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|. INTRODUCTION

To create new control systems for prospective
trunk airplanes, it is necessary to carry out various
types of flight tests, including the statistical
modeling. All of them are aimed at achieving a
single goal, which is to improve the characteristics
of the control system and to establish its
concordance with specified requirements for
accuracy and reliability to ensure flight safety. One
of the main tasks is the accuracy estimation of
functioning the control system at all stages of the
flight.

All this suggests that a well-developed
mathematical apparatus is required to determine the
probabilistic  characteristics of the measured
parameters with the necessary reliability. At the
same time, the task of metrological provision of
statistical measurements and the development of
effective procedures for statistical processing of the
received information becomes no less important.

I1. PROBLEM DEFINITION

To estimate the accuracy of the results of any
type of tests (flight and operational tests, statistical
modeling) for the purpose of certification of an
automatic control system for take-off and landing
aircraft, the following statement of the problem can
be formulated.

The problem of estimating the accuracy of a
system will be understood as the estimate of the
probability P of a random variable X falling into an
acceptable area D with verification of the inequality

P> P_, where X is the measurement results of a

req’
certain determining parameter characterizing the
position and state of the aircraft at the touchdown

point of the runway, P, is the required fraction of

the probability distribution of the random variable X
in the acceptable area D. The inequality is evaluated
with some given confidence probability vy
(reliability of estimation).

It should be noted that rather strict requirements
are made on the automatic approach and landing
process, the fulfillment of which it is necessary to
confirm at the control system certification. In
particular, the lateral deviation of the trunk aircraft
at the touchdown point of the runway should be in

the given area D with a very high probability 0,9;.

This means that in 10° automatic landings only one
outcome beyond area D is allowed, since this
outcome can be catastrophic.

Obviously, it is impossible to confirm such a
probability by the flight tests due to the need for a
huge number of tests (several million). Only
statistical modeling allows to obtain the required
volume of tests (the simplest Monte Carlo method or
modeling methods that take into account a priori
information about landing parameters [1]).

I1l. ALGORITHMS FOR ESTIMATING THE
ACCURACY OF A CONTROL SYSTEMS

The choice of the estimation method is
significantly determined by the form of the
distribution law of the measured parameter, which is
the realization of a random variable (in the one-
dimensional case). With the unknown distribution
law of the general population, only nonparametric
methods will be correct. Let's consider two basic
methods.
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Method of the probability estimation using the
observed frequency of falling the measurement
results within the acceptable limits.

The probability estimation is determined by a
simple algorithm:

pr=_,
n
where r is the number of measurements falling
within the limits.

The boundaries of the confidence interval for the
required probability P for sufficiently large n (for n
> 1000 the binomial distribution of the random
variable

(P"=P)Vn
PPy

arbitrarily little differs from the normal law) are
determined in accordance with the expression:
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where u,,., is the quintile of the standard normal
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distribution N(0,1) of the level, y is the

confidence probability with which the interval
[R,P,] contains the true value of P.
For example, for n =100, r =100, y = 0,95 we

have P'=1,u,4,; =1,96 and the boundaries of the

interval are equal t0[0,9630,9.4~1], and for
n=500,r =500 the interval is[0,9921]. The
lower bound of the interval is compared with the
probability P_ and if it is less than the required

req
one, then the volume of the modeling needs to be
increased.

When estimating high-precision control systems
for which the required probability of finding a
certain parameter in a given area exceeds 0,9, (and
therefore, P* =1), the volume of statistical modeling
significantly increases. In this case, one can use the
formula that defines the lower boundary of the
probability (obviously, the upper boundary is 1, that
is, P, = 1):

P=P=91-y.

For example, for n = 10°, the low boundary with
a confidence probability of y=0,99 is 0,9,54.

Method of the probability estimation with the
use of the nonparametric tolerant interval.

Consider the construction of a nonparametric
tolerant interval for which the probability measure of
an unknown distribution concentrated in it would be
no less than a given value P with a confidence
probability y . The boundaries of the interval L and

U are random, and the following relation holds:
U
Pr{jf(x)dxz P}zy. )
L

The left-hand side of the equation has a value
that does not depend on f(x) if L and U are the
ordinal statistics [2]. Denoting the boundaries

through order statistics L=X,, and U =X

) (s)*

where S > I, we can write that
Pr{I.F(X(s)) - F(X(r))J2 P}: Y- (3)

In [3] the general expression for the probability
is obtained:

Pri{F(xs) —F (X)) |> P}=

1-1,(s—rn—-s+r+l)=y (4
or

lp (s—rn-s+r+h)=1-y, (5
where P is the probability measure, concentrated in
the tolerant interval [X,, X1, v is the probability
that this interval contains the fraction of the
distribution P, r and s are the positions of ordinal
statistics in the sample of measurements. If any four
from (P,n,r,s,y) are given, then the equation (5)
can be solved with respect to the fifth variable.

