting these results in equation 5.108 yields  
 

⎥
⎦

⎤
⎢
⎣

⎡
≅

49,7    47,0
15,6    4,18

eA  

which agrees with the previous results.  
Therefore, the series form of the exponential may 

permit some approximate numerical results; it does not lead 
to a closed form. However, with the help of the Caley-
Hamilton theorem, we obtained the closed-form equivalent 
for the exponential tAe  (equation 5.107). We shall now 
return our consideration to the complete solution of the state 
equation in the form of equation 5.90, repeated here for 
convenience:  

            ∫ −− +=
t

t

ttt dtt
0

0 τBW(τWe)(Xe)(X τ)(A
0

)(A .        (5.109)  

The following example illustrates this computation.  

Example5.6.  

Find the complete solution of the state equation 
describing the circuit in Fig. 5.7, considered before. For the 
sake of convenience, it is redrawn here again in Fig. 5.9(a).  

Let the circuit element values be 1C
 
= 1 F, 2C

 
= 2 F, 

4L
 
= 1 H , 3G

 
= 1 S, 5R

 
= 1 Ω, 6R

 
= 

7
2  Ω, 7R

 
= 

3
1  Ω.  
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R6

R5 R3

R7L4

C1 C2

Vs1 Vs2

i6

i5 i3

i7

i4

Vout

+ +
_ _

 
a 

R6

R5 R3

R7

Vs1 Vs2

i6

i5 i3

i7

i4

+ +
_ _

+ +
_ _

 
b 

Fig. 2.9 

 



 76

Solution  

Substituting these parameters into equation 5.55, we 
obtain the following A matrix  

                        

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−−

−−

=

2
1      

2
1        

2
1  

4
1      

4
7     

4
1  

2
1      

2
1        4

A .                     (5.110) 

The characteristic equation is  

.0

 
2
1λ           

2
1          

2
1 

 
4
1            

4
7λ         

4
1 

 
2
1              

2
1         4λ

A1λλ)( =

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

+−−

+−

−+

=−⋅=g  

Thus,  

0
4
1

2
1λ

4
7λ4)(λλ)( =⎥

⎦

⎤
⎢
⎣

⎡
+⎟
⎠
⎞

⎜
⎝
⎛ +⎟
⎠
⎞

⎜
⎝
⎛ ++=g . 

Simplifying yields  

                              0
8
9λ

4
9λ4)λ( 2 =⎟

⎠
⎞

⎜
⎝
⎛ +++ .          (5.111) 

Thus, the eigenvalues of A are  

375,0125,1
8
9

8
9

8
9λ 2

2

1,2 ±−=⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−±−=  

or  
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4λ     ,5,1λ     ,75,0λ 321 −=−=−= . 

Using the results of equation 5.106, we can evaluate 
210 β  and   β,β

 
from the equations  

                    

,β)4(β4β

β)5,1(β5,1β

β)75,0(β75,0β

4
2

2
10

5,1
2

2
10

75,0
2

2
10

t

t

t

e

e

e

−

−

−

=−+−

=−+−

=−+−

         (5.112) 

which in the matrix form are  

                

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−
−

−

−

−

t

t

t

e

e

e

4

5,1

75,0

2

1

0

β
β
β

16           4       1
2,25         1,5      1

0,5625     75,0     1
.     5(113)  

The solution for  β  is found by inversion, as  

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−
−

=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−

−

−

t

t

t

e

e

e

4

5,1

75,0

2

1

0

16           4       1
2,25         1,5      1

0,5625     75,0     1

β
β
β

 

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−
−

=
−

−

−

t

t

t

e

e

e

4

5,1

75,0

0,1231      533,0    0,4103
0,2769      533,2      2,256
0,1385         6,1       462,2

 

          

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−

−

−

=
−−−

−−−

−−−

ttt

ttt

ttt

eee

eee

eee

45,175,0

45,175,0

45,175,0

0,1231      533,0    0,4103

0,2769      533,2      2,256

0,1385         6,1       462,2

.  

                                               (5.114) 
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With  β  now  known, matrix tAe  will be  

.β
125,0       875,0       125,2
438,0         063,3          563,1
125,2         125,3          87,15

           

β
5,0       0,5           0,5
25,0     1,75      0,25

0,5       5,0           4

β
β

1   0   0
0   1   0
0   0   1

e

2

1

2

0
A

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−−−
−

−
=

=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−−
−−

+
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=t

 

Substituting equation 5.114 for β and collecting like 
terms yields the final results  

+
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−−−
−−−

= − tt e 75,0A

283,1           0,769            256,0  
384,0        229,0         077,0
256,0        154,0         048,0

e  

+
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−−−
+ − te 5,1

267,0      0,8       133,0
4,0           2,1            2,0    

133,0         4,0          066,0  
 

                  te 4

015,0       0,031        123,0
015,0       031,0        123,0 

123,0       246,0       985,0  
−

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−−
−−

−
+ .      (5.115) 

Now suppose that the initial state vector at 00 =t  is  

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

0,1
5,1
5.0

)0(X , 

then the natural solution (for W(t) = 0) in equation 5.109 is  
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.

0,031534,12,564  

0,03130,20,767

0,246767,0511,0

)0(Xe)(X                     

45,175,0

45,175,0

45,175,0

A

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−−

−+−

++−

=

==

−−−

−−−

−−−

ttt

ttt

ttt

t
nat

eee

eee

eee

t

. 

                                       (5.116) 
The next step is to find the particular or forced 

solution of the state equation. Let the input vector  

⎥
⎦

⎤
⎢
⎣

⎡
=

1
1

)(W t . 

 Substituting the circuit parameters into matrix B in 
equation 5.55, we obtain  

                                    
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

0     0 
1,5    0 
0    5,3

B                         (5.117) 

Since the input is a constant (DC), evaluating the 
integral in equation 5.55 results, for 00 =t , in  

      [ ]BW1eABWeAτBWe A1
0

τ)A(1

0

 τ)A( −=−= −−−−∫ ttt
t

t d ,  

                                            (5.118) 
where the inverse of the A matrix is found as follows  
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⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−−
−

−
=

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−−

−−

=
528,1     5,0    222,0

0,25       5,0       0      
0,222       0       222,0

2
1      

2
1        

2
1  

4
1      

4
7     

4
1  

2
1      

2
1        4

A 1-  

                                            (5.119) 

Performing now, all the calculations in equation 
5.118, with equations 5.119, 5.115, 5.117 and 

⎥
⎦

⎤
⎢
⎣

⎡
=

1
1

)(W t , 

we obtain the particular solution  

.

528,10,096111,12,735  

75,00,096667,10,821

778,00,769556,0547,0

)(X

                   

45,175,0

45,175,0

45,175,0

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

+++−

++−

+−−

=
−−−

−−−

−−−

ttt

ttt

ttt

par

eee

eee

eee

t   

                                         (5.120) 
The final result of the complete solution is simply 

obtained by combining the above two solutions: the natural 
(equation 5.116) and the particular (equation 5.120), which 
leads to  
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.

528,10,065423,00,171  

75,00,065633,00,052

778,00,523211,0034,0

XX)X(                                              

4

2

1

45,175,0

45,175,0

45,175,0

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

++−−

+++

+−+

=

=+=

−−−

−−−

−−−

L

C

C

ttt

ttt

ttt

parnat

i
v
v

eee

eee

eee

t
. 

                                         (5.121) 

Figure 5.10 shows the state variables 421   ,  , LCC ivv
 

behaviour versus time.  

