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TRANSIENT ANALYSIS USING STATE
VARIABLES

5.1. INTRODUCTION

When the dynamic behaviour of a circuit is under
consideration, the equations representing the circuit, say in
node or mesh analysis, are generally differential. They can
then be transformed into one scalar differential equation of
the second or higher order. However, the differential
equations of a circuit may also be written as a set of first-
order differential equations, or when expressed in matrix
form it results in a first-order vector differential equation of
the form

X" =1(x, w, t),

where X is a vector of unknown variables called state
variables, W represents the set of inputs and t is the time.

The set of first- order differential equations written in
such a form is called a state equation and the vector x
represents the state of the network. State equations play an
important role in the study of the dynamic behaviour of a
circuit. There are three basic advantages in using the state
equations in this form. (1) There is a nenormous amount of
mathematical knowledge for solving such equations while
the equations by themselves can be derived from formal
topological properties of the circuit, using the matrix
approach. (2) It can be easily and naturally extended to
nonlinear and time-varying or switched networks and is, in
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fact, the approach most often used in characterizing such
networks and (3) it is easily programmed for and solved by
computers.

In this chapter, we shall formulate, derive and solve
first-order vector differential equations, i.e. state equations.
As before, we shall be limited here to linear, time-invariant
circuits that may be reciprocal or nonreciprocal. On the
other hand, this approach is applicable to circuits of any
complicity, especially with computer-aided analysis. In this
study, when using a computer is suggested, we are referring
to the MATHCAD or MATHLAB programs which are also
suitable for symbolic computation.



5.2. THE CONCEPT OF STATE VARIABLES

Two general methods of circuit analysis are usually
studied in-depth in introductory courses in circuit analysis ,
namely nodal analysis and mesh analysis. Both of these
methods are very useful for resistive DC and RLC AC
circuits in their steady-state behaviour. The basic variables
in these two kinds of circuits, node voltages and mesh
currents, were constant quantities, i.e. with no variation in
time. Thus, the nodal and mesh equations in such circuits
happen to be algebraic equations, without derivatives and
integrals. However, node voltages or mesh currents when
used as basic variables in transient analysis are expressed as
a function of time. Therefore, the node and loop equations
here are in general differential equations of the second
order.

s
| N

\j

Fig.5.1

Consider, as an example, the circuit in Fig. 5.1, in
which the inductor current and two capacitor currents may
be expressed as

t

. 1
|L2:L—I(Vn1—vn2)d’[+|0, (513.)
20



) dv, dv
b =Camy =0y
(5.1b)
) dv, dv
i.=C CS:C n3
STt S dt

Then the node equations may be written by inspection
of the circuit as:

t t
(G +Gy vy +LjVn1dT_ijVn2dT—len3 =—ig — I
L, 0 L, 0
1! dv 1!
__IVnIdT+G6Vn2 +C4 n2 +—jvn2dT—G6Vn3 = IO
L, 0 L, 0

dv )
— GV —GgVp3 +Cs d—f =ig. (5.2)

Once these equations are solved for the node voltages
Vn1>Vn2 and Vy3 the remaining variables are easily obtained.

However, the presence of the integrals of unknowns in
node equations causes some difficulties in the solution. The
integrals can be eliminated by differentiating the equations
in which they appear, but this will increase the order of the
derivatives. An easier way of analyzing would be if we
avoid the appearance of the integrals al together. We note
that an integral appears in the present example of node
equations when the current of an inductor is eliminated by
using equation 5.1a. In a similar way, the integrals appear in
mesh equations when the voltages of the capacitors are
eliminated by substituting their v — i relationship. Therefore
these integrals will not appear if we leave both the capacitor
voltages and inductor currents as variables using a mixed set
of equations, 1.e. based on Kirchhoff ’s laws.

Let us illustrate this idea of using capacitor voltages
and inductor currents as unknown variables in the same
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example of the circuit in Fig. 5.1. We may write three
independent KCL equations for the nodes 1n, 2n and 3n, and
three KVL equations for loops (meshes) indicated by the
dashed arrows:

i +iLy +i3 =g,

—ly+ig+ig =0, (5.3a)
—il +is —ig =i, ,
Vi, +Ves—V3 =0,

—Veyg +Vg+Ves =0, (5.3b)
V3 —=Ves—V; =0.

Substituting equation 5.1b for i, and is, taking into

consideration that L, % =V|, and eliminating all branch

voltages except for the capacitor voltages by using the v — i
relationships, and after rearranging the terms, yields

dv ) .
C,—4 =i, =i,
47 2=l
o, Mes il i 4y,
diL2 -
L, gr - Veat Rsls , (5.4)
R6i6 :VCS —Vc4, (553)
. .
I +l3=1 g,
Riif —Ryis = Vs, (5.5b)

These are six equations in six unknowns. However,
we can reduce the number of equations that must be solved
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simultaneously. We note that equations 5.5a and 5.5b are
algebraic, i.e., they contain no derivatives or integrals. They
can be used to eliminate the rest of the unknown variables in
(5.4) except Vcy,Ves and i ,, whose derivatives are

involved in these equations. The algebraic equations 5.5a
and 5.5b can be easily solved (the first one trivially) to yield
1 1

g =——Vog +—V
6 C4 C5»
Rs Rs

i =

3 R;
R Ves + I —
1+ Ry R, +R; R +R,

3 1
| It . 5.6
R] + R3 L2 R] + R2 st ( )

Isi»

! Y
Ry +R;

I3 = cst

Finally, these equations can be substituted into
equation 5.4 to yield, after rearrangement,

Weq _ L, L i
‘g R G4 TR Vet
dv, 1 R +R;+R : :
6 6(Ri+R3) 1+ Rs
L di, _ R Ves + RsR P RiR;

A2y i,
2t Y R +R, R+R; 2 R +R, ™

(5.7a)

or in matrix form, after dividing by the coefficients on the
left,
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- B N )
y CiRe CiRe i |y
C4 c4
d 1 R, +R; +Rg R;
—_— VC5 = — VC5 +
dt | CsR;  CsRo(Ri+Rs)  Cs(R+Ry) |
L2 R R, RR, L2
L LR +R;)  Ly(R+R3) |
0
; Lo (5.7b)
CS s]. .
Rk
| LR +R3) |

The resulting matrix equation 5.7b represents three
first-order differential equations in three unknowns. It is
called the state equation and the variables V¢ 4,Ves and iy,

are called the state variables.

As can be seen, the advantage of this method is that no
integrals appear, and subsequently no second derivatives
occur as a result of the differentiation. The initial conditions,
or initial state of the circuit, are the initial values of the
capacitor voltages and inductor currents, which usually can
be independently specified in the circuit, i.e. their values just
after t; are determined by their values just before t;. This

is the second reason for choosing capacitor voltages and
inductor currents as unknown variables.

Further advantages in describing the network by first-
order differential equations are:

e A simple systematic method for writing such
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equations can be formulated by using the graph
theory.

e A systematic matrix solution may be applied for
solving these first-order differential equations. It
may be easily programmed for a numerical and
symbolic solution with appropriate computer
software.

e [t is quite easy to extend the state-variable
representation to time-varying and nonlinear
networks.

The concept of state variables, or just state, satisfies
two basic conditions of circuit analysis:

e If at any time, say t,, the state is known (which is

the initial condition or initial state), then the state

equations uniquely determine the state at any time

t >t, for any given input. In other words, given the

state of the circuit at time t;, and all the inputs, the
behaviour of the circuit is completely determined for
all t>t, .

e The state and the input uniquely determine the value
of the remaining circuit variables.

Proof (the first point). From the theory of differential
equations we know that the initial values of the variables
uniquely define, by differential equations, such as 5.7, the
value of the variables for all t >t,. In other words, the state

(VC (t),iL(t)) can be expressed by the state equations in
terms of the initial state.

Proof (the second point). We may use the substitution
(or compensation) principle, which states that in any linear

circuit any voltage drop across a passive element, say the
capacitance, may be substituted by an independent voltage
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source equal to this drop. In addition, any current through a
passive element, say the inductance, may be substituted by
an independent current source equal to this current. Hence,
we will replace all the inductors by independent current
sources whose values i (t) are given by the found state
variables and all the capacitors by independent voltage
sources whose values are equal to the found state variables
Ve (1) . As aresult, we will obtain a pure resistive network in
which any variable can be determined by any well-known
method of resistive circuit analysis.

For example, let the desired output quantities be V;

and Vg in the circuit being considered in Fig. 5.1. Since
V3 = Rsi; and Vg = Rgig by multiplying the third and the first
equations of 5.6 correspondingly by R; and R, we have

R RR; . RR
R Vs 2y

1+ Rs R +Rs R +R;

V3 =

Ve =—Vca +Vcs s
where Vcy,Ves and i, represent the voltage and current
sources, which substitute the elements C,,C; and L,
subsequently. The above expressions in matrix form are

R RIR; |Vea| | RiRs

= Rl + R3 Rl + R3 VCS + Rl + R3 [ISI] .
V
61 -1 1 0 iy, 0

(5.8)
This matrix equation is called an output equation.

Both the state equation 5.7b and the output equation 5.8
equations may be written in compact matrix notation as
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X =AX+BW (5.9a)
Y =CX +DW (5.9b)

where X is the state vector, W is the input and Y is the
output vector. The meanings of matrixes, A, B, C and D,
which are dependent upon circuit elements, are obvious
from equations 5.7b and 5.8.

Next, we shall consider the number of independent
state variables that represent the transient behaviour of a
network.
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5.3. ORDER OF COMPLEXITY OF A NETWORK

As is known, node-voltage, mesh-currents, and mixed
variable equations (based on Kirchhoff’s two laws)
completely represent any electrical circuit. Recall that the
number of independent node-voltage equations, i.e., number
of independent Kirchhoff’s current law (KCL) equations, is
b — (n — 1), where b is the number of branches and n is the
number of nodes. These numbers are determined only by the
graph of the circuit and not by the types of the branches, i.e.
they would not be influenced if the branches were all
resistors, or if some were capacitors and/or inductors.
However, in resistive circuits driven by DC sources the node
or mesh equations are algebraic, with no variation in time.
On the other hand, when capacitors or inductors are present,
the equations will be differential. Hence, the question is how
many independent variables represent the circuit in its
transient (dynamic) behaviour. We know that each capacitor
and each inductor introduces a variable in such behaviour
since the v - i characteristic of each contains a derivative or
integral. We also know that, for a unique solution of
differential equations, the arbitrary constants have to be
determined.

The number of these constants is equal to the number
of independent initial conditions that can be specified in a
circuit. It is also known that the number of initial conditions
is related to the energy-storing elements, capacitors and
inductors, and in general is equal to the number of such
elements in the circuit. The exceptions are the, so-called,
all-capacitor loops and all-inductor cut-sets. Consider the
circuit shown in Fig. 5.2. There are five energy-storing
elements, but in this circuit there is an all-capacitor loop,
consisting of two capacitors C; and C, and a voltage

source, and an all-inductor cut-set (see dashed line in Fig.
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5.2) consisting of three inductors L;,L, and Ls. In this

case, the capacitor voltages and inductor currents will be
restricted by KVL and KCL, namely

Ve +Ve =V (5.10a)

iL4+iL5 :iL3 (SIOb)

which means that one of the voltages and one of the currents
can be determined if the other is known. This also means
that the initial values of both Vg, and Vg, cannot be

prescribed independently, nor can the initial values of all
three currents i 3,i 4 and i 5. Therefore, each of the

constraint relationships, such as equations 5.10a and 5.10b,
reduce the number of independent variables.

In other words, the order of complexity of any network
equals the total number of energy-storing elements minus
the number of all-capacitor loops and the number of all-
inductor cut-sets. Thus, the order of complexity of the
circuit of Fig. 5.2 is 5 — 1 —1 = 3. Note that (1) all-capacitor
loops may also consist of ideal voltage sources and all-
inductor cut-sets may also include ideal current sources,
and( 2) only independent all-capacitor loops and all-inductor
cut-sets are taken into account.
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5.4. STATE EQUATIONS AND TRAJECTORY

Consider the circuit in Fig. 5.3. Let us use capacitor
voltage Ve and inductor current i as state variables.

Applying KCL to node 1n and KVL to the right loop and
outer loop, we obtain

dv, )
C—S =i, +i,
at Lth
di .
L=t =v. —R,i , 5.11
gt - Ve Rl (5.11)

Eliminating the non-desirable variable 1|, from

equation 5.12 and substituting it into equation 5.11, after
rearranging the terms, gives the state equations
dve 1 1 1

———Ve —— i +—V,,
dt CR C C- CR °

dip 1 R, .