In practice, as a rule, the extreme values of the
sample of measurements x,, and X, are used as
the order statistics. In this case the length of the
nonparametric interval corresponds to the range of

the samplew = X, —X,,. Then the expression (5)

takes the form:
Ipy(n—1,2):1—y. (6)
Introducing the incomplete B-function as [4]:

B,(p.a) _ 1
B(p.a) B(p.q)

we may write:
1
B(n-12)
Since

1. (p.) - i a-triat, ()

[t@-ndt=1-y ()
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1 _5 nt
B(n-1,2) (n-2)12
we finally get
1-y=nP" ' —(n-DP". (9
In particular, for n =500, y = 0,95 the solution

of this equation gives a value P = 0,9906, i.e. the
probability measure, concentrated in the interval

[Xy — X1, will not be less than the obtained value

n(n-1),

with a confidence probability y = 0,95.
If the required probability measure P, exceeds

the value 0.9906 (for example B, =0,9999 or B, =

0,9,), then it is necessary to significantly increase the
test volume. The solution of the inverse problem in
the formulation of (9) gives the value n=5-10"
that, with probabilityy =0,95, the share of the
unknown distribution of the parameter in a given
tolerance interval was equal to or exceeded the value
0,9,.

A multidimensional case is of interest when the
acceptable area D™ is given in the form of a
m-dimensional parallelepiped. Obviously, such area
for two independent parameters (m = 2) is a
rectangle. For example, for lateral and longitudinal
deviations of the aircraft at the height of decision

Acceptable area D? of trajectory
parameters deviations

It is obvious that an accurate estimation of the
distribution of a random variable by the results of an
experiment is fundamentally impossible, and
therefore in practice different hypotheses about the
distribution of the measured parameter are tested. As
the results of many tests show, some parameters that
characterize the accuracy of the control system
functioning have a normal distribution with
unknown probabilistic characteristics (m,, ¢, ) .

Method of the probability estimation with the
use of the parametric tolerant interval.

At first we will consider a method for
constructing a one-sided tolerant limit, which can be

making and at the touchdown point of the runway,
such areas are specified by rectangles, Fig. 1.

If the acceptable tolerance area is constructed
according to the ranges w of the measurement

samples (W, = Xy = Xyqy and Wy = Xo) = Xo(q) ),
then the previously obtained relation (6) for the one-

dimensional  tolerant interval is completely
transferred to the multidimensional case:

IF’~, (n+1-2k,2k)=1-v.

When using two ordinal statistics for each

parameter k = 2 and, consequently, we get:
Ipy(n—3, 4)=1-vy.

Carrying out analogous calculations on relations
(6) - (9), we can determine the probability measure
of the distribution concentrated in the acceptable
area bounded by extreme values. In particular, for
n=500,y=0,95 the solution of this equation
gives a value P = 0,9845, for n=1000 and for the
same confidence probability we have P = 0,9923.

The considered estimation method does not
require the storage of the entire sample of

measurements, but only the extreme values X, and

X,y accumulated over the entire volume.

Runway

Acceptable landing area D?

Fig.1

represented as the critical value of the corresponding
random variable with the distribution function F (x).

Constructing an upper (lower) tolerant limit means
that in about 100y % of cases the corresponding

half-interval will be a critical multiplicity for the
investigated parameter (for example, the vertical
descent speed of the aircraft in touchdown point

Vv, > 0) with the required level of significance.

If the normality of the distribution law is
assumed then as the upper tolerant interval, one can
choose a function U =m" + ks" such that
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Pr{d{w} > P} —v, (10)
(0}

where ®(e) is a function of the standard normal
distribution N (0,1) .

To calculate the tolerant factor k the following
formula may be recommended [5]:

| n-1

= [———Up pel+— (11)
x,(n-1) - 2n

where P is the probability of not exceeding by
random value X of a given critical value X

accept :
X,(n—1)is 100y % percentage point of the x2-
distribution with ( n — 1) degrees of freedom. For
fixed values of yand n, the value of x(y,n) is

defined as the root x of the equation 1-F, (x) =v,

where Fn(x)=Pr{xﬁ <x} there is the -
distribution function.