1,5

1,0

0,5

iL4

VC1

VC2

t, s
1 2  

 
Fig. 5.10 

 
The computer calculation of the state variables in the 

above example was done by means of the MATHCAD 
program. (Note that the computing results are slightly 
different from those obtained above).  

To complete this example, suppose that voltage 3v
 
is 
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of interest. Then the output equation 5.56 simplifies to 

[ ]
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥⎦
⎤

⎢⎣
⎡−=−=

4

2

1

53 2
1   

2
1   

2
1)(X   )(

L

C

C

i
v
v

ta   aRatv . 

 
Thus, the output voltage is  

       
( )

V. 75,0327,00005,0077,0
2
1)(          

45,175,0

44213

++−−=

=++−==

−−− ttt

LCCout

eee

Rivvvtv
  

                                            (5.122)  

Note that by inspection of the given circuit in its DC 
steady-state behaviour, i.e. the capacitors are open-circuited 
and the inductor is short-circuited as shown in Fig. 5.9(b), 
we may find  

V 778,01

7
21

1)( 5
65

1
1 =

+
=

+
=∞ R

RR
vv s

C  

V 75,01

3
11

1)( 3
73

2
2 =

+
=

+
=∞ R

RR
vv s

C  

A 528,175,0778,0)(
3

2

5

1 =+=+=∞
R

v
R
vi CC

L , 

which is in agreement with the final results in equation 
5.121.  

(b) Multiple eigenvalues 
If some of the eigenvalues of A (roots of the 

characteristic equation g(λ) ≠ 0) are not distinct and there 
are repeated values (for example 21 λλ = ), then in this case, 
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the number of independent equations in 5.106 would be 
fewer than  n  unknown coefficients β. The following 
theorem allows us to extend the solution for finding all  β  to 
the case of repeated eigenvalues.  

Theorem: Let A be the nn×  matrix with 0n
 
distinct 

eigenvalues 
0

λ,...,λ,λ 21 n  
and m multiple eigenvalues 

( nn <0 , if no eigenvalue is repeated, then nn =0 ). Let the 
eigenvalue 1λ  occur with multiplicity ir , and define the 
polynomials 

                               ∑
−

=
=

1

0
Aβ)A(P

n

k
k                            (5.123) 

and 

                                ∑
−

=
=

1

0
λβ)λ(P

n

k

k
k                           (5.124) 

Then the matrix function  f(A) is identical to the 
matrix polynomial P(A) (see 5.107) if the following 
conditions are obeyed:  

for each distinct eigenvalue  

                     0,...,2,1     )λ()λ( niPf ii ==              (5.125a) 

for each multiple eigenvalue  

             
1,...,2,1,0    ,,...,,

,λ)(
λ

λ)(
λ

       

02010

λλλλ

−==

=

+++

==

im

q

q

q

q

rqnnni

P
d
df

d
d

ii  (5.125b) 

that the first condition (equation 5.125a) gives us only 
)1( 00 <nn  independent equations for finding n unknown β-

coefficients. However, the second condition (equation 
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5.125b) yields the remaining equations needed to solve for 
110 β,...,β,β −n . For this purpose equation 5.125b shall be 

rewritten in terms of the unknown  β  

1,...,2,1,0    ,,...,,                   

,λβ)1)...(1(λβ
λ

λ)(
λ

02010

1

λλλλ

−==

+−−==

+++

−
−

=== ∑

im

qk
ik

n

qk

k
kq

q

q

q

rqnnni

qkkk
d
df

d
d

ii

  
                                         (5.126)  

The total number of independent equations, therefore, 
will be  

nrn
m

i
i =+∑

=1
0 . 

Example 5.7. As an example of the determination of a 
matrix function when A has multiple eigenvalues, let us 
consider the same circuit in Fig. 5.9 of the previous example 
with slightly different parameters, namely: 

, 
5
2  , 

3
1

76 Ω=Ω= RR  (the rest of the parameters are the 

same). Suppose we wish to find tAe .  

Solution  

The A matrix in this case will be  

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−−

−−

=

2
1      

2
1        

2
1  

4
1      

2
3     

4
1  

2
1      

2
1       

2
7

A  
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which yields the characteristic equation  

=

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

+−−

+−

−−+

=

2
1λ      

2
1        

2
1 

4
1       

2
3λ       

4
1 

2
1      

2
1      

2
7λ

λ)(g  

( ) 01λ2λ
2
7λ

8
3λ

4
1

2
1λ

2
3λ

2
7λ 2 =++⎟

⎠
⎞

⎜
⎝
⎛ +=++⎟

⎠
⎞

⎜
⎝
⎛ +⎟
⎠
⎞

⎜
⎝
⎛ +⎟
⎠
⎞

⎜
⎝
⎛ += . 

      Thus, the eigenvalues are 
2
7λ1 −=  and double 1λ2 −= , 

i.e. the multiplicity r = 2. Therefore, for the first distinct 
eigenvalue, in accordance with equation 5.125a, we have  

t
e 2

72

210 2
7β

2
7ββ

−
=⎟

⎠
⎞

⎜
⎝
⎛−+⎟

⎠
⎞

⎜
⎝
⎛−+ , 

and for the double eigenvalue, in accordance with equation 
5.125b we have  

( )
.1     ,)1(β2β

0    ,)1(β1ββ

21

2
210

==−+

==−+−+
−

−

qte

qe
t

t
 

 Since  

( ) tt tee
d
d

d
df −

−=−=
==

1λ

λ

1λ

2

2

2

2
λλ

)λ( , 

the above equations in the matrix form are  
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⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
−

−

−

−

−

t

t

t

te

e

e 5,3

2

1

0

β
β
β

2       1      0
1         1    1
4
49      

2
7    1

. 

The solution for β gives 

.

0,416,00,16 

1,832,00,32

1,484,016,0

β
β
β

                 

5,3

5,3

5,3

2

1

0

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

+−

+−

++

=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−−−

−−−

−−−

ttt

ttt

ttt

teee

teee

teee

 

With  β  known, the desired matrix is  

2

10
A

β
125,0   0,75      875,1
375,0      25,2       375,1
875,1     ,752     125,12 

         

β
5,0     0,5      5,0  
25,0     5,1    25,0
5,0     0,5     5,3

β
1     0

1   
0     1

e

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−−−
−

−
+

+
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−−
−−

+
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=t

 

Substituting the  β from the previous solution, and 
after simplifying, we obtain  

⎢
⎢
⎢
⎢

⎣

⎡

++−

−+−

−+

=
−−−

−−−

−−−

ttt

ttt

ttt

t

teee

teee

teee

15,014,014,0

1,014,014,0

05,002,098,0

e
5,3

5,3

5,3

A  
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.

45,002,002,1      

3,002,002,0    

15,014,014,0      

6,004,004,0       

4,096,004,0       

2,028,028,0     

5,3

5,3

5,3

5,3

5,3

5,3

⎥
⎥
⎥
⎥

⎦

⎤

+−

−+−

−−

+−

−+

−+−

−−−

−−−

−−−

−−−

−−−

−−−

ttt

ttt

ttt

ttt

ttt

ttt

teee

teee

teee

teee

teee

teee

 

(c) Complex eigenvalues  

We shall illustrate the computation of a matrix 
exponential when some of the roots of the characteristic 
equation are complex quantities, considering the following 
example.  

Example 5.8  

Let the circuit in Fig. 5.9 (of the previous example) 

have the same parameters, excluding Ω=  
5
2

6R  and 

Ω=  
2
1

7R . Our purpose is again to compute tAe .  