L=V ——2i, 5.13

oL (5.13)
or in matrix form

% = AX(t)+ BW(t) (5.14)

where:
Ve (t
X(t) = { c( )}
IL(D)
is a vector of state variables,
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is a constant vector,
W(t) = Vg ()
is the scalar input, or input vector.
For solving equation 5.14, the initial conditions of the
inductor current and of the capacitor voltage have to be
known. Thus, the pair i (0) =, and v (0) =V, is called the

initial state

IO
X, {VJ. (5.15)

The zero unput response, i.e., circuit response when
W() =0
dX(t)
dt
is completely determined by the initial state equation 5.15.
Thus, if we consider [iL(t),VC (t)] as the coordinates of a

= AX(t) (5.16)

point on the i —V¢ plane, then as t increases from 0 to oo
the point [i,_(t),vc (t)] will trace a curve, which is called the
state-space trajectory and the plane i —V¢ is called the

state-space of the circuit. It is obvious that the trajectory
curve starts at the initial point (I,,V,) and ends at the origin

19



(0, 0) when t=o0. Since Vc(t) and i (t) are the
components of the state vector X(t), the trajectory defines it
. . . di, dv,

in the state space. The velocity of the trajectory (d_:’d_th
can be obtained from the state equation 5.16. In other words,
the trajectory of the state vector in a two-dimensional space
characterizes the behaviour of a second order circuit, i.e., for
every t, the corresponding point of the trajectory specifies
i (t) and v (t).

As we have already mentioned, the state equations in
matrix representation may be easily programmed to a
numerical solution. Let us illustrate the approximate method
for the calculation of the trajectory. We start at the initial

point, determined by the initial state XO[VC (O),i|_(O)]T , and

step forward a small interval of time to find an estimate of X
at this new time. From this point we step forward again and
estimate x after another short interval of time and so on. The

. o . dx
estimate of X at the new time is found by evaluating y at

the old time using the differential equation 5.16 and
estimating the new value of X by the formula

Xnew = XOld + At[d—Xj , (517)
dt Joig

where At is the “‘step length’’. This step-by-step method is
known as Euler’s method.

Essentially, we are using a straight-line approximation
to the function in each interval. In other words, this method
is based on the assumption that if a sufficiently small
interval of time At is chosen, then during that interval the

. . dX . .
trajectory velocity rr is approximately constant. Thus, the

20



straight-line segment, which approximates the trajectory on
each step of calculation, is

AX:(d—XJ At
dt Jeonst

It is obvious that the approximation calculated in this
manner reaches the exact trajectory when At approaches
zero. In practice, the value of At that should be selected
depends primarily on the accuracy required and on the
length of the time interval over which the trajectory is
calculated. Once the trajectory is computed, the response of
the circuit is easily obtained by plotting each of the state
variables V¢,i; versus time.

Example 5.1

Let us employ Euler’s (first-order) method to calculate
the state trajectory and capacitor voltage versus the time of
the circuit shown in Fig. 5.3.

Solution

Let the values of the circuit elements be R; =1 Q, R,
=1Q,L=1H, C=1F and the initial state be 1, =1 A and

Then, substituting the above parameters in the matrix
A, we have the state equation 5.16 as

ax [-1 -1
dt 1 -1

and the initial state is

21



1
o]

Let us pick At = 0,1 s. Using equation 5.17 yields the
state at 0,1 s :

w{Jof 1[I

Next, we can obtain the state att=2At=0,2 s:

0,8 -1 -1]0,8 0,62
wa Yf 2[5

From these two steps, we can write the state at
(k + 1)At in terms of the state at KAt

xikanod=| 1400 "0 THikkan=|* "% xat
[+ D0d1= 10 PR =] XD

If we use At = 0,01, the resulting trajectory will
coincide with the exact trajectory.

In conclusion, the general recurrence formula for
approximating the trajectory may be written as

X[(k +DAt] = (1+ AtAYX(KAL)  (5.18)
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5.5. BASIC CONSIDERATIONS IN WRITING
STATE EQUATIONS

In this section, we shall introduce a systematic
method for writing state equations. This method is based
on the topological properties of the network and is called
the “‘proper tree’” method. However, we must first consider
KCL and KVL equations based on a cut-set and loop
analysis.

5.5.1. Fundamental cut-set and loop matrixes

As 1s known from matrix analysis, the matrix
formulation of independent KCL equations is given by
using the reduced incident matrix A. Recall that for any
connected graph, having n nodes and b branches, A has
n — 1 rows and b columns. Thus, the set of n — 1 linearly
independent KCL equations, written on the node basis, has
the matrix form

Ai=0. (5.19)

However, equation 5.19 is not the only way of
writing KCL equations. It may also be done on the cut-set
basis. A cut-set is defined as a set of k branches with the
property that if all k branches are removed from the graph,
it is separated into two parts.

As an example, consider the graph shown in Fig. 5.4.
order method can be used.
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Fig.5.4

Two distinct cut-sets are shown by dashed lines,
namely Cl = (b2 , b6’ b7) and C2 = (bl , b3 . b5 , b6) . Recall now
the generalized version of the KCL. By enclosing one of the
cut parts of the circuit in the balloon-shaped surface, (see
the dotted-dash line in Fig. 5.4(b)) we can write a KCL
equation for this particular cut-set

_|1+|3_|4+|5 :0.
The number of such KCL equations is obviously equal
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to the number of distinct cut-sets. However, as we know, the
number of independent KCL equations is N —1, where n is
the number of nodes in the graph/circuit. Naturally, we are
interested in writing linearly independent cut-set equations.
For this purpose, we shall introduce the so-called
fundamental cut-set. Choosing any tree in the graph, we
define a fundamental cut-set as that associated with the tree
branch, i.e. every tree branch together with some links
constitutes a unique cut-set of the graph. Such a cut-set is
shown, for example, in Fig. 5.5. As can be seen, removing
the tree branch t; separates the tree into two parts T; and

T, . Then the links |, and |, together with twig t; constitute

a unique cut-set. Indeed, removing any of the remaining
links, even all of them (thin lines), cannot separate either T,

or T, into two parts. Therefore, the above cut-set is unique.

Obviously, each of the fundamental cut-sets is
independent of any other, because each of them contains one
and only one twig. Since the number of twigs in any tree is
n — 1, we can write N — 1 linearly independent KCL
equations following n — 1 fundamental cut-sets. Note that
the orientation of each fundamental cut-set is defined by the
direction of the associated twig as shown in Fig.5.5.

xl

Fig.5.5
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We will next consider the oriented graph of Fig. 5.6a.
A chosen tree is shown by heavy lines, and four
fundamental cut-sets associated with four twigs (since a
given graph has five nodes) are marked by dashed lines. For
the sake of convenience, we first number the twigs from 1 to
4 and the links from 5 to 7, and adopt a reference direction
for the cut-set, which agrees with the tree branch defining
the cut-set. Applying KCL to the four cut-sets, we obtain

cut-set 1: i; +i; =0
cut-set 2: i, +ig +i; =0
cut-set 3: iy —is +ig —i; =0
cut-set 4: iy —is +ig =0,

or in matrix form

cut—set  twigs links

1234 56 17

] (5.20)

t
10000 0 0] [o
01 00O0T 1 t3_0
0010T1-1-1 t4_0
00O01-1101. 0

_t6

t;

In general, the KCL equations based on the
fundamental cut-sets may be written in the short form:

Qi=0, (5.21)

26



——p
>
2 5
4
Al Y3
7
>
a
6
——
>
2 5
4
Al Y3
7
L
b
Fig.5.6

where Q is the fundamental cut-set matrix associated with
the tree. The order of the Q matrix is (n—1)xDb, and its jk-th

element 1s defined as follows:
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1 if branch k belongs to cut -set j and has the same
direction

—1 if branch k belongs to cut -set j and has the

9jk opposite direction

0 if branch k does not belong to cut -set |

Note that the fundamental cut-set matrix in equation
5.20 includes a unit sub-matrix of order (n — 1), which is the
number of fundamental cut-sets and the number of twigs.
Therefore,

Q=[1,,Q], (5.22)

where Q is a sub-matrix of the order (n—1)xl, ie. it

consists of (n — 1) rows and of | (number of links) columns.
The fundamental cut-set matrix Q will always have the form
of equation 5.22 because each fundamental cut-set contains
one and only one twig and its orientation agrees with the
reference direction of the cut-set, by definition.

Next, we shall introduce the loop matrix. Mesh
analysis, which is commonly studied in introductory course
sin circuit analysis, is not the only method of writing a set
of independent equations based on KVL. Another and
actually more flexible method, which allows us to derive
independent KVL equations, is based on the so-called
fundamental loop. Every link of a co-tree (complement of
the tree) together with some twigs, which are connected to
the link, constitutes a unique loop associated with the link.
Indeed, there cannot be any other path between two nodes of
the tree, to which the link is connected. If there were two or
more paths between two nodes of the tree, they will form a
loop; this contradicts the main property of a tree. The set of
fundamental loops is independent, since each of them
contains one and only one link, i.e. every loop differs from
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another by at least one branch. Therefore, each link uniquely
defines a fundamental loop. Hence, the number of
fundamental loops is equal to the number of links, i.e.
b — (n —1). Each fundamental loop has a reference direction,
which is defined by the direction of its associated link, as
shown in Fig. 5.6b.

So we use the fundamental loops to define b — (n —1)
linearly independent KVL equations. For the graph in Fig.
5.6b, we may write the following three independent KVL
equations:

Loop 1: V3 +V4 +Vs =0,
Loop 2: =V, =V3 =V, +Vg =0,
Loop 3: —=v; =V, =V3+V; =0,

or in matrix form

cut —set twigs links
1 23 4 567

i (5.23)
Vi
V2
0 01 1 10 0]vs m
0 -1-1-1 010fv,|[=|0
~1-1 11 00 1]vs| |0
Ve
V7

In general, the KVL equations based on fundamental
loops may be written in the short form:

Bv=0 (5.24)

where B is the fundamental loop matrix associated with the
tree. The order of the B matrix is Ixb, where | is the
number of loops, and its jk-th element is defined as follows:
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1 if branch k belongs to loop j and has the same
direction as the loop

b. —1 if branch k is in loop j and has the opposite

ik direction

0 if branch k is not in loop j.

Note that the fundamental loop matrix in equation
5.23 includes a unit sub-matrix of order |, which is the
number of fundamental loops and also the number of links.
Therefore, we can express B in the form

B=[B; 1], (5.25)

where B; is a sub-matrix of Ix(n-1), i.e. it consists of |

(number of links) rows and of t=n — 1 (number of twigs)
columns. The unit matrix in B results from the fact that each
fundamental loop contains one and only one link and by
convention the reference directions of the fundamental loops
are the same as that of the associated links.

Let us think that twig voltages are a set of the basic
independent variables. Since each fundamental loop is
formed from twigs and only one link, the link voltage can
always be expressed in terms of twig voltages. Therefore,
the branch voltages in any circuit can be determined by twig
voltages, when the latter ones are used as independent
variables. Indeed, in accordance with equations 5.24 and
5.25

[B, 1 {Vt} =0, (5.26)

where the branch voltage vector Vv is partitioned into two
sub-vectors: v; and v|, which are, respectively, the twig-

voltage sub-vector and link-voltage sub-vector. Performing
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the multiplication yields
Bivi+v, =0
or
V) =—Byvy (5.27)

This means that link voltages are determined by twig
voltages. Obviously, we can write the twig branch-voltage
sub-vector as

Combining equations 5.27 and 5.28, we have

Vil 1y
WAl e

-
v=| v (5.30)

which states that all the branch voltages in any circuit can be
expressed in terms of twig voltages.

Now, let us again examine the fundamental cut-sets.
Since each fundamental cut-set is formed from links and
only one twig, we can express the twig-currents in terms of
link-currents. Therefore, using the link-currents as basic
independent variables, we can always determine the all
branch currents by the independent variables. After
partitioning the branch currents into twig-currents and link-
currents, with equations 5.21 and 5.22, we have

1, Ql{ﬂ:o, (5.31)

or simply
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where 1; and 1, are, respectively, the twig-current and link-
current sub-vectors.

Then two matrixes in equation 5.31 can be multiplied
to yield

iy +Qi; =0,
or
it =-Qi;. (5.32)
Combining equation 5.32 and the identity i, =1;1;,
yields
Ft}{_(ﬂi' (5.33)
i 1
or
i:[_iﬂi, (5.34)

which again states that all branch currents in any circuit can
be expressed in terms of link currents. A useful relation
between two matrixes Q and B can now be determined.
Recall Tellegen’s theorem in the form

vii=0. (5.35)
By taking the transpose of v (equation 5.30), we obtain

T T
1 1
JT =([_P:JW] =VI{_BtJ VT[lt—BI]. (5.36)

After substituting equations 5.36 and 5.34 into
equation 5.35 we have
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V! [1t -B! {_ ?‘ }i, =0 forallv, andallij. (5.37)
t

Sinse VtT #0 and 1; # 0 then
[1t ~B/ {_Qt} =0 (5.38)
Iy
Performing the multiplication, we obtain the
identities
Q, =-B/ (5.39a)
and
B, =—Q| . (5.39b)
This relationship between two sub-matrixes Q; and
B; results from the fact that both fundamental cut-set
matrix Q) and fundamental loop matrix B; give the

topological relation between graph branches and
fundamental cut-sets and fundamental loops respectively.
Also, note that both matrixes Q; and B; come from the

same tree.