It should also be noted that from the y*-
distribution properties for n—->oc and y—1 it

follows that the following approximation of the
quintile may be used:

3
2 2
xy(n)_nil—%+ul_y\/%] . (12

As an example, we determine which limiting
value can reach a certain parameter x at the level of

reliability y=0,9 and given valuesP =09,
Xaeee = 4 1f as a result of modeling of n = 1000
realizations of the parameter the following statistical
characteristics are obtained:

m; =1,228 o, =0,5742.
According to (11) we get:
2
24,89 —3} _504

99 489 1s ;
24-10

~\ 9421 2000

And upper tolerant limit is:
U=m"+koc" =1228+504-0574=412.
This value exceeds X

Obviously, for a

accept
given probability P =0,9,, it is necessary to
increase the volume of modeling to obtain new
characteristics(m*,c*).

For sufficiently large values n, which are
characteristic of statistical modeling, we can use
another asymptotic expression for the tolerant factor,

which is determined through the quintile of the
normal distribution:

(13)

For example, for the considered above example
k = 5,043, which almost coincides with the value
obtained earlier.

In those cases where it is necessary to estimate
the probability P of a random variable hitting into

the given tolerance limits[a,, &,], it is necessary to
find the values of two tolerant factors:

k3

_a-m, _a,-m
kl_ * X’ kZ_ * X'
GX X

The values of the quintiles of the normal
distribution are found in accordance with (13):

. (15)

(14)

In accordance with the distribution N (0,1) the
obtained values of quintiles allow to find the
probability valuesP,,P,, and the probability

measure P =P, —P,, concentrated in the given

interval [a,, a,] .

Let according to the regulatory requirements
95% of the distribution of the measured values of a
certain parameter (for example, the lateral deviation
of the aircraft at the touchdown point) should be
within the tolerance limits [-8, 8] with a confidence
probability y = 0,95. When n = 1000 realizations of
a random variable were obtained, as a result of the
modeling, statistical estimates of the parameter
m*=3,24,6° =2,36 were determined assuming
the normality of the distribution.

As a result of the calculation using formulas (13)
- (15) we obtain the values of tolerant factors
k,=—4,763 k, =2,017 and the values of the
quintiles of the distribution:

U, = 2017 _ 2,09, U, =— 4763 _ —4,935.
.- 0,965 >~ 0,965

From the found quintiles of the normal

distribution, we find the probabilities P, = 0,9634

and Ple, so that the share of the parameter
distribution in the given interval is equal to
P=P,—P =0.9634, thatis P> P, . This means

req

that, according to the modeling results, it can be
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concluded that the control system for this parameter
satisfies the requirements.

Let's consider an example when the acceptable
interval for the above example is [-21, 21] and in
accordance with regulatory requirements it is
necessary that the probability measure of the
distribution in this interval is not less than

Peq = 0,9 with the confidence probability equaled

vy =0,95. As a result of modeling of the parameter
realizations (n = 1000), the following characteristics
were obtained: m*=3,6" =35.
In this case we get:
k,=-6,86, k,=514,,
U,p =533, U, =-71, P=09,5.

2 2
As can be seen from the obtained results, even
with a small volume of modeling, the control system
for the considered parameter satisfies the hard
accuracy requirements.

IV. CONCLUSIONS

The essentially limited possibilities of flight
tests of automatic control systems exclude the
achievement of the necessary volume of experiment
in order to confirm the high requirements to the
accuracy of control of these systems for ensuring the
safety of the automatic approach and landing of the
aircraft. This predetermines the significance of
statistical modeling of the functioning of control
systems in a wide range of perturbing influences and

optimal algorithms for processing the obtained
statistical information.

In the statistical processing of information
obtained during modeling, it is necessary to use not
only strict classical parametric algorithms, but also
robust and nonparametric methods of processing,
which allow to obtain sufficiently high reliability
and stability of statistical conclusions.

Nonparametric methods (the restrictions on the
form of distribution are not required) have a much
greater stability in comparison with other methods
and their effectiveness is rather high with a
substantial increase of the experiment volume. It is
possible with statistical modeling. However, when
the results are interpreted, it should be taken into
account that their reliability can not be higher than
the reliability of the initial data and the made
assumptions.

REFERENCES

[1] Zelenkov A.A. On-board automatic control
systems. Accuracy estimation of flight test results/
A.A.Zelenkov, V.M.Sineglazov.— K.:NAU, 2009.— 264 p.
(in Russian).

[2] Wilks S. Mathematical statistics/ S.Wilks. — M.
Nauka, 1967. — 632 p. (in Russian).

[3] David G. Ordinal statistics/ G.David. — M. Nauka,
1979. — 336 p. (in Russian).