Solution  

We substitute the above parameters into the A matrix 
of equation 5.55 to yield  

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−−

−−

=

2
1      

2
1        

2
1  

4
1      

4
5     

4
1  

2
1      

2
1       3

A . 
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Thus, the characteristic equation of A is  

0
4
3λ

4
1

2
1λ

4
5λ3)(λλ)( =++⎟

⎠
⎞

⎜
⎝
⎛ +⎟
⎠
⎞

⎜
⎝
⎛ ++=g , 

or after a rearrangement of terms  

0
8
7λ

4
7λ3)(λ 2 =⎟

⎠
⎞

⎜
⎝
⎛ +++ , 

Therefore, the eigenvalues are  

331,0875,0
64

5649
8
7λ,3λ 2,31 j±−=

−
±−=−= . 

Note that two complex eigenvalues are a conjugate 
pair. Thus, in accordance with equation 5.106, we have  
 

.)331,0875,0(β)331,0875,0(ββ

)331,0875,0(β)331,0875,0(ββ

)3(β)3(ββ                           

331,0875,0
210

331,0875,0
210

32
210

tjt

tjt

t

eejj

eejj

e

−−

−

−

=−−+−−+

=+−++−+

=−+−+

 

Next, we solve these equations to yield for β:  
 

).331,0cos216,0331,0sin39,1(216,0β

)331,0cos378,0331,0sin46,5(378,0β

)331,0cos811,0331,0sin86,3(819,0β

875,03
2

875,03
1

875,03
0

ttee

ttee

ttee

tt

tt

tt

−+=

−+=

++=

−−

−−

−−

 

 
Hence, matrix tAe  will be 
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.β
125,1   0,62      625,1
313,0      563,1       187,1

625,1     ,3752     875,8 
         

β
5,0        0,5      5,0  
25,0     25,1    25,0
5,0        0,5        3

β
1     0

1   
0     1

e

2

10
A

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−−−
−

−
+

+
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−−
−−

+
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=t

 

Finally, substituting the above results for β, after 
simplifying, we obtain  

⎢
⎢
⎢
⎢

⎣

⎡

++−

+−−

+−

=
−

−

−

21
3

21
3

21
3

A

ξ162,0ξ470,0162,0

ξ162,0ξ280,0162,0

ξ027,0ξ174,0973,0

e
t

t

t

t

e

e

e

 

.

ξ027,1ξ960,0027,0    

ξ027,0ξ930,0027,0    

ξ162,0ξ470,0162,0      

ξ054,0ξ86,1054,0       

ξ946,0ξ787,0054,0       

ξ324,0ξ572,0324,0     

21
3

21
3

21
3

21
3

21
3

21
3

⎥
⎥
⎥
⎥

⎦

⎤

++−

+−−

−−

−+−

+−

+−−

−

−

−

−

−

−

t

t

t

t

t

t

e

e

e

e

e

e

 

where tete tt 331,0cosξ    ,331,0sinξ 875,0
2

875,0
1

−− == .  
Suppose we now wish to know the zero input response 

of the circuit to the initial vector 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

0
1
1

)0(X , 
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i.e. the capacitors are initially charged to 1 V each. Then,  

=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

4

2

1
A

0
1
1

)(X

L

C

C
t

nat

i
v
v

et  

.

)331,0cos108,0331,0sin329,2(1086,0

)331,0cos108,1331,0sin073,1(108,0

)331,0cos351,0331,0sin746,0(649,0

875,03

875,03

875,03

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

++−

+−+−

+−+

=
−−

−−

−−

ttee

ttee

ttee

tt

tt

tt

 
These two voltage curves and one current curve versus 

time are shown in Fig. 5.11.  

1,5

1,0

0,5 iL4

VC1
VC2

t, s

2,5 5  
Fig. 5.11 

5.8.3. Lagrange interpolation formula  

One other method of computing functions of a matrix 
is based on the Lagrange interpolation formula (this formula 
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is also known as the Silvestre formula). Thus, knowing the 
eigenvalues λ of matrix A, any function of A may be 
determined as:  

                 )λ(
λλ

1λA)A(
1 1

i

n

i

n

ik
k ki

k ff ∑ ∏
=

≠
= ⎥

⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−

= ,                  (5.127)  

where ∏
≠
=

n

k
k

1
1

 means the product of terms  

ki

k
λλ

1λA
−
− , 

where k takes the values 1, 2, ..., n  but excluding k = i. For 
example, using the data of Example 5.6, equation 5.127 
implies that  

.
)5,140,75)(4(
)15,1A)(175,0A(         

4),510,75)(1,5(
)14A)(175,0A(       

4)0,751,5)(0,75(
)14A)(15,1A(e

4

5,1

75,0A

t

t

tt

e

e

e

−

−

−

+−+−
⋅+⋅+

+

+
+−+−
⋅+⋅+

+

+
+−+−
⋅+⋅+

=

 

 
Substituting matrix A (equation 5.110) and performing 

all the arithmetic, leads to 
 

+
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−−−
−−−

= − tt e 75,0A

282,1       769,0        256,0  
385,0    230,0     077,0
256,0    154,0     050,0

e  
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+
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−−−
+ − te 5,1

267,0      8,0      133,0
4,0           2,1           2,0    

133,0         4,0         067,0  
 

te 4

015,0      031,0       123,0  
015,0      031,0       123,0  
123,0        246,0     985,0    

−

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−−
−−

−
+ , 

 
which agrees with the previous results obtained in equation 
5.115. 

 The Lagrange interpolation formula can be easily 
programmed, which is an advantage in computer-aided 
calculations.  
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5.9.  EVALUATING THE MATRIX EXPONENTIAL 
BY LAPLACE TRANSFORM 

In conclusion, let us introduce the Laplace transform 
application for solving the matrix differential equation. To 
simplify the procedure, we first apply the Laplace transform 
to the homogeneous equation (see equation 5.81):  

                              0)(AX)(X =− tt
dt
d .                    (5.128) 

Applying the Laplace transform to equation 5.128, we 
get 

                          0)(AX)0(X)(X =−− sss                (5.129) 

where  X(s)  is the Laplace transform of X(t). Supposing 
that X(0) = 1 equation 5.129 can be written as follows : 

                                1)(X)A1( =−⋅ ss                       (5.130) 

or 

                            1)A1()(X −−⋅= ss .                       (5.131) 

Now, we take the inverse transform to get X(t)  

                    { } tsLt A11 e)A1()(X =−⋅= −− .              (5.132) 

As can be seen, since we have taken X(0) = 1, this 
expression is also equal to the matrix exponential tAe . 

Example 5.9  

Let us apply this result to the simple circuit shown in 
Fig. 5.12, where the proper tree branches are emphasized.  
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1

2
+

R1

R2

L
C

Vs _

i1 iC

 
 

Fig.5.12 

Solution  

The capacitor voltage Cv
 
and the inductor current Li  

are the state variables in this case. The fundamental cut-set 
equation and two fundamental loop equations yield  

1ii
dt

dvC L
C +−=  

2Riv
dt
diL LC

L −=  

sC v
R

v
R

i
11

1
11

+−= . 

To eliminate a non-desirable variable, 1i , in the first 
equation, in this simple case, the third equation shall be 
inserted into the first one for 1i .  Thus, the state equations 
are  



 93 

sLC
C v

CR
i

C
v

CRdt
dv

11

111
+−−=  

LC
L i

L
Rv

Ldt
di 21

−=  

or in the matrix form  

[ ]s
L

C

L

C vR
i
v

L
R

L

CCR
i
v

dt
d

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
+⎥

⎦

⎤
⎢
⎣

⎡

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−

−−
=⎥

⎦

⎤
⎢
⎣

⎡

0 

1

      1    

1    1

1
2

1 . 