Replacing — B; by Q,T in equation 5.30, we obtain

1
v{ t}vt =Q'v,, (5.40)

which can be interpreted as a matrix transformation of twig-
voltages into branch voltages. Similarly, replacing —Q; by

B,T in equation 5.34, we obtain
.| Bl | .
1={ I }1, =BT1| (5.41)
I
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which is a matrix transformation of link-currents into branch
currents.

Finally, substituting equations 5.40 and 5.41 into
Tellengen’s theorem (equation 5.35), we have

vi QBTi; =0, forallv, andi,, (5.42)

which can be reduced to the following relation between the
matrixes
QB =0. (5.43)

In conclusion, the following comments on loop and
cut-set matrixes have to be made. The methods of circuit
analysis based on loop and cut-set matrixes are more
flexible, allowing more possible applications than the node
and mesh analyses. So, as we remember, the mesh analysis
based on mesh matrix M is restricted to the planar graph
only, whereas the fundamental loop matrix B, based on tree,
is applicable to any graph including non-planar, by means of
allowing us to write a maximal number of linearly
independent KVL equations.

The concept of duality is wusually applied (in
introductory courses) to planar graphs and planar circuits by
means of node and mesh terms. By now, we may extend this
concept to fundamental matrixes B and Q, pertaining to
non-planar graphs and circuits. So, the listing of dual terms
can be extended as follows:

Twig — Link,
Fundamental cut-set — Fundamental loop,
Twig voltage, V; — Link current, i ,

Fundamental cut-set matrix, Q — Fundamental loop
matrix, B.

Thus, two graphs, G; and G, having the same
number of branches, are dual if the number of fundamental
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cut-sets of one of them is equal to the number of
fundamental loops of the second and their Q and B matrixes
are identical, namely

Q,=B,.

5.5.2 “*Proper tree’’ method for writing state
equations

Our aim now is to write the state and output equations
in the form of equation 5.9

X(t) = AX(t) + BW(t) (5.44a)
Y (t) = CX(t) + DW(t) ( 5.44b)

where X is the state vector containing all the capacitor
voltages and all the inductor currents, W is the input vector
containing all the independent voltage and current sources,
driving the circuit and Y is the desired output vector. A, B,
C and D are constant matrixes whose elements depend on
circuit parameters. Equation 5.44a is a first order matrix
differential equation with constant matrix coefficients. X is
the first derivative of the state vector X, i.e. it consists of the
dip

. : dv,
derivatives of the state variables d_tc and .We note

that these quantities are given by currents in the capacitors
dv, . di
C _dtc and voltages across inductors Ld—L‘ .

To evaluate capacitor currents in terms of other
currents, we must write cut-set equations and to evaluate
inductor voltages in terms of other voltages we must write
loop equations. Therefore, it turns out that we could do this
if, using the concept of cut-set and loop analysis, we chose a
tree which includes all the capacitors but no inductors. Such
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a tree is called a proper tree. We can complete the proper
tree if the number of twigs is larger than the number of
capacitors by adding resistors and voltage sources. Thus, the
inductors, the remaining resistors and possibly the current
sources will constitute the co-tree links.

Following this method, we may write a fundamental
cut-set equation for each capacitor-twig, in which the

. dve . .
capacitor current C d_tc is expressed in terms of other
currents. We may write a fundamental loop equation as well

for each link inductor in which the inductor voltage L%

is expressed in terms of other voltages. We shall also take
into consideration that the basic variables in cut-set/loop
analysis are twig voltages and link currents. Hence, we shall
use the appropriate v — i relationships for resistive and active
elements. Thus for twig resistors we use the form v; = Ri

and for the link resistors i; =Gv . For the same reason we

put the voltage sources into the twigs and the current
sources into the links (to fulfill these requirements, we can
use a source transformation and shifting techniques). At this
point, let us illustrate the above description by the following
example. For the sake of generality, we will divide the
solution procedure into five steps. Consider the circuit
shown in Fig. 5.7(a).
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Vi,

Fig5.7

Step 1. Choosing the state variables

The circuit contains two capacitors and one inductor.
Therefore, the state variables are Vgy,Ve, and i 4, and the

state vector is

Vei
X=|ve, | (5.45)

IL4

Step 2. Choosing the proper tree

The proper tree picked for the circuit includes two
capacitors and resistor R3 .
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Step 3. Writing the fundamental cut-set equations

These equations are written in such a way that the
capacitor currents are defined by other link currents and/or
current sources (if such a represent), and the remaining
currents are written in terms of inductor currents and/or
current sources.

dv o
cut —set1: Cl%z—ls—lé

cut—set2: C, d‘éﬁz =—i 4 +is—i; (5.46)

cut—set3:G3v; +is =i 4 (5.47)

Step 4. Writing the fundamental loop equations

The loop equations are written in such a way that the
inductor voltages are defined by other twig voltages and/or
voltage sources (if such are present), and the remaining
voltages are written in terms of capacitor voltages and/or
voltage sources

Loop1: L4d:j%:vc2 —V, (5.48)
Loop2: —V3+Rsis =Vg; — Ve (5.49)
LOOp 3: R6|6 = VCI _VSI

Loop4: R;i; =Vey —Vs) (5.50)

The last two steps lead to state equations

Ner_ i i
1 dt 5776

38



Step 5. Expressing the right-hand side of the state
equations in terms of state variables and/or inputs.

In this example, currents is,i¢,i; and voltage v; have
to be expressed in terms of the capacitor voltages V.;,Vcs

and the inductor current i 4. By solving equations 5.50, we

have
i ——1 V, ——1 \Y;
6 Re c1 Re sl»
I L v L v (5.52)
7 R, c2 R, s2 .

equations 5.47 and 5.49 form a set of two algebraic equations
of two unknowns:

-1 Rs V3| _|Ver—Ve2 (5.53)
Gy 1 |is iy | '

Solving equation 5.53 yields

1 1 s
Vy=———— Vo +————Vep +——2>—i
37 14RG; ' 1+RG; °F 1+RG; -

- 3 -
| + Vey + |
3 1+ RG; 7 14RG;

(5.54)
Finally, equations 5.52 and 5.54 can be substituted

14+ RsG;
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into equation 5.51 to yield, after rearrangement and dividing
through the equations by appropriate C,,C,, L,

_ 1+aReGs aG, _a
RC C C
Vel o : b
d aG; 1+aR,G; l1-a
| Ve |= —_ - - Ve |+
dt C, R,C, C, |.
L4 a —a R, L4
L L, Ly |
- ; B}
ReCi
v
+ 0 ! b, (5.55)
R,Cy | Vs2
0 0
where ) )
1
a=——.
1+ RsG;

Note that state equations here are written in the matrix
form of equation 5.44a where the input vector (in this

example) is W = [vg Vsz]T and the meanings of matrixes A

and B are obvious.

Suppose now that the remaining branch variables, i.e.
V3,is,ig and i, are a desired output. Then, using equations
5.54 and 5.52, we can express the output in terms of the
state variables and the input as
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-a a aR; 0 0
V3 aG; —aG; a Ve, 0 0
[ 1 v
o] L 0 [vey |+ —— 0{51}
le Rs i Re Vs2
14
"Il L oo R
i R, ] i R7 ]
(5.56)

This is an output equation in the form of equation
5.44b, where the output vector is Y =[v; is ig i7]T and the

meanings of the constant matrixes are obvious.

Let us note that the capacitor charges and the inductor
fluxes can also be used as state variables. Then in the above
example the state vector will be

X=[oy a A,
where q; =Cyvcy, 0 =CoVey and Ay =Lyl
Substituting V¢, =i, Veo =% nd Iy Dt in equation
C C, L,

5.55, and after simplification, we obtain

_1+aR(G; aG, _a

RsC C L
o 6>1 2 4 g,

iq aGs _1+aR,G; l+a o |+

dt| C, R,C, L, |.°
}\,4 7\'4

a l1-a _aRs

i C C, Ly
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L
R6
Vv
+ 0 i{s‘}, (5.57)
R7 V52
0 0

which is the state equation using the charges and fluxes as
state variables.

It is worth while mentioning that some other variables
in the circuit may be used as state variables. For example, a
current through a resistor in parallel with a capacitor or
voltage across a resistor in series with an inductor can be
treated as state variables. Also any linear combination of
capacitor voltages or inductor currents may be used as state
variables. This can be helpful in writing state equations
when the circuit consists of all-capacitor loops or all-
inductor cut-sets. The next step would be to solve the state
equations. However, before doing so, we shall consider the
general approach for deriving state equations in matrix
form.
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5.6. A SYSTEMATIC METHOD FOR WRITING A
STATE EQUATION BASED ON CIRCUIT MATRIX
REPRESENTATION

Consider a network whose eclements are inductors,
capacitors, resistors and independent sources. As stated, we
assume that capacitors do not form a loop and inductors do
not form a cut-set. We also assume that the network graph is
connected and as a first step we will pick a proper tree. We
can obviously include all capacitors into the tree branches,
since they do not form any loop. Usually, it might be
necessary to add some resistors and/or voltage sources in
order to complete the tree. Then all the inductors will be
assigned to the links. In the next step we shall partition the
circuit branches into four sub-sets: the capacitive twigs, the
resistive twigs, the inductive links and the resistive links.
For the sake of specifics, we shall use an example to
illustrate this procedure. Consider again the circuit shown in
Fig. 5.7(a). The KCL equations for the fundamental cut-sets,
in accordance with equation 5.31, are

I Q] [=0 (5.58)

where subvectors of twig and link currents are

i :[}c} i :BL}
G R

and ic,ig,1; and iR are in turn subvectors representing

currents in capacitive and resistive (conductive) twigs and
inductive and resistive links, respectively. In our example,
these four subvectors are
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. iRS
| 1. k1 |
ic:{Cl} ic =lies} iL=[ial ir=|irs| (559

iRy
and the equation 5.58 becomes (5.60)
ey |
1 000 11 0flc
_ Ic3
01 01 101 i, |=0 (5.60)
0 01

-1 1 0 O0figs
Qe Qer JiRrs
L'r7 ]

The KVL equations may be written in the form (see
equation 5.26)

[B, 1, =0, (5.61)

where

are subvectors of twig and link voltages and
Ve, VG, VL, VR, are in turn subvectors representing

voltages across the capacitive and resistive (conductive)
twigs and inductive and resistive links, respectively. For the
circuit in Fig. 5.7 the voltage subvectors are
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vy VRs VRs
Ve :{ } ve =[Va3}h vi =[Vial VR =|Vrs —Vsrs |=| Vs
VR7 ~Vsr7 V7

(5.62)

where vgge represents Vg and Vgg; represents Vg,. The
KVL equation 5.61 becomes

0 -1 1 110 0 0]VYa
Vea

-1 1 -1 1010 0y

-1 0 0 0 0 01 0fVa|=0 (5.63)
VRs

0 -1 0 000 0 1]y

. Brc Ber 4 vy

Note that B; = —Q,T .

Next we shall use the v - i, or i - v characteristics to
introduce branch equations. We will employ the concept of
a generalized branch, i.e. combining passive and active
elements together. However, we must now take into
consideration four different branches: two for twigs and two
for links, as shown in Fig. 5.8.
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yic

||
o |

Fig.5.8

As was mentioned earlier, we shall assume that the
voltage sources are located in the link branches and the
current sources are located in the twig branches. Therefore,
in matrix form we have:

. . . d .
capacitor twigs Ic = CavC +igc
. . d.
inductor links V= LalL + Vg (5.64)
resistor twigs ig =Gvg +ig
resistor links vk =Rig +V (5.65)

where the matrixes C, L, G and R are the branch parameter
matrixes; namely, the twig capacitance matrix, the link
inductance matrix, the twig conductance matrix and the link
resistance matrix, respectively. Note that C, L, G and R are
square diagonal matrixes, but if the circuit consists of
coupled elements (mutual inductances and/or dependent
sources), L, G and R might not be diagonal any more. For
the example in Fig. 5.7
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C, O
c{ } L=[L,], (5.66)
C2

G=[6;] R=| Ry | (5.67)

The vectors vgg, vq and igg, igc represent the

independent voltage and current sources, which in the
present example are

0
VSR = VS] , VSL :O, ISG =0, ISC =0. (568)

Vso

Equation 5.64 can be rewritten to yield

d . ) d.
C—ve =lp —1¢e, L—1; =v| — . 5.69
g Ve Tle Tlse gL VLT Ve (5.69)

To bring these equations to the form of state
equations, we must eliminate the variables. For this purpose,
we shall solve the KCL equation 5.58 and KVL equation