[4] Korn G. Handbook of higher matematics/
G.Korn, T.Korn. — M. Nauka, 1977. — 832 p. (in Russian).

[5] Bolshev L.N. Tables of mathematical statistics/
L.N.Bolshev, N.V.Smirnov. — M. Nauka, 1983. — 416 p.
(in Russian).

Received June , 2017

Zelenkov Alexander. Candidate of Engineering. Professor. Computerized Electrical Systems and Technologies

Department, National Aviation University, Kyiv, Ukraine.

Education: Kyiv Civil Aviation Engineers Institute, Kyiv, Ukraine (1968).
Research area: Estimation of the accuracy and reliability of on-board automatic control systems.

Publication: 236.
E-mail: elte.chair @ gmail.ru

Bunchuk Alexander. Docent Computerized Electrical Systems and Technologies Department, National Aviation

University, Kyiv, Ukraine.

Education: Kyiv Civil Aviation Engineers Institute, Kyiv, Ukraine (1983).
Research area: Estimation of the accuracy and reliability of on-board automatic control systems.

Publication: 65.
E-mail: post-fsf @ nau.edu.ua

Golik Arthur. Assistant Computerized Electrical Systems and Technologies Department, National Aviation

University, Kyiv, Ukraine.

Education: National Aviation University, Kyiv, Ukraine (2005).
Research area: Estimation of the accuracy and reliability of on-board automatic control systems.

Publication: 42.
E-mail: golart @ mail.ru

0.A3enenkoB, 0.0. bynuyk, A.ILTojdik, OuiHka pe3yJbTaTiB CTATHCTHYHOTO MOAETIOBAHHS

ABTOMATUYHOI'0 ynpaB.ﬂimm.

CUCTEM



ISSN 1990-5548 Electronics and Control Systems 2017. N _( ):

Po3rsnyTi iMOBIpHICHI MeTOoaAM 00pOOKM pe3yiabTaTiB CTATHCTHYHOTO MOJICIIOBAHHS BH3HAYAJIBHHUX IapaMeTpiB
CHCTEM aBTOMAaTHYHOT'O YNPABIIHHI, SIKI XapaKTepU3yIOTh IMOJOKEHHS JIITaka B aBTOMAaTHYHOMY PEXHMMI 3aX0ay Ha
MOCAJKy Ta HOCAIKH 3 METOI0 BU3HAYCHHS TOUHICHHX XapaKTEPUCTHK aBTOMaTHYHOTO YIPABIiHHS.

KifodoBi cioBa: CTaTHCTHYHE MOJETIOBAHHSA, OIIIHKA TOYHOCTI, TOJEpPAHTHWH iHTEepBal, IMOBipHICHa Mipa,
TOJIepaHTHA 00JIaCTh, HETIApaMETPHYHE OILiHIOBAHHS, 00CAT MOJICITIOBAHHS, TOPSIKOBI CTATHCTHKH.

3enenkoB Ouexcanap ABpamoBud. Kanamnmar texmiuamx Hayk. [Ipodecop. Kadenmpa xomrr rorepm3oBaHUX
€JIeKTPOTEXHIYHNX CUCTEM Ta TexXHOJOTiH, HamioHamsHMit aBiarmiitauii yHiBepcureT, KuiB, YkpaiHa.

Ocgira: KniBchkuii iHCTUTYT iHXKeHEpIiB IIMBLIBbHOI aBiawii, Kuis, Ykpaina (1968).

Hanpsim HaykoBoi pisimbHOCTI: OIiHKa TOYHOCTI 1 HaAIHHOCTI OOPTOBUX aBTOMAaTHYHUX CHCTEM YIPABIIiHHS.

Kinpkictb myOunikarin: 236.

E-mail: elte.chair @ gmail.ru

Bynuyk Ougexcanap OuaekciiioBuu. [lonent. Kadenpa Komm’ioTepH30BaHUX €NEKTPOTEXHIYHUX CHCTEM Ta
TexHoori#, HarionansHuit aBiamniitamii yaiBepcuret, Kuis, Ykpaina.

Ocgita: KuiBcpkuii iHCTUTYT iHXKeHepiB IUBUTHHOI aBiamii, Kui, Ykpaina (1983).

Hanpsim HaykoBoi mismmpHOCTI: OIiHKa TOYHOCTI 1 HAIIHOCTI OOPTOBUX aBTOMATHUYHHUX CHCTEM YIIPABIIiHHS.

KimpkicTs my0mikariii: 65.