                                            (5.133) 
Let the element values be C = 1,0 F, 

Ω=Ω==  
3
2  , 

5
2  H, 

3
4

21 RRL  and V 1=sv .  

This yields the coefficient matrixes A and B 

                      
⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡
=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−

−−
=

0
2
5

B      ,

2
1     

4
3  

1     
2
5

A                   (5.134)  

and the input matrix [ ] [ ]1W == Cv . Next, we find the matrix 
[s1 − A] and its determinant  

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

+−

+
=−⋅

2
1     

4
3

1       
2
5

A1
s

s
s  

)2)(1(23
4
3

2
1

2
5)A1det( 2 ++=++=+⎟

⎠
⎞

⎜
⎝
⎛ +⎟
⎠
⎞

⎜
⎝
⎛ +=−⋅ sssssss

. 
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The inverse matrix 1]A1[ −−⋅s  is now easily obtained 
as  

=

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

++

+

++
−

++++

+

=−⋅ −

)2)(1(
2
5

   
)2)(1(

4
3

)2)(1(
1     

)2)(1(
2
1

]A1[ 1

ss

s

ss

ssss

s

s  

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

+
−

++
+

+
−

+
−

++
+

+
−

=

2
2
1

1
2
3

      
2

4
3

1
4
3

2
1

1
1       

2
2
3

1
2
1

ssss

ssss . 

 

A partial-fraction expansion was performed in the last 
step. The inverse Laplace transform of this expression is  

t

tttt

tttt

eeee

eeee
sL A

22

22

11 e

2
1

2
3     

4
3

4
3

      
2
3

2
1

]A1[ =

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−+−

−+−
=−⋅

−−−−

−−−−

−−  

                                                (5.135)  
(It is left as an exercise for the student to verify this 

result using one of the above given methods for determining 
a matrix exponential). Suppose that the initial conditions are 

V 1)0( =Cv  and 0)0( =Li , and then the natural response 
will be  
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⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

+−

+−
=⎥

⎦

⎤
⎢
⎣

⎡
=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
=

−−

−−

tt

tt

t

nL

nC
n

ee

ee

i
v

t
2

2

A

,

,

4
3

4
3

 
2
3

2
1

0
1

e)(X .  

                                                  (5.136) 
Note that the verification of equation 5.136 at t = 0 

yields the initial values of )0(Cv  and )0(Li . The particular 
solution of equation 5.133 may also be obtained with 
equation 5.135 using, for example, equation 5.118. Thus,  

[ ] ×

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−−

−
=−= −

4
5    

8
3

2
1      

4
1

BW1eA)(X A1 t
p t  

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−+−

−+−
×

−−−−

−−−−

0
2
5

2
1

2
3     

4
3

4
3

      
2
3

2
1

22

22

tttt

tttt

eeee

eeee
 

 
or after performing all the calculations  

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

++−

+−
=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−−

−−

16
15

16
15

8
15

8
5  

8
15  

4
5   

)(X
2

2

,

,

tt

tt

pL

pC
part

ee

ee

i

v
t .

 
 

By inspection (see the circuit in Fig. 5.11) it can be 
easily verified that the steady-state values of the capacitor 
voltage and the inductor current agree with those found 
below:  
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A 
16
15    V, 

8
5

)(,)(, == ∞∞ pLpC iv . 

The Laplace transform is one of the ways of 
evaluating the matrix exponential. However, if we are going 
to use the Laplace transform for circuit analysis, we may do 
it straightforwardly using the methods described in Chapter 
3. The methods of matrix function evaluation, considered in 
this chapter, are the most general and suitable for computer-
aided computation.  
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APPENDIX 

 

Example A.1  

Let the elements of the circuit in Fig. A1 be 
normalized and have the values L = 1 H , R = 3 Ω and C = 
0,5 F. Let the voltage input )(tvs  = (10 sin t)u(t) and the 
initial conditions 0I  = 2 A and 0CV  = 5 V. Find i( t).  
 

Solution. 
Since the Laplace transform of the input voltage is 

1
10)( 2 +

=
s

sVin , expression (3.80) after substituting the 

numerical values yields  
                                     

23
52

1
10

23
)( 222 ++

−
+

+++
=

ss
s

sss
ssI . 

The roots of the denominators are 2  ,1 21 −=−= ss  and 
js ±=4,3 . Therefore, using partial fractions, we obtain  

js
A

js
A

s
A

s
AsI

+
+

−
+

+
+

+
= 4321

21
)(  

Performing the computation, we obtain  

12
2
52

)1)(2(
10

1  
21 −=

+
−

+
++

=
−=s

s
s

ss
sA  

13
1
52

)1)(2(
10

2  
22 =

+
−

+
++

=
−=s

s
s

ss
sA  

R L

Vs(t)
VC (t)Ci (t)
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o

js
jj

j
ssjs

sA 6,7158,1
2)231(

10
)23)((

10

  
23 −∠=

++−
=

+++
=

=

. 

 
So,  

[ ] )()6,71cos(16,31312)( 2 tuteeti ott −++−= −− . 

The second approach which leads to more simplicity 
in Laplace transform circuit analysis uses the Laplace circuit 
model, which can be analysed by frequency –domain 
methods. In these models, all the elements are expressed in 
terms of their impedances (admittances) at a complex 
frequency s   and the voltage/current sources –by their 
Laplace transforms, i.e. as a function of s. Then one of the 
known methods (KVL, KCL, nodal/mesh analysis, 
Thevenin-Norton’s theorem, etc.) can be used for 
identifying the desired variable transform. Finally, the time-
domain response may be found with the help of the inverse 
transform (partial fraction expansion). 

In the next we will illustrate how this technique may 
be used for circuit analysis with Laplace transform, starting 
with networks without initial energy stored (zero initial 
conditions).  
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Example A.2  

Determine the voltage across the resistance R in the 
circuit shown in Fig. A.2(a), which is already expressed in 
terms of the Laplace transform. The normalized elements 
are 21 LL =

 
= 1 H , R = 1 Ω, .)(1   ),(cos 21 Vtvttuv δ== .  

Solution  
The first step is to convert the voltage sources to 

current sources and, after simplification, we obtain a simple 
circuit as shown in Fig. A.2(b) and (c). Thus  

,2
1
111)(       

)1(
11

)1(
1)( 2

2

2
1

0

s
s

ss
sY

ss
ss

sLsL
sI

+
=++=

+
++

=+
+

=
 

and  

)1)(2(
1

)(
1)( 2

2

0 ++
++

==
ss
ss

sY
sIvR . 

Using the partial fraction expansion yields  

js
A

js
A

s
AVR +

+
−

+
+

= 321

2
. 

Therefore  

.6,262236,0
2)())(2(

1

6,0
1

1

  

2

2

2  
2

2

1

o

js

s

jjs
j

jss
ssA

s
ssA

−∠=
+

=
++
++

=

=
+
++

=

=

−=  

Then the desirable voltage in time-domain is  

V )6,26cos(447,06,0)( 2 ot
R tetv −+= −  for 0≥t . 
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a

sL1

1
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sL2sL1 R

1/ sL 2

b

s/(s2+1)

Io(s)

Y(s)

VR (s)

c
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Example A.3  
Find the complete response of the current i(t) in the 

circuit shown in Fig. A.3(a), if 2,0)0( =−i  A and 80)0( =−Cv  V. 

Solution  

To work with more convenient numbers, we first 
normalize them by choosing the impedance normalization 
factor mK  and frequency normalization factor fK .  