5.61 equations together with the branch equations 5.64 and
5.65.
Equations 5.58 and 5.61 can be rewritten as

ic|_ ~lit|_ Qe Qcr fL} 570
Lcj QILJ {QGL QGJ IR (700

and
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B B
e N ol N
VR \fe Bre  Ber Ve

where in the following solution matrixes Q, and B, are

partitioned into submatrixes. The order of each of the
submatrixes in equations 5.70 is determined by the number
of twigs (which is the number of rows) and by the number
of corresponding links (which is the number of columns) in
equation 5.70a and vice versa in equation 5.70b. For
example, the number of rows in QCL (equation 5.70a) is

equal to the number of capacitor currents in iC (capacitor

twigs) and the number of its columns is equal to the number
of inductor currents in iL (inductor links). It can also be

shown that there are simple relations between Q; and By
submatrixes, namely

T T T T
B c =-QcL,> Bie =—QcL» Bre =—Qcr» Bre =~Qcr:
(5.71)
The undesirable variables iC and v, in equation 5.69 can now

be expressed from equation 5.70 to yield

ic ==QcriL —Qcrir (5.72a)
v =-BcLve —Que Ve (5.72b)
and after substituting these two expressions into equation
5.69, we obtain
d

CEVC =—-QcLiL —Qcrig —igc

d.
Lall‘ = —BCLVC _BLGVG — VgL (573)
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However, we still need to eliminate iy and vg.
Substituting ig and vk from equation 5.70 into equation

5.65, and after rearrangement, results in two simultaneous
matrix equations in two unknowns ig and vg,

Rig +Brgvg =M (5.73a)
Qgrig +Gvg =N (5.73b)
where
M =-BpcVve —Ver
and

N=-Qg i —iss (5.74)
Solving these two equations by the substitution
method yields

ir =Rel[- BrgG'N+M), (5.75a)
vg =G (—QRGR_lM + N), (5.75b)
where
Req =R—BpgG ' Qgr. (5.76a)
Geq =G —QreR 'Bg. (5.76b)

Finally, we substitute equation 5.75 with equation 5.74 in
equation 5.73 to obtain, after rearrangement, the state
representation is follows

dt|i, 0 L A12] A122 i
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Isc

+L)C (I)J llb? b}f b}l3 b{14 ] isg , 5.77)
by by byz byy | Vsl
VsR
where the matrix terms are

1 - ! -1 -1
A1 =QcrRegBre Al =—QcL ~QcrRegBrsG QoL

! “1 ! -1 “1
A =B gGeqQoL A21 =—Bic =B1gGeqQerR Bre
(5.78)

1 1 -1 -1
bll =-1 b12 = _QCRRquRGG
1 ! -~
bj3=0 b4 =QcrReq
1 1 -1 1 1 -1 -1
b21 =0 b22 = BLGGeq b23 =-1 b24 = _BLGGquGRR

(5.79)

Let us now use the above expressions to calculate the A
and b matrixes in our example. First we determine the
submatrixes of the Q; matrix

01 10
QI|:QCL chz}z | —1
Qe Qgr 110 0

Then with equation 5.76 and equation 5.71 we have
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where again

Geq =[G3]+[1 0 0] 0

[1+RsG;

0 0
Rg 0
0 R,

-0 i}[l 0 0]=
0 3
aG; 0 0
n 1
Rgg =0 ™ 0
0 Lo
L R
1
1+ RsG;
L9 0
Rs o
oo
R¢ 0
0 0 Ri )
L 7
-1
Geq:[aRS]
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L [1 00 1
Ay = o
~100 Rg

aG;
R U
2ol -1 01

0

Ay =—{0 —1]-[1]ars]1 o of
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5o

G
0
0

=[a (-a)]

0
CZ
0

Therefore the A matrix is

equation 5.55).

[c O}I{A}l Al
1 1
0 L AZI A22

which agrees with the résults previously obtained (see

}

L 0 0
o T C
0 =| 0 L 0
Cy © |
0 0 —
i G
[ 1+RsaG; aG; a |
CRG GG
aG, 1+R,aG; 1-a
C, R;C, C, |
a l1-a aRs
L L L

To find the b matrix we will calculate equation 5.79.
Since only the vy vector is present we need only two

elements of b:

110
-1 0 1

I _
14 =

0 aG; 1 0
Re
0 |= )
-aG; 0 —
1 6
Ry
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1 0 0
RS
1
by =—[[aRs [t 0 00 -0
6
0 0 1
i Ry
Therefore, the reduced b matrix is
aG, 1
Cl R6CI
0 L b124 C2
A,
L I‘4

=—[a 0 0].

which also agrees with the results in equation 5.55. Note
that a voltage source in link 5 is absent (vsR5 = O), therefore

the above matrix can be reduced even more, namely

: 0
ReCi
0 L
R:C,
0 0

which is exactly the same as in equation 5.55.
Comparing the systematic method for writing state
equations with the intuitive approach, which we first
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presented in the previous sections, we may conclude that it
is rather complicated. In many practical instances, the final
results can be arrived at much easier and faster by following
the intuitive approach. However, the systematic method has
an appreciable advantage for computer-aided analysis, since
it can be easily programmed.
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5.7. COMPLETE SOLUTION OF THE STATE MATRIX
EQUATION

We will now turn to the solution of the state equation
of the form of equation 5.44a, repeated here for
convenience:

X(t) = AX(t)+ BW(t). (5.80)

5.7.1 The natural solution

We will begin by considering the natural or zero-input
(non-forced) solution; that is W(t) = 0. Equation 5.80 then
simplifies to

X(t)=AX(t) or X(t)-AX(t)=0. (5.81)

It is customary to compare a vector problem with its
scalar version. In this case, the scalar version of equation
5.811is

dx(t) _
o =ax® (5.82)

The solution of equation 5.82, that satisfies the initial
condition Xx(0), is
x(t) = e®x(0).
Suppose we try the same form for the solution of
equation 5.81, that is

X(t) = e'X(0). (5.83)

where e™ is called the matrix exponential and is an
example of a function of matrix A.
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5.7.2. Matrix exponential

In mathematics the matrix exponential is defined
similarly to a scalar exponential (or complex exponential),
1.e. in terms of the power series expansion:

a_ b B FUN
et =l+—A+ AT+ +—AT+.=D) —A (5.84)
TR k! Skl

Since A is a square matrix of order n, the matrix
exponential eMisalsoa square matrix of order n.

Example 5.2

As an example, let us take the matrix of Example 5.1,
namely

-1 -1
A=
_1 _1_
then
Az_{—l —1]—1 —1'_{0 2}
1 -1 1 -1] [-2 0
A3{2 —2}
2 2
and

A |1 O] [-1 =17 ¢2[ 0 2] ¢3[2 -2
e = +1 +— +— +..=
0 1 1 -1] 2|-2 0] 62 2

3 3
1—t+?+ —t+t? -
- 3 5(85)
t3 3
t—t2+—+... 1—t+?+...
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As can be seen from equation 5.85, each of the

clements of the matrix ¢! is a continuous function of t.
Term-by-term differentiation of the matrix exponential
(equation 5.84) results in

2 3
i(eAt): A +tA2 +t—A3 +t—A4 +o. =
dt 2! 3|

o - . (5.86)
- A{1+tA+5A2 +§A3 +) = Ae™M

i.e., the formula for the derivative of a matrix exponential is
the same as it is for a scalar exponential. Substituting
equation 5.83 into the matrix differential equation 5.81,
results in identity:

AeMX(0) = Ae™'X(0) .

Thus, we have established that equation 5.83 is indeed
the solution to equation 5.81.

We must now show that the inverse of a matrix
exponential exists and equals

1
(eAt) _ oAU
For the latter we can write

. 2 5t tk
e A oA+ AT —— A — 4+ (-DF AR —
2! 3! k!

Now let this series be multiplied by the series for the
positive exponential in equation 5.84. This term-by-term
multiplication results in 1 since all other terms are cancelled.
Thus,
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eAte—At =1.

A

This result tells us that the matrix e ! is the inverse

of e, since by definition the product of the matrix by its
inverse gives a unit matrix. This result can be used, first of
all, to show that in general if the initial vector X(0) is known
for some time, for instance t;, namely X, (t;) then the

solution will be
X, (t) =X (ty) (5.87)

Indeed, substituting t =t, results in identity:

X, () = e™e M0X (1)) = 1X(ty),

where we have used
oATB _ A B
(This can be verified by using equation 5.84 for both

sides of equality.)

5.7.3. The particular solution

To find the complete solution to equation 5.80, we
must now find the particular solution to the differential
equation, i.e. the forced response. For this purpose, assume a
solution of the form

X, =eMQ), (5.88)

where Q(t) is an unknown function to be determined. In
order to be a solution, equation 5.88 has to satisfy the
differential equation. Substituting equation 5.88 in equation
5.80 gives
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Llram]- Ao +Bwo,
or
AeMQ(t) +e™ % = Ae™Q(t) + BW(t)
Thus

% =e " AMBW(t) (5.89)

Integrating, we obtain

t
Q(1)=Q(ty) + [ BW(1)dr
t
Thus, the particular solution is

t
X, () =eQ) =eQ(ty) + [e*PBW()dr.

t
To evaluate Q(t,), we use the complete solution

being evaluated at t

Xy, = Xa®O+Xp 1) =" T0X(ty) +eMQ(ty) +

t
+ jeA(t_r)BW(r)dr
b t=t,
or

X(ty) = X(tp) +e0Q(ty) +0,
which implies that Q(t;)=0.

Hence, finally the complete solution of the state
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equation 5.80 is

t
X(t) =e*0X(tg)+ [ATBW(DdT.  (5.90)
t
To evaluate this solution the basic calculation is a

determination of the matrix exponential e This will be
discussed in the next subsection.

61



5.8. BASIC CONSIDERATIONS IN
DETERMINING FUNCTIONS OF A MATRIX

In this section, we shall examine two methods of computing

e in closed form. This matrix exponential is a particular

function of a matrix. The simplest functions of a matrix are
powers of a matrix and polynomials. As we have seen, the
matrix exponential can be represented by an infinite series
of such functions. The matrix polynomial has the form

f(A)=A"+a, A" + . +aA+a,l (5.91)

The generalization of polynomials is an infinite series:

f(A)=apl+aA+a A%+ +a A" +..= YaAk.
k=0
(5.92)

The function f(A) is itself a matrix, and in the last
case each of the matrix elements is an infinite series. This
matrix series is said to converge if each of the element series
converges.

We will begin with a brief description of some of the
properties of matrixes that will be useful in our studies.

5.8.1. Characteristic equation and eigenvalues

An algebraic equation that often appears in network
transient analysis is

AX=AX (5.93)
where A is a square matrix of order n. The problem is
to find scalars A and vectors X that satisfy this equation. A

value of A for which a nontrivial solution of X exists, is
called an eigenvalue, or characteristic value of A.

62



The corresponding vector X is called an eigenvector,
or characteristic vector, of A. After collecting the terms on
the left-hand side, we have

[LM-A]X=0 (5.94)

This equation will have a nontrivial solution for X
only if the matrix [Al—A] is singular, i.e.,

det[A1-A]=0. (5.95)

This equation is known as the characteristic equation
associated with A. It is also closely related to the auxiliary
(characteristic) equation of the corresponding differential
equation of order n for the system. The determinant on the
left-hand side of equation 5.95 is actually a polynomial of
degree n in A and is called the characteristic polynomial
of A. For each value of A that satisfies the characteristic
equation, a nontrivial solution of equation 5.94 can be
found. To illustrate this procedure, consider the following
example.

Example 5.3

Let us find the eigenvalues and eigenvectors of a
matrix of the second order

=

The characteristic polynomial is also of order two:

10] 21 -2 -1 .,
det{n) |- = det A2 —6L+5=
01] [3 4 -3 -4 .

=A=5A-D=9M)
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Thus, A>—6L+5=0 is the characteristic equation of
the matrix. The roots of the characteristic equation, or the
eigenvalues, are A; =5 and A, =1.

To obtain the eigenvector corresponding to the
eigenvalue A; =5, we solve equation 5.94 by using the given

T
ST e

Therefore

X X 1
[ 1}:[ ! }={ }[Xl] — for any valueof X;.
Xy 3X 3

The eigenvector corresponding to the eigenvalue
A, =1 is obtained similarly.