E-mail: post-fsf @ nau.edu.ua

Tonik Aptyp IlerpoBmu. Acucrent. Kadeapa koMn’ roTepu30BaHUX €IEKTPOTEXHIYHUX CHCTEM Ta TEXHOJIOTIH,
HauionaneHwuii aBiauiitunii yniBepcutet, Kuis, Ykpaina.

Oceita: HarionansHuit aBiariitauii yaisepcutet, Kuis, Ykpaiuna (2005).

Hanpsim HaykoBoi gisiibHOCTI: OIiHKa TOYHOCTI 1 HaAIMHOCTI OOPTOBUX aBTOMAaTHYHUX CHCTEM YIPABIiHHSL.

Kinbkicth myOumikarin: 42.

E-mail: golart @ mail.ru

A.A.3enenkoB, A.A.byHuyk, A.ILToauk. OneHka pe3yJbTaTOB CTATUCTHYECKOI0 MOJAEJMPOBAHMS CHCTEM
aBTOMATHYeCKOr0 yNpaBJeHUsI.

PaccMOTpeHBI  BEpOSITHOCTHBIE ~ METOABI ~ OOpabOTKM  pe3yNbTaTOB  CTATHCTHYECKOTO  MOJAEIHPOBAHUS
OTIPEICTISIIONINX TapaMETPOB CHCTEMBI aBTOMATHYECKOTO YIPABICHHUS, XapaKTEPU3YIOMIMX IIOJIOKCHHE CaMoJieTa B
aBTOMAaTHYECKOM pEXMME 3aXoJa Ha IOCAAKy M IIOCaJKH C LENBI0 OIPENCICHHS TOYHOCTHBIX XapaKTEPUCTHK
ABTOMATUYCCKOT'O YIIPABJICHUA.

KiroueBble cioBa: cTaTHCTHYECKOE MOJEIHPOBAHUE, OLEHKA TOYHOCTH, TOJEPAHTHBIH MHTEpBal, BEpOATHOCTHAS
Mepa, ToJIepaHTHas 00J1acTh, HellapaMeTPUIECKOe OLIEHUBAHUE, TIOPSAKOBBIE CTATUCTUKH, 00BEM MOJICITUPOBAHHS,.

3esenkoB  Ajsiekcanap — AppamoBuu.  Kanaupmat — TexHumueckux — Hayk.  [Ipodeccop.  Kadempa
KOMIBIOTEPU3HUPOBAHHBIX EKTPOTEXHUUECKUX CUCTEM M TeXHOJOTHH, HanmoHanbHBIM aBHAlMOHHBIA YHHUBEPCHTET,
Kues, Ykpauna.

Oo0pazoBanue: KueBckuii MHCTUTYT HHXXCHEPOB TpakIaHCKol aBuarmn, Kues, Ykpanna (1968).

Hanpasnenne nayuHodl aestenbHOCTH: OIleHKA TOYHOCTH M HAJEKHOCTH OOPTOBBIX aBTOMATHYECKHUX CHUCTEM
YIpaBJICHUS.

KomnaectBo mybnmkanmii: 236.

E-mail: elte.chair @ gmail.ru

ByHuyk Ajexcanap AuekceeBnd. Jlonent. Kadenpa KOMIBIOTEpH3UPOBAHHBIX NIEKTPOTEXHUUECKUX CHUCTEM H
TexHosoruii, HannonansHbI aBHaninoHHbIN yHUBEpcHTeT, Kues, Ykpanna.

O0pazoBanue: KneBckuii HFHCTUTYT HH)KEHEPOB IpakaaHckol aBuanuu, Kues, Ykpanna (1983).

Hamnpasnenue HayuHOW nesitenbHOCTH: OLEHKa TOYHOCTH M HAJIE)KHOCTH OOPTOBBIX aBTOMAaTHYECKUX CHCTEM
yIpaBJIeHUs.

KomnaectBo myOmukanmii: 65.

E-mail: post-fsf @ nau.edu.ua

Iomuxk Aptyp IlerpoBuu. Accucrenr. Kadenpa KOMIBIOTEpHU3MPOBAHHBIX 3JEKTPOTEXHHUUECKHX CHUCTEM U
TexHonoruil, HannonansHelil aBuanoHHeIil yHuBepcuteT, Kues, Ykpauna.

Ob6pa3zoBanue: HarmoHapHBIM aBHAIMOHHBIA yHUBepcuTeT, Kues, Yikpanna (2005).

Hanpasnenne nayuHoW aesrenpHOCTH: OIeHKAa TOYHOCTH M HAAEKHOCTH OOPTOBBIX aBTOMATHYECKHUX CHCTEM
YIpaBJICHUS.

KonmuectBo myOnmkanmii: 42.

E-mail: golart @ mail.ru