Let 210−=mK  and 410−=fK , then 110 2 == −
oldnew RR  Ω, 

10
10
10

4

2

==
−

−

oldnew LL  H and 1,0
10
10

4

2

==
−

−

oldnew CC  F. The Laplace 

model circuit with normalized elements is shown in Fig. 

A.3(b). Note that, to keep the same currents, voltage sources 
are  normalized in accordance to mK .  
 

Using mesh analysis, we have  

.8,01,011,0

8,0211,01,0101

21

21

s
I

s
I

s

ss
I

s
I

s
s

mm

mm

=⎟
⎠
⎞

⎜
⎝
⎛ ++−

−+=−⎟
⎠
⎞

⎜
⎝
⎛ ++

 

100 u(t )

0.1H 100

10 Fμ 100

1/ s

10 s 1

1
0.1/ s

0.8/ s

a
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Solving for 1mI  gives  

)02,02,0(
01,004,02,0)( 2

2

1 ++
++

=
sss

sssIm ,  

with the poles 01 =p  and 1,01,03,2 jp ±−= .  
Using the partial fraction expansion yields 

1,01,01,01,0
)( 221

1 js
A

js
A

s
AsIm ++

+
−+

+=

∗

 

where  

.135212,0
)1,01,0(
01,004,02,0

5,0
02,02,0

01,004,02,0

1,01,0  

2

2

0  
2

2

1

o

js

s

jss
ssA

ss
ssA

∠=
++

++
=

=
++
++

=

+−=

=  

Then the current in time-domain is  
0for A   )1351,0cos(424,05,0)( 1,0 ≥++= − tteti ot . 

Returning to the original circuit, i.e. that the actual 
natural frequency of the circuit is  

334 1010)1,01,0(10 jj
K
ss

f

new
old ±=±−== , 

then  

                    A )13510cos(424,05,0)( 3103 ot teti ++= − .                          

Inspection of the circuit in Fig. A.3(a) shows that the 
steady-state value of the current is 0.5A, which is in 
agreement with the above results. Also checking the initial 
value of the current gives 

i(t) = 0,5 + 0,424 cos 135° = 0,2 A.  

The waveform of the current begins at a value of 0,2 
A and approaches 0,5 A with decayed oscillation in 
approximately   5 ms.  
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Example A.4   

The circuit of Fig. A.4(a) is in steady-state behaviour. 
At t = 0 the second voltage source is applied in series with 
the capacitor. Find the transient response of the capacitor 
voltage )(tvC .  

Solution  
Using the superposition approach, we construct the 

Laplace model circuit in which the second voltage source 
acts alone (Fig. A.4(b)). Then the Laplace transform of a 
desirable voltage can be written as 

)(
1)( 2

2 ssCZs
VsV

in
C −= , 

where  

)1101,0(
)1011200(1010

1,0110
100)1,010()(

424

+
⋅++

=+
+

+
=

ss
ss

ss
ssZin . 

Therefore 

22

4

42

4

2 )(
1101,010

)1011200(
10)1101,0()(

ω++
+

=
⋅++

+
−=

as
s

ssss
ssVC . 

Using the method of equating the coefficients, this 
voltage can be obtained as  

222 )(
1010)(

ω++
+

+−=
as

as
s

sVC , 

0.1H

100

0.1 s 10

100
10 -4/s

10/ s

a
10 u(t )

10
10 -4 F

100VVs1

b
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where a = 100 1 /s and ω = 316 1 /s.  
In accordance with the table of Laplace transform 

pairs, we obtain  
( ) V )(1cos10)(2 tutetv at

C −= − ω . 

Since the capacitor voltage 1Cv
 
caused by the first 

voltage source is 10 V, the entire capacitor voltage will be  

0for      V 316cos10)( 100
21 ≥=+= − ttevvtv t

CCC . 
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Example A.5  

Determine the forced and natural responses of the 
output voltage in the circuit of Fig. A.5(a) assuming that the 

capacitor was pre-charged with V 60 =Cv  and 

V )(4 tuev t
g

−= .  

Solution  
First, we construct the Laplace transform model, 

shown in Fig. A.5(b), of the given circuit. Next, we write the 
nodal equation for this circuit model: 

058,02

6

1
4 1

1
1

1 =−
−

++
+

−
s

V

s

s
V

s
V

s
V , 

or  

3
1

4)42,05,0( 2
1 +

+
=

++
ss

ssV . 

Solving for 1V
 
yields 

4,02
6

)84,02)(1(
8)()( 221

++
+

+++
==

ss
s

sss
ssVsVout . 

+-
VgVg

Vg
Vg

RRrjkkR

R

L
C

0,58000iL

a

+
-

+-
4 /(s+ 1)

s

1 2/ s

6/ s
0,58 V 1/s

b
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The natural frequencies are 4,1   ,6,0 21 −=−= hh pp  
and the forced frequency is 1−=wp . Therefore, the 
residues of the first term are  

,50
4,02

8

,35
)6,0)(1(

8

,15
)4,1)(1(

8

12

4,12

6,01

=
++

=

−=
++

=

−=
++

=

−=

−=

−=

sw

sh

sh

ss
sA

ss
sA

ss
sA

 

and the residues of the second term are  

5,10
6,0

6      ,5,4
4,1

6
4,1

/
26,0

/
1 =

+
=−=

+
= −=−= shsh s

sA
s

sA . 

The time-domain responses are:  

the forced response  

)(50, tuev t
fout

−= , 

the natural response  

( )
( ) ),(5,245,19                   

)(5,105,43515
4,16,0

4,16,04,16,0
,

tuee

tueeeev
tt

tttt
hout

−−

−−−−

−−=

=+−−−=
 

and the complete transient response is  

( ) V )(5,245,1950 4,16,0 tueeev ttt
out

−−− −−= , 

which proves the initial voltage  

V 65,245,1950)0( 0 =−−== Cout vv . 
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Example A.6  
In the circuit shown in Fig. A.6(a), the switch closes at 

time t = 0 after having been opened for a long time. Find 
)(2 ti  assuming that the circuit is driven by the sinusoidal 

voltage source V )30314sin(180 o
g tv += .  

Solution  

To determine the initial condition we must first 
calculate the capacitor steady-state voltage (before the 
switch is closed). The voltage source complex 
representation is tjj

g eev
o 31430180= . So, 

V. 3,72
1080314

1

1080314
190

180

ωC
1

ωC
1

ω)(
ω)(                

2,36
6

6

30

21

o
o

j
j

g
C

e
jj

e

j
j

RR

jV
jV

−
−

−

=
⋅⋅

⋅⋅
−

=

=
++

=

 

Therefore, the voltage across the capacitor at −= 0t  

V 0,43)2,36sin(3,72)0( −=−=−
o

Cv . 

Now we will construct the Laplace transform model 
circuit shown in Fig. A.6(b). The Laplace transform of the 

Vg

+
Ω

Ω

Ω

30

50

60

F80 μ
Vg

+
Ω

Ω

Ω

30

50

60

+

10 6 /80 s

a b
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voltage source, which is taken as a complex function, is 

314
180)(

30

js
esV

oj

g −
= . 

The capacitor voltage V 43)0( −=−Cv  is replaced by an 
initial-condition generator whose value is equal to the 
Laplace transform of this voltage multiplied by j:  

s
jVC

43
0

−
=  

In accordance with mesh analysis  

314
180)(50)(80

30

21 js
esIsI

oj

−
=−  

s
jsI

s
sI 43)(105,12110)(50 2

3

1 =⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ ⋅
++− . 

Using Cramer’s rule yields  

159
546,0

)159)(314(
43,1)(

30

2 +
+

+−
=

s
j

sjs
sesI

oj
. 