1 —-1|x B 0
—3 =3|x| |0
from which

X X 1
{1}:{ 1}:[ J[Xl] — forany valueof X,

Xp =X

or

The first method to be discussed for finding functions
of a matrix is based on the Caley-Hamilton theorem.
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5.8.2 The Caley-Hamilton theorem

This theorem states that every square matrix satisfies
its own characteristic equation. For example, if we substitute
A for A in the characteristic equation of Example 5, we
obtain the matrix equation

g(A)=A%-6A+5-1=0,

where, again, 1 is an identity matrix and 0 is a matrix
whose elements are all zero. Thus

2 12 1 2 1 10
-6 +5 =
3 4|3 4 3 4 0 1
7 6| |12 6 50 0 0
= —_ + =
18 19| |18 24| |0 5 0 0
The equation is certainly satisfied in this example.
The Caley-Hamilton theorem permits us to reduce the
order of a matrix polynomial of any higher order to be of an
order no greater than n — 1, where n is the order of the

matrix. For example, if A is a square matrix of order 3, then
its characteristic equation is

gV =2 +an* +ak+a, =0 (5.96)
and by the Caley-Hamilton theorem we have

Ad+a,A’+aA+a,1=0
Then

A’ =-a,A’-aA-ayl (5.97)

Thus, A® A3 may be expressed in terms of the
matrixes of an order not higher than 2 and identity matrix.
Hence, the given polynomial of order 3 is reduced to a
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polynomial of order 2. To extend these results to polynomials
of an even higher order, we multiply equation 5.97
throughout by A to obtain

At =—a,A’—a A% —a)A (5.98)
Substituting equation 5.97 for A*, we obtain
At =(a§ —al)A2 +(aya —ag)A+a,a)l.  (5.99a)

To generalize these results, let us develop an iterative
formula for expressing higher powers of A.We e assign the
obtained coefficients in equation 5.99 by upper script, as
follows

At =alPA? +alVA +a,1 (5.99b)

Multiplying this expression throughout by A, and
collecting like terms, yields

A’ = (— aal’ +a’ )A2 + (‘ ajay’ +ag )A + (‘ aoag))l -

_a®A% @A+ a1

b

where again agz), al(z), a(()z)

are the new coefficients and
a,,ay,a, are as before the coefficients of the characteristic

equation 5.96. Now the iterative formula for this case, n =3,
can be written as

Ak (_ a,alk D + al(k—l))Az N (_ aal 4+ alk! 1))A N
+ (— agalf™ )l —a¥A% +aA +al1 '
(5.100)

Note that this formula also works fine for the first
calculation of A* (equation 5.99) if the coefficients in
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equation 5.97 are assigned as
al” =—a,, a” =—a, and &\ = -a,.
Generalizing this result (equation 5.100) for any
matrix of order n, we can write
n+k k-1 k-1 n-1
A™ =y al ) +als) s

+ (— a, ,ak )+ arﬂ'fgl) 24 4 (— agalk

(5.101)

This gives us an expression for A”+k, k=0,1,2,.. in

terms of An_l,An_z,...,A and 1.

Continuing this process, we see that any power of A
can be represented as a weighted polynomial in A of an
order, at most n — 1. Hence, functions of matrixes,

including e, that can be expressed as a polynomial

f(A)=ogl+ A +...+ A" +..= Yo AX (5.102)
k=0
may be reduced to the expression

f(A)=Bol+BA+...+B, A" = nz_l[skA" (5.103)
k=0

Here, the coefficients B, p;,...,n_; are functions of

ay,4ay,...,a,1 and oy, 0;,... Their approximate calculation

can be carried out by the iterative method used in the
calculation of higher powers of A in equation 5.101 and by
using equation 5.102. However this straightforward method
can be lengthy.

Example 5.4

(a) Let us first calculate a simple matrix function
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f(A) = A*, where A is the matrix of the previous example.

Since the characteristic equation of A is A2 —6L+5=0, we
have

A?=6A-51,
where 3, =—6 and a, =5.

Using an iterative formula, and noting that in the first
calculation al(o) =-ay, a(()o) =-a,, ylelds

N-Faa o b a?)
=[6-6-5]A+(-5-6)1=31A-30-1,

where and . Hence,

and finally

(b) As a second example, let us calculate a matrix
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potential for t =1 s, using the approximation
up to fifth term:

and finally

We shall next develop an easier, one-step method for
finding B-coefficients in the function of matrix expression
(equation 5.103). Let us return to the characteristic equation
of matrix A

(5.104)
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The eigenvalues , which are the roots

of the characteristic equation 5.104, obviously satisfy the
equation 5.104 as well as matrix A (in accordance with the
Caleg-Hamilton theorem). Therefore, using the same
procedure as before, we can derive an expression similar to
equation 5.103 for the eigenvalues instead of the matrix by
itself, namely:

(5.105)

It is understandable that this expression holds for any
A that is a solution of the characteristic equation 5.104, that
is for any eigenvalue of the matrix A.

(a) Distinct eigenvalues

Assume first that the eigenvalues are distinct; that is,

that none is repeated. Substituting in

equation 5.105 gives n equations in N unknown :

70



(5.106)

The coefficients can then be obtained

as the solution to this linear system of scalar equations, i.e.
the inversion of the set of equations 5.106 gives the solution.
With the known [B-coefficients, the function of the matrix
representation problem is solved:

(5.107)

Example 5.5.
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Let us illustrate this process with the same simple
example (as in Example 5.4):

(a) Find

, if

The characteristic equation is (see Example 5.3)

Thus, the eigenvalues are

In accordance with equation 5.106, we have

Solving

these simple equations for unknowns

and B;, gives
Bo=-155 B;=156.
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The solution for A* is found by using equation 5.107
f(A)=A*=-155-1+156-A
which is the same as the results obtained in the previous
example.
(b) Find f(A)= e for the same matrix A.
The equations for unknowns B, and B; in this case will

be
Bo+Bi5=e"
Bo+PB =€".
Solving this equation gives
1 oSt 1 st 5 ¢
= ——e =-8 e
By = ki Bo 2

Thus, the matrix exponentlal 1s

AL _195t+5e o[ L 1 oSt _ 1 ot A =
4 4 2 g
10 2 11
_[Lest Og o Lest_Let .
4 4 01 4 4 3 4

By an obvious rearrangement, this becomes

%eﬁ+ie ieﬁ—%é

eAt=3 5 3 | (5.108)
DSt _ 2t Sesty Lt
4 4 4 4

It is interesting to compare these results with those
obtained in the previous example. The approximate, up to

fifth term, evaluation of the exponents e> and €' (t=15s)
gives
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S =145+052 4153, s = 65,4
2! 3! 4
el :1+1+l+l+l:2,71.
21 31 4

Substituting these results in equation 5.108 yields

L [184 156
€
47,0 49,7

I

which agrees with the previous results.

Therefore, the series form of the exponential may
permit some approximate numerical results; it does not lead
to a closed form. However, with the help of the Caley-
Hamilton theorem, we obtained the closed-form equivalent

for the exponential et (equation 5.107). We shall now
return our consideration to the complete solution of the state
equation in the form of equation 5.90, repeated here for
convenience:

t
X() = WX (ty) + [eAIBWEWE.  (5.109)

ty

The following example illustrates this computation.

Example5.6.

Find the complete solution of the state equation
describing the circuit in Fig. 5.7, considered before. For the
sake of convenience, it is redrawn here again in Fig. 5.9(a).

Let the circuit element values be C; =1F, C, =2 F,

L,=1H,G;=18,Rs=10Q, R6=%Q, R7=§Q.
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Yi
R, R,
(] )
Yi,
b
Fig. 2.9
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Solution

Substituting these parameters into equation 5.55, we
obtain the following A matrix

4 L1
2 2
A= 7 —l. (5.110)
4 4 4
rr 1
L 2 2 2
The characteristic equation is
A+4 1 1
2 2
L 1
g =r-1-A|= 2 2 7 =0
L
L 2 2 J
Thus,
7 1) 1
MN=A+4) | A+— | A+=|[+—|=0.
O ]
Simplifying yields
(k+4)[x2+%X+§j=O. (5.111)

Thus, the eigenvalues of A are

2
’ 8 8 8

or
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7\.1 = —0,75, >\.2 = —1,5, >L3 =—4,
Using the results of equation 5.106, we can evaluate
Bo.P; and B, from the equations
Bo —0.75By +(=0,75)*p, =™
Bo —L5B +(-15)°B, =e ™ (5.112)
Bo— 4By +(~4)°By =",
which in the matrix form are

-0,75
1 —075 05625]p,] €

1 -1,5 225 |B, |=e™ |. 5(113)
1 -4 16 |[By| |e*

The solution for f is found by inversion, as

—0,75t
Bo 1 -075 0,5625]€

By =1 -1,5 225 |e™ |=
By| |1 -4 16 | o4

2462 —16  0.1385]e """

=12,256 —2,533 02769 et |=
0,4103 —0,533  0,1231 | o4t

2,462e7 %7 _1 671 0,1385¢
=[2,256e7 %7t _2533e7t  0.2769e7H |.
0,4103e %7t —0,533e7 1t 0,1231e7#

(5.114)
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With B now known, matrix e will be

100 —4 0,5 -0,
eM=10 1 0B| [+/025 -1,75 -025[p, =
001| |By| |05 0,5 -05

15,87 ~3125 2,125

=|-1,563 3,063 0,438 B,.
~-2,125  -0875 —0,125

Substituting equation 5.114 for B and collecting like
terms yields the final results

~0,048 ~0,154  -0256
A =1-0,077 ~0,229  —0,384 e %7+
0,256 0,769 1,283

0,066 04 0133
+ 02 1,2 04 ety
-0,133  -0,8 -0,267
0985 —0,246 0,123
+[-0123 0031 -0,015*. (5115)
-0,123 0,031 -0,015

Now suppose that the initial state vector at t, =0 is

0.5
X(0)=|15 |,
1,0

then the natural solution (for W(t) = 0) in equation 5.109 is
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Xpat () = eAtX(O) =
~0,511e7%7 10,7677 40,2466~
=[-0,767e7%7 +2.30e 7 —0,031e™#
2,564e7%73t _1,534e715t —0,031e™#
(5.116)

The next step is to find the particular or forced
solution of the state equation. Let the input vector

1
wo-]

Substituting the circuit parameters into matrix B in
equation 5.55, we obtain

35 0
B=[0 15 (5.117)
0 0

Since the input is a constant (DC), evaluating the
integral in equation 5.55 results, for t, =0, in

t t
[eAY BWdr=- A_leA(t_T)BW‘O =A" [eAt - 1]BW :
0

(5.118)

where the inverse of the A matrix is found as follows
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4 11
2 21 10222 0 0222
Al L7 L 0 -05 025
4 4 4
N L] 10222 05 -1528
2 2 2]

(5.119)

Performing now, all the calculations in equation
5.118, with equations 5.119, 5.115, 5.117 and

1
wo-]

we obtain the particular solution

0,547e~%73 —0,556e 7t —0,769e ™ +0,778
X par () = 0,82167 —1,667e 7 +0,096e™* +0,75
—-2,735e7 %3t L 11117 +0,0966 4 +1,528

(5.120)

The final result of the complete solution is simply
obtained by combining the above two solutions: the natural
(equation 5.116) and the particular (equation 5.120), which
leads to
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X(t) = X g + X par =
0,034¢"7 +0,211e71 ~0,523¢ ™ +0,778 [y,

=10,052e7"7" 10,633 +0,065¢ " +0,75 | v, |
~0,171e7%7 0,423 40,065 +1,528 | iL4

(5.121)

Figure 5.10 shows the state variables Vgy, Vg, i4
behaviour versus time.

A

1,5

1,0 —

0,5

ts

\

Fig. 5.10

The computer calculation of the state variables in the
above example was done by means of the MATHCAD
program. (Note that the computing results are slightly
different from those obtained above).

To complete this example, suppose that voltage v; is
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of interest. Then the output equation 5.56 simplifies to

o]
v =[-a a aRs]X(t):{—E 5 ﬂ Vea |-

IL4

Thus, the output voltage is

1 .
Vout (1) =V3 :5(—Vc1 +Vgy +ii4Ry) =
=-0,077¢ %7 —0,0005e ! + 0,327 +0,75 V.

(5.122)

Note that by inspection of the given circuit in its DC
steady-state behaviour, i.e. the capacitors are open-circuited
and the inductor is short-circuited as shown in Fig. 5.9(b),
we may find

Voy(00) = —5L_ Ry = ! 1=0,778 V
Vop(00) = —82 R, = S1=075V
R; + R, 140

3

i (0)="CL YC2 _(77840,75=1,528 A,
- R, R
5 3

which is in agreement with the final results in equation
5.121.

(b) Multiple eigenvalues

If some of the eigenvalues of A (roots of the
characteristic equation g(A) # 0) are not distinct and there
are repeated values (for example A; =1, ), then in this case,
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the number of independent equations in 5.106 would be
fewer than n unknown coefficients . The following
theorem allows us to extend the solution for finding all B to
the case of repeated eigenvalues.