Taking the inverse Laplace transform (with the help of 
the Laplace transform pairs, Table 3.1) we obtain  

( )

.546,0646,0128546,0

159314
159314

143,1)(

1592,33)9,56314(159

15931430
2

tjtjt

ttjj

ejeeej

eej
j

eti

oo

o

−−+−

−

⎟
⎠
⎞⎜

⎝
⎛ ++=+

+⎥
⎦

⎤
⎢
⎣

⎡
−−

−−
=

 
Finally, the imaginary part of the above expression 

gives the time-domain current  

A. 159,0)9,56314sin(28,1                  

]548,0)2,33sin(646,0[)9,56314sin(28,1)(
159

159
2

to

too

et

etti
−

−

++=

=+−++=
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Example A.7  

The switch in the circuit shown in Fig. A.7(a) closes 
after having been opened for a long time. Find the currents 
through the capacitor )(tiC  and through the inductor )(tiL .  

Solution  

The open circuit voltage across the switch is  

V 100
1010

10200
21

2 =
+

=
+

=
RR

RVV goc . 

 
The Thevenin equivalent impedance of the circuit is  

s
s

sLRR
RsLRZTh 1,020

100)(

21

21
+
+

=
++

+
= . 

 
The Thevenin equivalent of the Laplace transform 

circuit is shown in Fig. A.7(b). Thus, the Laplace transform 
of the capacitor current is  

Active
network

V oc Passive
network

Voc

+
Zab (s)

ZTh
a b

Active
network

Isw Passive
network

Isw

ZTh
c d

Zab (s)
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,
)100100)(100100(

)201,0(100
1020200
)201,0(100

10
1,020

100
1100)()(          

32

3

jsjs
s

ss
s

ss
ssZZ

sVsI
abTh

oc
C

++−+
+

=
⋅++

+
=

=
+

+
+

=
+

=

 

where roots of the denominator are 1001002,1 jp ±−= . 
Therefore,  

oj

js
C ej

js
sA 45

100100
1 2555

100100
)201,0(100 −

+−=

=−=
++
+

= , 

and (in accordance with equation 3.73, see part II) the 
inverse Laplace transform will be  

A )45100cos(210)( 100 ot
C teti −= − . 

To find the inductor current in circuit Fig. 3.19(b) we 
first use the current divider formula  

+
Ω

Ω

10

10
F1μ

Ω

Ω

10

10

+

10 6 /s

a b
0,1H

200 V

0,1s

100 /s

ZTh
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,
)100100)(100100(

1000                     

)201,0)(1020200(
10)201,0(100)()( 32

21

2

jsjs

sss
s

sLRR
RsIsI CL

++−+
=

=
+⋅++

+
=

++
=

 

which yields  

oj

js
L ej

js
A 90

100100
1 55

100100
1000 −

+−=

=−=
++

= , 

and 
A 100sin10)90100cos(10)( 100100 teteti tot

L
−− =−= . 

The steady-state value of the inductor current in Fig. 
A.7(a), i.e. before the switch is closed:  

A 10
1010

200)0(
21

=
+

=
+

=− RR
V

I g
L . 

Therefore, the complete response of the current is  

A 100sin1010)( 100 teti t
L

−+= . 

Note that initial capacitance current 
A 10)45cos(210)0( =−= o

Ci  is in agreement with its 
value, which can also be obtained by inspection of the 
circuit in Fig. A.7(a):  

A 10)0()0( == −LC Ii . 

This result may also be obtained by straight forward 
calculation of )0(Li  in accordance with the above formula: 

A 100sin1010)0( 0 =+= eiL . 

When the switch in any branch is opened after having 
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been closed for along time, as shown in Fig.A.6(c), the 
equivalent circuit can be constructed by using a current 
source insert instead of the switch as shown in Fig.A.6(d). 
The value of the current source is equal, and its direction is 
opposite, to the current flowing through the closed switch 
(short circuit current) just before its opening. Therefore, the 
rest of the network is passive, i.e. all the network sources are 
killed and it can be represented by its Thevenin impedance, 
as shown in Fig.A.6(d). It is obvious again that this circuit is 
having zero initial conditions. For getting the complete 
response, the ZSR of the circuit in Fig.A.6(d) has to be 
superimposed on the previous steady-state regime of the 
circuit in Fig.A.6(c). 
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Example A.8  

In the circuit shown in Fig. A.8(a), the switch is 
opened at time s 2,01 =t , while the whole circuit has been 
driven by the voltage source V )(10 tuvg =  since t = 0. Let 

F 5,0  , 4  , 1 21 =Ω=Ω= CRR .  Find  the  output  voltage  

outv  and  

capacitance voltage Cv
 
versus time.  

Solution  

First, we construct the Laplace transform circuit 
having zero initial conditions. For this purpose, we must 
find the current through the switch at the time 1tt = :  

0  ,10)( 2

1
≥== −− tee

R
V

ti tatg
sw , 

+
R1

R2

1

4
2/ s

a b

10 u (t)

6,7 /(s+ 2)

Z(s)C

V out
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since 1

1
s 21 −==

CR
a  and A 10)0( =swi .  

Changing the variable /
1 ttt +=  yields  

0  ,7,610)( /222/ //
1 ≥== −−− teeeti ttt

sw , 
and the transformed current is  

2
17,6)(
+

=
s

sIsw . 

Next we calculate the Laplace transform internal 
impedance measured at the ab terminals (see Fig. A.8(b)):  

4,0
28,0214

214
)(

+
+

=
++

⎟
⎠
⎞

⎜
⎝
⎛ +

=
s
s

s

ssZab . 

The Laplace transform of the output voltage is  

4,0
136,5)()()(
+

==
s

sIsZsV swabout  

and taking the inverse transform we obtain  

0    V, 36,5)( /4,0/ /
≥= − tetv t

out , 

since, because the voltage before opening the switch was 
zero, the complete response is the same. Next, we use 
voltage division to obtain the expression for the transformed 
capacitor voltage in Fig. A.8(b):  

)2)(4,0(
172,1021

2

)()(
++

−=
+

−=
ss

s

ssVsV outC . 

In accordance with the Laplace transform pairs (see 
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Table 3.1, see part II) we have  

0   V, 67
24,0

72,10)(
//// 4,024,02/

)( ≥⎟
⎠
⎞⎜

⎝
⎛ −=⎟

⎠
⎞⎜

⎝
⎛ −

−
−= −−−− teeeetv tttt

ZSRC

. 

To get the complete response, we have to find the 
previous capacitor voltage, i.e., before the switch was 
opened (see circuit in Fig. A.8(a))  

( ) V 7,610110)(
/22

)( ⎟
⎠
⎞⎜

⎝
⎛ −=−= −− tt

prC eetv . 

Therefore, the complete response is  

0  V, 7,610)( /4,0
)()(

/ /
≥−=+= − tevvtv t

prCZSRCC . 
Note that, according to this expression, the capacitor 

voltage at 0/ =t  is 3,3 V, which is equal to the capacitor 
voltage at the moment of the switch commutation in Fig. 
A.8(a).  
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Example A.9  

The mutually coupled circuit in Fig. A.9(a) has inV
 
= 

120 V, R = 60 Ω, L = 0,2 H , M = 0,1 H. The switch is 
closed at t = 0 after having been opened for a long time. 
Find the currents )(1 ti  and )(2 ti  for t ≥ 0.  

Solution  

First, we must find the initial conditions:  

A 2)0(   and    0)0( 12 === −− R
Vii . 