Theorem: Let A be the nxn matrix with n, distinct

eigenvalues Ay, L;,...A, and m multiple eigenvalues

(ng <n, if no eigenvalue is repeated, then ny =n). Let the
eigenvalue A; occur with multiplicity r;, and define the
polynomials

n-1

P(A)= D BcA (5.123)
k=0

and

-l

P(A) =D By (5.124)
k=0

Then the matrix function f(A) is identical to the

matrix polynomial P(A) (see 5.107) if the following
conditions are obeyed:

for each distinct eigenvalue

f)=PQ;) i=12,.,n, (5.125a)
for each multiple eigenvalue
dd dd
o0 Wb = gPMl: (5.105m)

i = n0+1,n0+2,..., n0+m, q = 0,1,2,..., r, —1

that the first condition (equation 5.125a) gives us only
No(Ng <1) independent equations for finding n unknown (-

coefficients. However, the second condition (equation
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5.125b) yields the remaining equations needed to solve for
Bo,PBis---»Bp_y - For this purpose equation 5.125b shall be

rewritten in terms of the unknown f3

9oy, = M = S 1.k~ + DB
qu A=\ qu k A=A, & k™Mo o

i = n0+17 n0+2 9000y n0+m7 q = 031:2:"': r-| -1

(5.126)
The total number of independent equations, therefore,

will be
m
Ng+Y.h=n.
i=1
Example 5.7. As an example of the determination of a
matrix function when A has multiple eigenvalues, let us
consider the same circuit in Fig. 5.9 of the previous example
with slightly different parameters, namely:

Re 2%9, R, :%Q, (the rest of the parameters are the

same). Suppose we wish to find el

Solution

The A matrix in this case will be

7 1 1

2 2 2
Aol L 23 1
4 2 4
11 1

2 2 2]
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which yields the characteristic equation

}\‘+z _l _l
2 2 2
1 3 1
N=| —— A+= — |=
9™ 4 2 4
L
2 2 2 |
= k+z k+§ }\,-f-l +l?»+§= X+Z (x2+2x+1)=o.
2 2 2) 4 8 2

Thus, the eigenvalues are A = —% and double A, =-1,

i.e. the multiplicity r = 2. Therefore, for the first distinct
eigenvalue, in accordance with equation 5.125a, we have

and for the double eigenvalue, in accordance with equation
5.125b we have

Bo+Bi(-1)+B2(-D* =€, q=0
B +2B,(-)=te”, qg=L.
Since

df (1,)
di

= i(exzq —te",
=1 Al

the above equations in the matrix form are
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The solution for 3 gives

B, 016673 +0,84e 7t +1,4te7"
B, |=]0,32e7" ~0,32e7 +1,8te”
B 0,166t 0,166 +0,4te

With B known, the desired matrix is

10 -35 05 -05
eM=| 1 |Be+]025 —-15 —025[p,+
0 1 05 05 -05

12,125 -2,75 1875
+-1375 225 03758,
~1,875 —0,75 —0,125

Substituting the P from the previous solution, and
after simplifying, we obtain

0,98e > +0,02e 7 - 0,05t
e =] —0,14e7° + 0,147t —0,1te

—0,14e 73 +0,14e 7t +0,15te™
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~0,28e>°1 40,287t —0,2te ™"
0,046 +0,96e " — 0,4t
0,04e > —0,04e™t +0,6te ™
0,14e7" —0,14e7t —0,15te

~0,02e>° +0,02e7t —0,3tet |.
1,02e7> —0,02e7t +0,45te

(c) Complex eigenvalues

We shall illustrate the computation of a matrix
exponential when some of the roots of the characteristic
equation are complex quantities, considering the following
example.

Example 5.8
Let the circuit in Fig. 5.9 (of the previous example)
have the same parameters, excluding Rg :% and

1 . .
R, = EQ' Our purpose is again to compute el
Solution

We substitute the above parameters into the A matrix
of equation 5.55 to yield

5 L1

2 2

Al L -3 1
4 4 4

r 1 1
2 2 2]

o]
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Thus, the characteristic equation of A is
5 1) 1 3

AN=(A+3)|A+— | A+=—|+—A+—=0,
g0 =( )( 4j[ 2j4 ;

or after a rearrangement of terms

(A +3) xhhﬂ} 0,
478

Therefore, the eigenvalues are

7 49-56
}\,1 = —3, )\.2’3 = —gi_ 64

=-0,875+ j0,331.

Note that two complex eigenvalues are a conjugate
pair. Thus, in accordance with equation 5.106, we have

Bo +B1(-3)+Bo(-3)* =™
Bo +B;(—0,875+ j0,331)+B,(—0,875+ j0,331) = ¢ 087510331
Bo +B;(—0,875— j0,331)+B,(~0,875— j0,331) = e 875te=10331t,

Next, we solve these equations to yield for 3:

By =0,819e7" + 787 (3 865in 0,331t + 0,811 c0s 0,33 1t)
B, =0,378e7" +e 87! (5 465in 0,331t — 0,378 cos 0,33 1t)
B, =0,216e" +e7"873Y(1,395in 0,331t — 0,216 cos 0,33 1t).

Hence, matrix e will be
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10 -3 05 -05
eM = 1 |Bo+]025 —125 —0.25+
0 1 0,5 05 —05
8875 —2,375 1,625
+|-1187 1,563 0313 B,.

~1,625 —0,62 —1,125

Finally, substituting the above results for [3, after
simplifying, we obtain

0,973t — 0,174, + 0,027,
e =|-0,162e7" - 0,280, +0,162¢,
~0,162e " +0,470E, +0,162¢,

—0,324e73' — 0,572, +0,324€,
0,054t —0,787&, +0,946E
—0,054e7" +1,86&, —0,054&,
0,162 —0,470&, - 0,162,

—0,027e73' —0,930&, +0,027&, |

~0,027e7' +0,960&, +1,027¢,

where & =e "% sin0,331t, &, =e "' c0s0,331t.

Suppose we now wish to know the zero input response
of the circuit to the initial vector

1
X(0)=|11,
0
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i.e. the capacitors are initially charged to 1 V each. Then,
L Ve
Xna ) =1 |=|ve, | =
0] liLa
0,649e >t + 27987340, 7465in 0,331t + 0,351 c0s 0,33 1t)
=|-0,108e " + 78754 (1,0735in 0,331t + 1,108 cos 0,33 1t) |.
—0,1086e " +e7%87(2,3295in 0,331t + 0,108 cos 0,33 1t)

These two voltage curves and one current curve versus
time are shown in Fig. 5.11.

A

1,5

t,s

\

Fig. 5.11

5.8.3. Lagrange interpolation formula

One other method of computing functions of a matrix
is based on the Lagrange interpolation formula (this formula
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is also known as the Silvestre formula). Thus, knowing the
eigenvalues A of matrix A, any function of A may be
determined as:

N ARl

fa)=> | I1

io1| k=1 M — Ak

ki

f(h), (5.127)

n
where [ means the product of terms

k=1
k#1

where K takes the values 1, 2, ..., n but excluding k = i. For
example, using the data of Example 5.6, equation 5.127
implies that

At (A+LSDA+4D 075t
(—0,75+1,5)(-0,75+4)
L (A+0TSDA+4D st
(—1,5+0,75)(-1,5+4)
L(A+0TS DAL D ar
(—4+0,75)(—4+1,5)

Substituting matrix A (equation 5.110) and performing
all the arithmetic, leads to

~0,050 —0154 —0,256
eM=1-0077 -0,230 -07385[e %7+
0256 0,769 1,282
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0,067 0,4 0,133
+ 02 1,2 04 le Pty
-0,133  -08 0,267
[ 0985 -0246 0,123
+| —0,123 0,031 -0,015e%,
| -0123 0,031 -0015

which agrees with the previous results obtained in equation
5.115.

The Lagrange interpolation formula can be easily
programmed, which is an advantage in computer-aided
calculations.
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5.9. EVALUATING THE MATRIX EXPONENTIAL
BY LAPLACE TRANSFORM

In conclusion, let us introduce the Laplace transform
application for solving the matrix differential equation. To
simplify the procedure, we first apply the Laplace transform
to the homogeneous equation (see equation 5.81):

%X(t) ~AX(t)=0. (5.128)

Applying the Laplace transform to equation 5.128, we
get
sX(s)-X(0)-AX(s)=0 (5.129)

where X(S) is the Laplace transform of X(t). Supposing
that X(0) = 1 equation 5.129 can be written as follows :

(s-1-A)X(s) =1 (5.130)
or
X(s)=(s-1-A)7". (5.131)
Now, we take the inverse transform to get X(t)
X(t)= L s 1-A) T f=eM, (5.132)
As can be seen, since we have taken X(0) = 1, this
expression is also equal to the matrix exponential el
Example 5.9

Let us apply this result to the simple circuit shown in
Fig. 5.12, where the proper tree branches are emphasized.
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—
L | > >
A L —— ¢
Vs Y2 ]
R,
Fig.5.12
Solution

The capacitor voltage Ve and the inductor current i

are the state variables in this case. The fundamental cut-set
equation and two fundamental loop equations yield

I = ! Ve + ! v
1 Rl C Rl S
To eliminate a non-desirable variable, i;, in the first

equation, in this simple case, the third equation shall be
inserted into the first one for i;. Thus, the state equations

arc
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dve 1 1 1

———Ve ——I +——V
dt RC° C- RC®
dip 1 R, .
—==—Ve ——=Ii
dt L L°*-
or in the matrix form
_1 1 1
d| Ve R,C C |Vc —
P : R [Vs]
dt|i, 1 Ryl 0
L L
(5.133)
Let the element wvalues be C = 1,0 F,

L=2H R =20, R, =20 and v, =1V.
3 5 3

This yields the coefficient matrixes A and B

3 5
A=| 2 . B=|2 (5.134)
3001
2 0
4 2

and the input matrix W =[v¢ |=[1]. Next, we find the matrix
[s1 — A] and its determinant

S+— 1

S-1-A=
3 1
4 2

det(s-l—A):[s+§j(s+%j+%=32 +35+2=(5+1)(5+2)
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The inverse matrix [S-I—A]71 is now easily obtained

as
_ . _
s+5 1
[&1—AT4=(S+D®+2) (s+1)(s+2) _
3 5
. 4 2
| (S+D)(s+2) (s+I)(s+2) |
C 3 _
B 9 9 1 B 1
_ S+1 s+2 S+1 s+2
33 31
4 n 4 2 2
S+1 s+2 S+1 s+2 |

A partial-fraction expansion was performed in the last
step. The inverse Laplace transform of this expression is

1 4+ 3 _
——e e et

L_l[s~1—A]_1 _| 2 2 _ At
_3pt 3 3t 1
4 4 2 2
(5.135)

(It is left as an exercise for the student to verify this
result using one of the above given methods for determining
a matrix exponential). Suppose that the initial conditions are
Ve (0)=1V and i (0)=0, and then the natural response

will be
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1+ 3 ot

v 2

'Ln 0] | 3t 3
4 4
(5.136)

Note that the verification of equation 5.136 att = 0
yields the initial values of v (0) and i (0). The particular

solution of equation 5.133 may also be obtained with
equation 5.135 using, for example, equation 5.118. Thus,

1 1
_ 4 2
X, =A 1[eAt—1]BW= L "
8 4
I S TR S 5
2
ety den 3t Lo
4 2 2

—e ——e T +=
VC,p:lz 4 8 8

iLp

X part (t){

By inspection (see the circuit in Fig. 5.11) it can be
easily verified that the steady-state values of the capacitor
voltage and the inductor current agree with those found
below:
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5 . 15

Vepe) =g Vo Ipee) T 16
The Laplace transform is one of the ways of
evaluating the matrix exponential. However, if we are going
to use the Laplace transform for circuit analysis, we may do
it straightforwardly using the methods described in Chapter
3. The methods of matrix function evaluation, considered in
this chapter, are the most general and suitable for computer-

aided computation.
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APPENDIX

Example A.1

Let the elements of the circuit in Fig. Al be
normalized and have the valuesL=1H ,R=3Qand C =
0,5 F. Let the voltage input v,(t) = (10 sin t)u(t) and the

initial conditions 1, =2 A and v,, =5 V. Find i( t).

R L
AAA Y VY

VS%? y C —— V()

Solution.
Since the Laplace transform of the input voltage is

V‘”(S):szl 31, expression (3.80) after substituting the
numerical values yields

I(s) = S 10 2s-5

2 2 + 2 *
S"+3s+2s +1 s +35+2

The roots of the denominators are s =-1,s,=-2 and
s,, =+ . Therefore, using partial fractions, we obtain

I(s):i+ A + A + A

S+1 sS+2 s—j s+]j

Performing the computation, we obtain

| 10s 2s-5)
A'_|(s+2)(sz+1)+ s+2| =
| 1os 25-5] ),

AT

+
(s+2)(s*+1) s+1

§=-2
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10s | j10

— =— - -=1,584-71,6°.
(S+ ))(s"+3s+2) (-1+3]+2)2j

s=j

So,
i(t)=[-12e +13e + 316cos(t - 716" u(t) .

The second approach which leads to more simplicity
in Laplace transform circuit analysis uses the Laplace circuit
model, which can be analysed by frequency —domain
methods. In these models, all the elements are expressed in
terms of their impedances (admittances) at a complex
frequency s and the voltage/current sources —by their
Laplace transforms, i.e. as a function of S. Then one of the
known methods (KVL, KCL, nodal/mesh analysis,
Thevenin-Norton’s theorem, etc.) can be wused for
identifying the desired variable transform. Finally, the time-
domain response may be found with the help of the inverse
transform (partial fraction expansion).

In the next we will illustrate how this technique may
be used for circuit analysis with Laplace transform, starting
with networks without initial energy stored (zero initial
conditions).
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Example A.2

Determine the voltage across the resistance R in the
circuit shown in Fig. A.2(a), which is already expressed in
terms of the Laplace transform. The normalized elements
are L=L,=1H,R=1Q, v, =costu(t), v, =15(t)V..