 
Then  

,s 800
1

2     ,5,0    ,s 300 1
2

11
21

−− =
−

======
k
aa

L
Mk

L
Raa  

0,2H 0,2H

0,1H. .

60Ω

120 V+
-

60Ω

Vg



 117

.2,0)0(                          

,4,0)0(    ,s 1012
5,01

300
1

12

11
14

2

2

2

2
1

==

==⋅=
−

=
−

=

−

−
−

MiB

LiB
k

ab
 

Next we obtain the transformed currents  

)600)(200(
)1012600(2

)1012800(
)1012600(2

)1012800(75,02,0

5,02,0120)300(4,0120

)(

42

42

42

421

++
⋅++

=
⋅++
⋅++

=

=
⋅++⋅

⎟
⎠
⎞

⎜
⎝
⎛ +−+⎟

⎠
⎞

⎜
⎝
⎛ +

=

sss
ss

ss
ss

ss

s
s

s
ssI

 

)600)(200(
)300(800

)1012800(
)300(800

)1012800(75,02,0

5,04,0120)300(2,0120

)(

42

422

++
+

=
⋅++

+
=

=
⋅++⋅

⎟
⎠
⎞

⎜
⎝
⎛ +−+⎟

⎠
⎞

⎜
⎝
⎛ +

=

sss
s

ss
s

ss

s
s

s
ssI

 

i.e., the poles are 600   ,200   ,0 210 −=−== ppp . 
Therefore, the appropriate residues are:  

1      ,1
)200(

)1012600(2

1      ,1
)600(

)1012600(2

,2        ,2
1012
10122)(lim

21600

42

21

12200

42

11

204

4

1
0

10

−=−=
+

⋅++
=

−=−=
+

⋅++
=

==
⋅
⋅⋅

==

−=

−=

→

A
ss

ssA

A
ss

ssA

AssIA

s

s

s

 

which gives the time-domain currents  

( )A 2)()( 600200
21

tt eetiti −− +−== . 
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In conclusion, it is worthwhile mentioning that the 
Laplace transform technique is also widely used for solving 
electromechanical problems. Consider, for example, the 
starting transients of a no-load shunt exciting d.c. motor. 
The torque equation is  

dt
dJmiT ω

==  

where the motor torque T (Nm) is proportional to the 
current, J( 2kgm  ) is the moment of inertia and ω (rad/s) is 
the angular velocity. The Kirchhoff ’s law voltage equation 
for the motor is  

ωk
dt
diLRiV ++=  

where the term kω is the generated, or back, voltage which 
is proportional to the angular velocity, and R, L are the 
resistance and the inductance of the armature winding. With 
zero-initial conditions the Laplace transform of these two 
equations will be  

,)( Ω++=

Ω=

kIsLR
s
V

JsmI  

where Ω(s) and I(s) are the Laplace transform of the angular 
frequency and the current respectively. Solving the above 
equations for Ω and I yields  

⎟
⎠
⎞

⎜
⎝
⎛ ++

=Ω

JL
kms

L
RssJL

mV
2

1  

and  

JL
kms

L
RsL

VI
++

=
2

11 . 

The roots of the denominator are βα2,1 ±−=s , where 
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L
R

2
α =  and 

JL
km

−= 2αβ . Thus, in accordance with the 

table of Laplace transform pairs, we obtain  

⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−= − tett

k
Vt αβsinh

β
αβcosh1)(ω , 

where 0ω=k
V

 
is the no-load angular velocity, and   

te
L

Vti t βsinh
β

)( α−= , 

 where 0)0( =−i  because of zero-initial conditions and 
0)( =∞i  since the motor is no-loaded and the losses in this 

example were neglected. The condition of oscillations is 

J
LkR 22 4< , and then βα2,1 js ±−= .  

 
 



 120

APPENDIX 2 
 

1. Classical analysis principles. 
 
Let’s consider the example of the differential 

equation, obtained by circuit laws: 

s
10 , 

where 

⎩
⎨
⎧

>
<

=
0    ,10
0      ,0

)(
t
t

tvin . 

Require solution of this equation for t > 0, subject to 
the boundary (initial condition) i(0) = 0. 

Standard mathematical treatment delivers the solution 
as the superposition of two parts: the complementary 
function (CF) and the particular integral (PI). The 
complementary function is the solution of the homogeneous 
equation: 

)(4)(200 ti
dt

tdi
+=  

This type of differential equation is satisfied by a 
solution of the form 

tAeti λ)( = . 
Substitute i(t) into equation gives: 

2,0        0420 −=→=+ sAesAe stst . 
The CF therefore is 

t
cf Aeti 2,0)( −= . 

The second part of the solution is the particular 
integral of 

)(4)(2010 ti
dt

tdi
+= . 
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The function )(tipi  = 2,5 A satisfies the equation and 
is identified as the particular integral. 

The complete solution is therefore: 
A 5,2)()()( 2,0 +=+= − t

picf Aetititi  
The boundary condition i(t) = 0 at t = 0 requires         

A =  – 2,5. Thus  
( ) )0(A   15,2)( 2,0 >−= − teti t . 

If the current flows, for example, through the resistor 
of 4Ω we may find the voltage across this element as: 

( ) )0(  V 110)( 2,0 >−= − tetv t
out . 

 

constant transient steady state

v(t)

t
10 20 40

10

secs

volts

 
 

The response rises monotonically from zero (initial 
value) to a final value of 10 V. Mathematically, the output 
reaches 10 V when ∞→t . But this is not a practical 
measure. Instead, progress is measured in terms of the time 
constant τ. Time constants apply to exponential transitions. 
A time constant is the time taken for a decaying exponential 
to reach the value 1−e . In the above example, te 2,0−  reaches 
the value 1−e  when t = τ = 5 seconds. In general, for a 
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decaying exponential ate− , the time constant is given by the 

formula 
a
1τ = . 

Transition from initial to final conditions is thus 63% 
complete after ONE time constant 

( )[ ]%63632,01001100 1 =⋅=− −e . After 5 time constants, the 
transition 1s 99,3% complete. A time constant is thus a 
useful practical measure of response time. It is a standard 
measure of the response time of electrical, electronic, 
mechanical, and other, systems. Thus,, if a mechanical 
system has a (dominant) time constant of 2 secs, then it is 
known that the transition from initial to final conditions will 
be 63% complete after 2 secs and that the transition will be 
complete after 10 secs (to all practical purposes). 

 
2. The Laplace transform principles. 
 
The Laplace transform provides a generally superior 

means of determining the transient behavior of linear 
systems. It does not matter whether the system is electrical, 
mechanical, electronic, thermal, etc. All that matters is that 
the system be linear (the Laplace transform is a linear 
transform and cannot therefore be used to solve non-linear 
problems). Many practical systems are linear, or may be 
approximated as such. In particular, all electrical circuits 
built up from R, L and C elements are linear. 

The Laplace transform method takes a problem 
defined in the time domain and puts it into the Laplace 
domain. This disposes of bothersome differential equations. 
The problem is solved in the Laplace domain. The final step 
transfers the solution back to the time domain.  
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3. Transform Networks 
 
Transform networks are networks which have been 

shifted from the time domain to the complex frequency 
domain in accordance with the definition of the Laplace 
transformation process. In the complex frequency domain, 
all currents and all voltages are represented by their Laplace 
transforms. All impedances are functions of  s. 

 
Resistance. 
 
Time domain equation: )()( tRitv = . 
Transform to complex frequency domain: 

)()()(       )(
000

sRIdtetiRdtetvdtetRi ststst ==→ ∫∫∫
∞

−
∞

−
∞

−  

So the equivalent Laplace domain equation is 
)()( sRIsVR = . 

 
Inductance. 
 

Time domain equation: 
dt

tdiLtv )()( = . 

Transform to complex frequency domain: 

∫∫
∞

−
∞

− =
00

)()( dte
dt

tdiLdtetv stst . 

Integrate RHS by parts gives: 

)()0()()()(
00

ssLILidtetisetiLsV stst
L +−=

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

+= ∫
∞

−∞−  

So the equivalent Laplace domain equation is 
)0()()( LissLIsVL −= . 
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Capacitance. 
 
Time domain equation: 

dt
tdvCti C )()( = . 

Transform to complex frequency domain is 

∫
∞

−

0

)( dte
dt

tdvC stC . 

Integrate RHS by parts gives: 

)()0()()()(
00

ssCVCvdtetvsetvCsI st
C

st
C +−=

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

+= ∫
∞

−∞− . 

So the equivalent Laplace domain equation is 

s
vsI

sC
sVC

)0()(1)( += . 

Summary of Laplace domain representations: 

R

V (s)=RI ( s)
+

+
_

_

V (s)

I(s)

V (s)=sLI (s)- Li (0)

Li (0)

I(s)

sL
V (s)

I(s)

V (s)

V (s)=I (s)/sC+v (0)/s

v(0)/s

1 /sC

 
 

Example 1. 
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In the given circuit, the switch S has been closed for a 

long time before being opened at the instant t = 0. Draw the 
transform network representing the circuit in the Laplace 
domain. Determine )(sVout . Use the Table of Laplace 
transforms to determine )(tvout . Sketch this transient 
response. 

R 1

R
10 V

i1

+
_

6

4

C= 0,5 F

i

vout  ( t)

 
Solution. 
In order to represent the capacitor in the Laplace 

domain, we need to know its initial voltage. This is obtained 
by analysis of circuit conditions before the switch is opened. 
For t < 0, all voltages and currents are constant (DC 
conditions). As a particular consequence, no current flows 
through the capacitor when t < 0 . Thus, DC current flows 
from the 10 V source, through the 6 Ω resistor, returning to 
the  source  via the  4Ω  resistor. This  current has the value 
1 A, resulting in a voltage 4 V across the capacitor. This 
voltage remains constant up to the instant when the switch is 
opened at t = 0. Thus, V 4)0( =Cv . The capacitor is 
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represented in the transform network by an impedance 

ssC
21

=  in series with the voltage source 
s
4 . The transform 

network representation of R is 4 (it is not customary to show 
any units in the transform domain). 

At the switch is open for t > 0, it is represented in the 
transform network by an open circuit. The voltage source is 

thus disconnected for t > 0. It is correct to represent it by 
s

10  

in a transform network (apply the definition, noting that the 
source voltage is 10 V over the integration range ∞<< t0 ). 
The output voltage is represented by its Laplace transform 

)(sVout . Capacitor current, which circulates through R, is 
represented by )(sI . 

R 1

R
10 / s

I1(s )

+
_

6

4

I(s)

V out (s)
2/ s

+
_4/ s

 
The same laws and methods apply to the analysis of 

transform networks as to analysis of networks in the time 
domain: 
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5,0
1)(           04)(2)(4   :KVL
+

−=→=−−−
s

sI
s

sI
s

sI , 

5,0
4)(4)(
+

=−=
s

sIsVout . 

Inverse Laplace transformation gives 

V 4)(         1 5,01 t
out

at etve
as

L −−− =→=
⎭
⎬
⎫

⎩
⎨
⎧

+
. 

constant transient steady state

vout (t)

t
10

4

secs

volts

2

 
Up to time t = 0 the capacitor is charged to 4 V. When 

the switch opens, the capacitor discharged through R. The 
time constant of the decay is the time taken for the 
exponential term to fall to 1−e =0,37. In the present case, 

sec 2τ = . The transition from full charge to total discharge 
is therefore 63% complete after 2 sec (down from 4 V t0 1,5 
V). To all intents and purposes, the capacitor has completely 
discharged after 5 time constants, i.e. after 10 sec. 

Example 2. 
In the given circuit, the switch S was open for t < 0. It 

closes at time t = 0. Specify )0(Li . Draw the transform 
network. Determine )(sVout  (the Laplace transform of the 
circuit output voltage). Sketch the response. Use the initial 
and final value theorems of Laplace transform theory to 
confirm the initial and final values, respectively, of )(tvout . 



 128

20 V

R 1

R

i1

+
_

2

3/5
i

vout  ( t)

3

5 H

S

 
Solution. 
Up to t = 0, the switch is open and constant current 

flows from the 20 V source, through the 2Ω resistor, 
through the 5 H inductor, and returns to the source via the 
3Ω resistor. There is no volt drop across the inductor. Thus, 
for t = 0, the current is 4 A. The current through the inductor 
cannot change at the instant the switch closes and therefore 

A 4)0( =Li . 
The inductor is represented in the transform network 

by the impedance ssL 5=  in series with the voltage, so that 
20)0( =LLi . The voltage source is represented in the 

Laplace domain by 
s

20 . 

As the switch is closed for t > 0, it is shown closed in 
the transform network. 
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20/s

R 1

R

I1(s)

+
_

2

3/5
Vout  (s )

3

5s

+_
20

 
 

Circuit transformation method and superposition 
principle give: 

)139(
36

5
13
63

3
13
60)(/

ssss
sVout +

=
++

= , 

ss
sVout 139

156

5
13
63

320)(//
+

=
++

= . 

Total response: 

13
9

84
)139(

15636)()()( ///

+
+=

+
+

=+=
ssss

ssVsVsV outoutout . 

Using the inverse Laplace Transformation we get 

0   84)( 13
9

>+=
−

tetv
t

out . 
The initial value can be obtained without inverse 

transform. It is given by the Initial Value theorem: 
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{ } V 12
)139(

15636lim)(lim =
⎭
⎬
⎫

⎩
⎨
⎧

+
+

==
∞→∞→ ss

ssssVIV
s

out
s

. 

The final value is obtained from the Final Value 
theorem: 

{ } V 4
)139(

15636lim)(lim
00

=
⎭
⎬
⎫

⎩
⎨
⎧

+
+

==
→→ ss

ssssVFV
s

out
s

. 

 

constant transient steady state

vout (t)

t
6

12

secs

volts

2
4

 
 
Evidently, the process of circuit translation from the 

time domain into the Laplace domain is straightforward. 
Analysis of the resulting transform networks is also 
straightforward, using standard network analysis techniques. 
In particular, there are no differential equations to solve. 

The most time consuming step is generally the last 
step; the translation of Laplace domain results into the time 
domain, i.e. inverse Laplace transforms. 

For example, suppose that transform network analysis 
yields the result: 

( )204
)5(40)( 2 ++

+
=

sss
ssVout . 

Even for this simple case, a considerable amount of 
time is required to translate the result into the time domain, 
using Laplace transform. In the first place, the expression is 
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not in standard form (i.e. not in a form which appears in 
normal Laplace transform). It first has to be broken down by 
partial fractions: 

204
1010)( 2 ++

−=
ss
s

s
sVout . 

The second term then requires further manipulation: 

⎭
⎬
⎫

⎩
⎨
⎧

+
−

+
−=

=
++
−+

−=

−−
2222

12
22

4
45

4
10L10 4)2(

20)2(1010)(     

ss
se

s

s
s

s
sV

t

out
. 

The s-domain terms are now in standard form. Laplace 
transform gives the time domain function: 

0   V 4sin54cos1010)( 22 >+−= −− ttetetv tt
out . 

 