Solution

The first step is to convert the voltage sources to
current sources and, after simplification, we obtain a simple
circuit as shown in Fig. A.2(b) and (¢). Thus

1 1 s’+s+1

1,(5)= +—=
o® L(s’+1) sL s(s*+1)
Y(s):l+l+l:ﬁ’
s s 1 S
and
2
Ve = 1,(5) 1 ST +s+1

Y6 G12)E )

Using the partial fraction expansion yields

- A LA LA
S+2 S—] S+]
Therefore
s?+s+1
= =0,6
A s*+1
s=-2
, .
AZ—| ss+l | ] _0.2236/-266°

TG, s+ 2]
Then the desirable voltage in time-domain is

VR(t) = 0,667t +0,447 cos(t—26,6°)V for t>0.
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SLl

SL2 A
s/(s2+1) R l <> Y(s) |::|l

VR(s)

QD
o

Sy sL, R l
1/L1(32+1)§ GD

l/sL2
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Example A.3

Find the complete response of the current i(t) in the
circuit shown in Fig. A.3(a), if i(0 )=0,2 A and v.(0 )=80 V.

Solution

To work with more convenient numbers, we first
normalize them by choosing the impedance normalization
factor K, and frequency normalization factor K, .

Let Kk,=10? and K,=10", then R, =10"R,=1 £,

) )
_100, 10 H and Cnew=i(0)—_4

o = 7o Lo C, =01 F. The Laplace
model circuit with normalized elements is shown in Fig.

100

A.3(b). Note that, to keep the same currents, voltage sources
are normalized in accordance to K, .

Using mesh analysis, we have

[14—105+£]Iml —EImz :l+2—%
S S S S

0,1 0,1 0,8
-, 1+= |, =—
S S S
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Solving for 1, gives

0,2s” +0,04s + 0,01

I (5)=
m(®) (s> +0,25+0,02) ’

with the poles p, =0 and p,, =-0,1 jo,.
Using the partial fraction expansion yields

@=2 B A
s s+0,1-j01 s+0,1+j0,

where
0,25” +0,04s + 0,01]
$2+0,25+0,02 |

A‘:| =0,5

_]0,25% +0,045 +0,01]

= : =0,2122135".
| s(s+01+jo))

A

5=-0,1+j0,1
Then the current in time-domain is
i(t) = 0,5+ 0,424e " cos(0,1t + 135°) A fort>0.

Returning to the original circuit, i.e. that the actual
natural frequency of the circuit is

Sy =2 = 10°(<0.1 £ JO.) =10 £ 10,

f

then
i(t)=0,5+0,424e " cos(10°t +135°) A .
Inspection of the circuit in Fig. A.3(a) shows that the
steady-state value of the current is 0.5A, which is in

agreement with the above results. Also checking the initial
value of the current gives

i(t) = 0,5 + 0,424 cos 135°=0,2 A.

The waveform of the current begins at a value of 0,2
A and approaches 0,5 A with decayed oscillation in
approximately 5 ms.
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Example A4

The circuit of Fig. A.4(a) is in steady-state behaviour.
At t = 0 the second voltage source is applied in series with
the capacitor. Find the transient response of the capacitor
voltage v, (t).

Solution

Using the superposition approach, we construct the
Laplace model circuit in which the second voltage source
acts alone (Fig. A.4(b)). Then the Laplace transform of a
desirable voltage can be written as

V9= sczlm<s) ’
where
Therefore

(01s+110)10° 10 0,Is+110
(s*+200s+11-10)s s (s+a)+aw’
Using the method of equating the coefficients, this
voltage can be obtained as

ch(s) =

S+a

10
V.8 )=—+10——mM8 ——
e2(®) s (s+a)+ae*’

0.1H 10 |

104F ——
100
10u(t) QD vy, 100V
a
AN
0.1s
10 1045
100
10/ s
b
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wherea=1001/sand ® =316 1 /s.
In accordance with the table of Laplace transform
pairs, we obtain
Ve, (1) =10(e * cosat — 1u(t) V .

Since the capacitor voltage v, caused by the first
voltage source is 10 V, the entire capacitor voltage will be

Ve (t) =V, + Vg, =106 cos316tV  for t>0.
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Example A.5

Determine the forced and natural responses of the
output voltage in the circuit of Fig. A.5(a) assuming that the

Vg c
v - mT QD

1
S

2s|
A
4/(s+ 1) é <0>58 V,is
6/s
b

capacitor ~was  pre-charged with V;y, =6V  and
Vg =4etu(t) V.

Solution

First, we construct the Laplace transform model,
shown in Fig. A.5(b), of the given circuit. Next, we write the
nodal equation for this circuit model:

6
V-
vi-2 Vi s gsg¥ig,
s+1 s 2 S
s
or
Vi(0,55° +5+0,42) _ 4 3
S s+1
Solving for V, yields
8s 6s
Vout (8) =Vi(s) = +

(s+1)(s®+25+0,84) s>+25+0,4

105



The natural frequencies are p;, =—0,6, p,, =—14
and the forced frequency is p, =-1. Therefore, the
residues of the first term are

8s
- | =15,
Ain (s+1)(s+1,4)‘s_ 06
8s
. =35,
Pon = (s+1)(s+06)‘s_14
8s
= ) |S——1:50’
s°+2s+04

and the residues of the second term are

6s

m‘s:—Oﬁ =45, Ay =

Al/h: _14:10,5.

$+0,6 ‘S‘
The time-domain responses are:

the forced response
Vourf =50e"u(t),
the natural response
Vouth = (— 156706t 35714t _4 50706t 10,5714 )J(t) =
= (—19,5e“’=6t —24,5e‘1’4t)1(t),
and the complete transient response is
Vout = (50e‘t ~19,57*0t _24 5714 )J(t) v,

which proves the initial voltage

Vout (0) =Vep =50-19,5-24,5=6 V.
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Example A.6

In the circuit shown in Fig. A.6(a), the switch closes at
time t = 0 after having been opened for a long time. Find
I,(t) assuming that the circuit is driven by the sinusoidal

60 O 60Q

80 uF 9 106/30's

a b

voltage source Vg =180sin(314t+30°) V.

Solution

To determine the initial condition we must first
calculate the capacitor steady-state voltage (before the
switch is closed). The voltage source complex

P
representation is Vv, =180e/30 1314 g0,

g
. V, (jo) 1
Ve (jo) =———————=
Ri+Ry+—— Jo
JoC
j30° o
_ 180e - 1 y :72’3e—136,2 V.
_J; j314.80-10"
314-80-107°

Therefore, the voltage across the capacitor at t =0_

Ve (0_) =72,3sin(-36,2°) =—43,0 V.

Now we will construct the Laplace transform model
circuit shown in Fig. A.6(b). The Laplace transform of the
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voltage source, which is taken as a complex function, is
j30°
Vg(s) =
s—]314
The capacitor voltage Vo (0_)=—43V is replaced by an

initial-condition generator whose value is equal to the
Laplace transform of this voltage multiplied by j:

Veo=]—
Co S
In accordance with mesh analysis

180e 130°

s—j314

12,5-10°
S

801,(s)—501,(s) =

—50I1(s)+£110+ |2(s):j§.

Using Cramer’s rule yields

1,43e13%s 0,546

l5(s)=—— + ] :
(s—j314)(s+159) ~“s+159

Taking the inverse Laplace transform (with the help of
the Laplace transform pairs, Table 3.1) we obtain

1) = 1,43ej300{ (_ j314e1314t _ | 590159t )} N

— j314-159
+j0.5468 15 =128 (314143697 +(O,646e‘j33’20 - j0,546)e‘159t.

Finally, the imaginary part of the above expression
gives the time-domain current

i, (t) =1,28sin(314t +56,9°) +[0,6465in(—-33,2°) +0,548]e 1> =
=1,28sin(314t +56,9°) + 0,159 "> A.
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Example A.7

The switch in the circuit shown in Fig. A.7(a) closes
after having been opened for a long time. Find the currents
through the capacitor i (t) and through the inductor i (t).

Solution
The open circuit voltage across the switch is
R, 10

=200

. ~100V .
R +R, 10+10

Voc =V

The Thevenin equivalent impedance of the circuit is

Active Ve Passive Ve Z. ()
network network ab

a b
Activ ISW Passivi |
ne:\:/o:k n:ts\;lcyri v Zab (s)
Zh
c d
_ (R +sL)R,  100+s
ZTh = =

Ri+R,+sL 20+0,s"

The Thevenin equivalent of the Laplace transform
circuit is shown in Fig. A.7(b). Thus, the Laplace transform
of the capacitor current is
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Voe(s) 100 1

c Zin+Zayp S 100+s +19i
20+0,1s s
1000,1s+20) 100(0,1s + 20)

T2 42005420-10°  (5+100— j100)(S+100+ j100)’

where roots of the denominator are p;, =—100+ j100.

Therefore,

100(0,1s + 20)

_ —5- j5=5y2e7145
s+100+ j100

Ac =

s=—100+j100

and (in accordance with equation 3.73, see part II) the
inverse Laplace transform will be

0,1H 0,18

— ZTh

ic (t) =107/2e 1% cos(100t —45°) A

To find the inductor current in circuit Fig. 3.19(b) we
first use the current divider formula
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R, 100(0,1s +20)10
L +Ry +sL (5242008 +20-10%)(0,1s + 20)
~ 1000

 (s+100— j100)(s+100+ j100)’

I (s)=1c(s) -

which yields

1000

- =—j5=5e719"
S+100+ J100

AL =

s=—100+j100

and
i (1) =10e71%% cos(100t —90°) =10e 1% sin 100t A .

The steady-state value of the inductor current in Fig.
A.7(a), i.e. before the switch is closed:

Vg 200

1,(0_)= = ~10A
L0-) R+R, 10+10

Therefore, the complete response of the current is

i (H)=10+10e" sin100t A .

Note that initial capacitance current
ic(0) = 104/2 cos(—45°)=10A is in agreement with its

value, which can also be obtained by inspection of the
circuit in Fig. A.7(a):

ic(0)=1,_(0_)=10A.

This result may also be obtained by straight forward
calculation of i, (0) in accordance with the above formula:

i (0)=10+10e’sin0=10A .

When the switch in any branch is opened after having
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been closed for along time, as shown in Fig.A.6(c), the
equivalent circuit can be constructed by using a current
source insert instead of the switch as shown in Fig.A.6(d).
The value of the current source is equal, and its direction is
opposite, to the current flowing through the closed switch
(short circuit current) just before its opening. Therefore, the
rest of the network is passive, i.e. all the network sources are
killed and it can be represented by its Thevenin impedance,
as shown in Fig.A.6(d). It is obvious again that this circuit is
having zero initial conditions. For getting the complete
response, the ZSR of the circuit in Fig.A.6(d) has to be
superimposed on the previous steady-state regime of the
circuit in Fig.A.6(c).
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Example A.8

In the circuit shown in Fig. A.8(a), the switch is
opened at time t; =0,2s, while the whole circuit has been
driven by the voltage source vy =10u(t) V since t = 0. Let
R =1Q, R,=4Q, C=0,5F. Find the output voltage
Vout and

% 6,7/(s+2)
R1 1
10 u(t)
R2 [; Vout 4

! L z(s)
c
a b

capacitance voltage V¢ versus time.

Solution

First, we construct the Laplace transform circuit
having zero initial conditions. For this purpose, we must
find the current through the switch at the time t=t;:

Vv
iSW(t)zﬁge_at =10e, t>0,
1
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) 1 ] ]
since a=——=2s  and I, (0)=10A .
RIC SW( )

Changing the variable t =t +t/ yields

/ /
i, (1) =10e2e™2t —67e72 [t/ >0,

and the transformed current is

1
Iy (S)=6,7——.
w()=67—
Next we calculate the Laplace transform internal

impedance measured at the ab terminals (see Fig. A.8(b)):

4(“2) S+2
)

Lap(S)=——%=08 .
Ai142 s+0,4
S

The Laplace transform of the output voltage is

1
s+0,4

Vout () = Z 4 (8) gy (S) =5,36
and taking the inverse transform we obtain

/
Vout (1) =536e 0% v, t/ >0,

since, because the voltage before opening the switch was
zero, the complete response is the same. Next, we use
voltage division to obtain the expression for the transformed
capacitor voltage in Fig. A.8(b):

2
< 1
Ve (8) = Vo (8)—==-10,72————.
) (s+0,4)(s+2)
S

In accordance with the Laplace transform pairs (see
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Table 3.1, see part IT) we have

10,72 ( ¢/  _pat/ ol ool
VC(ZSR)(t/)z_%(e 2t _g-0.4t ):67(9 2 _ 0.4t jV’ >0

To get the complete response, we have to find the
previous capacitor voltage, i.e., before the switch was
opened (see circuit in Fig. A.8(a))

/
Ve pry (1) = 10(1—e2)= [10—6,7e‘2t jv .
Therefore, the complete response is
/
VC (t/) = VC(ZSR) +VC(pr) = 10— 6,79_0’4t V, t/ > 0 .
Note that, according to this expression, the capacitor

voltage at t' =0 is 3,3 V, which is equal to the capacitor
voltage at the moment of the switch commutation in Fig.
A.8(a).
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Example A.9

The mutually coupled circuit in Fig. A.9(a) has V;, =

120 V,R=60 Q, L =0,2 H, M = 0,1 H. The switch is
closed at t = 0 after having been opened for a long time.
Find the currents i;(t) and i,(t) fort>0.

Solution

First, we must find the initial conditions:

i,(0.)=0 and il(O_):VﬁzzA.

a1=a2=5=300s‘1, k=M _os, a- -=800s™",
L L 1-k
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2 2
1-k 1-0,5

Next we obtain the transformed currents

(120+0 4)(5 +300)— (120+0 2)0 55
S
11(s) = 7 7 =
0,2-0,75(s” +800s+12-10™)

_2(s2+600s+12-10%)  2(s% +600s+12-10%)

(s> +800s+12-10%)  s(s+200)(s+600)
(120+0 2)( +300)— (120+o 4}0 55
S
1,(s)=

0,2-0,75(s> +800s+12-10%)

_800(s+300)  800(s+300)
(s> +800s+12-10%)  s(s+200)(s +600)

re., the poles are py=0, p;=-200, p,=-600.
Therefore, the appropriate residues are:

4
A =limsl ()= =1 o a2,
50 12-10
A _2(52+6003+12-104)| L AL
11 S(S+600) $s=-200 — = 12
2(s> +600s+12-10%)
A = _ :—1’ = —
21 S(S+200) |s— 600 A21

which gives the time-domain currents

i (t) =i, (t)= (2 — 7200t | o600t )A .
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In conclusion, it is worthwhile mentioning that the
Laplace transform technique is also widely used for solving
electromechanical problems. Consider, for example, the
starting transients of a no-load shunt exciting d.c. motor.
The torque equation is

T=mi=1J do

where the motor torque T (Nm) is proportional to the
current, J(kgm2 ) is the moment of inertia and o (rad/s) is

the angular velocity. The Kirchhoff ’s law voltage equation
for the motor is

\ :Ri+Lﬂ+km
dt

where the term ko is the generated, or back, voltage which
is proportional to the angular velocity, and R, L are the
resistance and the inductance of the armature winding. With
zero-initial conditions the Laplace transform of these two
equations will be

ml = JsQ

!=(R+SL)| +kQ,
S
where €)(S) and I(S) are the Laplace transform of the angular

frequency and the current respectively. Solving the above
equations for Q and | yields

o-yMm
JL (2 R kmj
s|s*+—s+—

and

L JL
The roots of the denominator are s;, =—a+f, where
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OL:i and B= 2 —lf]—m. Thus, in accordance with the

2L
table of Laplace transform pairs, we obtain

o) = V?{l - (cosh Bt + %sinh Bt]e“"t } ,

where % = 1s the no-load angular velocity, and

i(t)= v e

BL
where i(0_)=0 because of zero-initial conditions and
i(c0) =0 since the motor is no-loaded and the losses in this
example were neglected. The condition of oscillations is

~“sinhpt,

R? <4k2J£, and then s, , =—a+ JB.
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APPENDIX 2
1. Classical analysis principles.

Let’s consider the example of the differential
equation, obtained by circuit laws:

10
?a
where
0, t<0
Vin(®) _{10, t>0"

Require solution of this equation for t > 0, subject to
the boundary (initial condition) i(0) = 0.

Standard mathematical treatment delivers the solution
as the superposition of two parts: the complementary
function (CF) and the particular integral (PI). The
complementary function is the solution of the homogeneous
equation:

_ 030
0=20=_"+4i(t)

This type of differential equation is satisfied by a

solution of the form
i(t)= Ae™ .
Substitute i(t) into equation gives:
20sAe™ +4Ae" =0 — s=-02.
The CF therefore is
s (1) = Ae 02

The second part of the solution is the particular

integral of

10:20m+4i(t).
dt
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The function i, (t) = 2,5 A satisfies the equation and

is identified as the particular integral.
The complete solution is therefore:

i(t) =igr (1) +ipi () =Ae " +2,5A
The boundary condition i(t) = 0 at t = 0 requires
A= —2,5 Thus
i(t)=2.501-e*2)A (t>0).
If the current flows, for example, through the resistor
of 4Q2 we may find the voltage across this element as:

Vou © =10{1-e 02 )V (t>0).

v(t) | volts
10

t
10 20 40  Secs

constant transient steady state

The response rises monotonically from zero (initial
value) to a final value of 10 V. Mathematically, the output
reaches 10 V when t—oo. But this is not a practical
measure. Instead, progress is measured in terms of the time
constant t. Time constants apply to exponential transitions.
A time constant is the time taken for a decaying exponential

—-0,2t

to reach the value e'. In the above example, e reaches

the value e when t = t = 5 seconds. In general, for a
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decaying exponential e the time constant is given by the
1

formula T=—.
a

Transition from initial to final conditions is thus 63%
complete after ONE time constant

[1 00(1 —e! )= 100-0,632 = 63%]. After 5 time constants, the

transition 1s 99,3% complete. A time constant is thus a
useful practical measure of response time. It is a standard
measure of the response time of electrical, electronic,
mechanical, and other, systems. Thus,, if a mechanical
system has a (dominant) time constant of 2 secs, then it is
known that the transition from initial to final conditions will
be 63% complete after 2 secs and that the transition will be
complete after 10 secs (to all practical purposes).

2. The Laplace transform principles.

The Laplace transform provides a generally superior
means of determining the transient behavior of linear
systems. It does not matter whether the system is electrical,
mechanical, electronic, thermal, etc. All that matters is that
the system be linear (the Laplace transform is a linear
transform and cannot therefore be used to solve non-linear
problems). Many practical systems are linear, or may be
approximated as such. In particular, all electrical circuits
built up from R, L and C elements are linear.

The Laplace transform method takes a problem
defined in the time domain and puts it into the Laplace
domain. This disposes of bothersome differential equations.
The problem is solved in the Laplace domain. The final step
transfers the solution back to the time domain.
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3. Transform Networks

Transform networks are networks which have been
shifted from the time domain to the complex frequency
domain in accordance with the definition of the Laplace
transformation process. In the complex frequency domain,
all currents and all voltages are represented by their Laplace
transforms. All impedances are functions of S.

Resistance.

Time domain equation: v(t) = Ri(t).
Transform to complex frequency domain:

TRi(t)e‘Stdt - Tv(t)e‘“dt: RTi(t)e_Stdt: RI(s)
0 0 0

So the equivalent Laplace domain equation is
VR(S)=RI(9).

Inductance.

Time domain equation: v(t) = Lm.

dt

Transform to complex frequency domain:
[ve™dt= | L AO gostyy
) , dt
Integrate RHS by parts gives:

V| (s)= L{i(t)e‘St

: + sTi(t)e_Stdt} = —Li(0)+5LI(s)
0

So the equivalent Laplace domain equation is
V| (s) =sLI(s)—Li(0).
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Capacitance.

Time domain equation:
dve (1)
i(t)=C—-—2.
= o

Transform to complex frequency domain is

jC Me‘Stdt.
dt

Integrate RHS by parts gives:

1(s)= C{vC (e ™

: +sfve (t)e‘“dt} =—Cv(0)+SCV (s).
0
So the equivalent Laplace domain equation is

Vo= 16)+ Vo)

Summary of Laplace domam representations:

1(s) 1(s) 1(s)

R V(s) sL 1/sC
V(s) V(s)

Li(0) | v(oys
v v

V(s)=RI (s)

V(s)=sLI (s)-Li(0) V(s)=I(s)/sC+v (0)/s

Example 1.
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In the given circuit, the switch S has been closed for a
long time before being opened at the instant t = 0. Draw the
transform network representing the circuit in the Laplace
domain. Determine V;(s). Use the Table of Laplace

transforms to determine Vg, (t). Sketch this transient

response.

i e I

C=0,5F Vo (D

O o ]r

Solution.

In order to represent the capacitor in the Laplace
domain, we need to know its initial voltage. This is obtained
by analysis of circuit conditions before the switch is opened.
For t < 0, all voltages and currents are constant (DC
conditions). As a particular consequence, no current flows
through the capacitor when t < 0 . Thus, DC current flows
from the 10 V source, through the 6 Q resistor, returning to
the source viathe 4Q resistor. This current has the value
1 A, resulting in a voltage 4 V across the capacitor. This
voltage remains constant up to the instant when the switch is
opened at t = 0. Thus, Vc(0)=4V. The capacitor is
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represented in the transform network by an impedance

1 2. o 4
< =— in series with the voltage source —. The transform
S S S

network representation of R is 4 (it is not customary to show
any units in the transform domain).

At the switch is open for t > 0, it is represented in the
transform network by an open circuit. The voltage source is

. . ) 10
thus disconnected for t > 0. It is correct to represent it by —
S

in a transform network (apply the definition, noting that the
source voltage is 10 V over the integration range 0 <t < o).
The output voltage is represented by its Laplace transform
Vout (8) . Capacitor current, which circulates through R, is

represented by 1(S).

1(s)

O

4/s

V_ (9)

out

The same laws and methods apply to the analysis of
transform networks as to analysis of networks in the time
domain:
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KVL: —4I(s)—§l(s)—§=0 - I(s)=—s+105,
Vo, (8)=—4l(s) = 4
out 5+0,5°

Inverse Laplace transformation gives

af 1 . .
Ll{—s+a}=e A v ) =4e V.

Vo (1) | volts

t
2 10 secs

- ————

constant transient steady state

Up to time t = 0 the capacitor is charged to 4 V. When
the switch opens, the capacitor discharged through R. The
time constant of the decay is the time taken for the
exponential term to fall to e‘1=0,37. In the present case,
t=2sec. The transition from full charge to total discharge
is therefore 63% complete after 2 sec (down from 4 V t0 1,5
V). To all intents and purposes, the capacitor has completely
discharged after 5 time constants, i.e. after 10 sec.

Example 2.

In the given circuit, the switch S was open for t <0. It

closes at time t = 0. Specify i (0). Draw the transform
network. Determine V,;;(S) (the Laplace transform of the

circuit output voltage). Sketch the response. Use the initial
and final value theorems of Laplace transform theory to
confirm the initial and final values, respectively, of Vg (1).
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Solution.

Up to t = 0, the switch is open and constant current
flows from the 20 V source, through the 2Q resistor,
through the 5 H inductor, and returns to the source via the
3Q resistor. There is no volt drop across the inductor. Thus,
for t = 0, the current is 4 A. The current through the inductor
cannot change at the instant the switch closes and therefore
iL(0)=4A.

The inductor is represented in the transform network
by the impedance SL =5s in series with the voltage, so that
Li . (0)=20. The voltage source is represented in the

Laplace domain by 20 .
S

As the switch is closed for t > 0, it is shown closed in
the transform network.
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Vout (S )

Circuit transformation method and superposition
principle give:

Vau(8) = o= 20
13s 349 156 S(9+13s)
13
J 3 156
3+§+55

Total response:

36+156s 4 8
Vout () =Vt () +Vii (5) = ————= =" 4 :
out (8) =Vout (8) +Vout (8) sO+13) 5 L,
13
Using the inverse Laplace Transformation we get
9

—Zt
Vot (1) =4+8 13 t>0.

The initial value can be obtained without inverse
transform. It is given by the Initial Value theorem:
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IV = lim {8V (5)} = lim {s 221208 Loy
S0 s—o | S(9+13s)

The final value is obtained from the Final Value
theorem:

FV = lim{sVy (5)) = lim{ s 20 00 Ly y
s—0 s—0| S(9+13s)

Vo (1) | volts

4 t
2 3 Secs

constant transient steady state

Evidently, the process of circuit translation from the
time domain into the Laplace domain is straightforward.
Analysis of the resulting transform networks is also
straightforward, using standard network analysis techniques.
In particular, there are no differential equations to solve.

The most time consuming step is generally the last
step; the translation of Laplace domain results into the time
domain, i.e. inverse Laplace transforms.

For example, suppose that transform network analysis
yields the result:
40(s+5)

ss? +4s+20)

Even for this simple case, a considerable amount of
time is required to translate the result into the time domain,
using Laplace transform. In the first place, the expression is

Vout (s)=
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not in standard form (i.e. not in a form which appears in
normal Laplace transform). It first has to be broken down by
partial fractions:

10 10s
Vout (8) = 2
S s°4+4s+20
The second term then requires further manipulation:
10 10(s+2)-20

Vout (8) = ——
M s (542)2 442
10 o 4
=——e “L <10 3 2—5 >
S S°+4 S“+4

The s-domain terms are now in standard form. Laplace
transform gives the time domain function:

Vour (1) =10—10e > cos 4t +5e > sin4t V t>0.
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