Ninth International Conference on Application of Mathematics in Technical and Natural Sciences 21–26 June 2017, Albena, Bulgaria

BOOK OF ABSTRACTS

Euro-American Consortium for Promoting the Application of Mathematics in Technical and Natural Sciences

Edited by Michail Todorov

The Dynamics of Two Linearly Coupled Goodwin Oscillators

A. O. Antonova

National Aviation University, 03058 Kyiv, Ukraine

S. N. Reznik

Institute for Nuclear Research, National Academy of Sciences of Ukraine, 03680 Kyiv, Ukraine

M. D. Todorov

Faculty of Applied Mathematics and Informatics, Technical University of Sofia, 1000 Sofia, Bulgaria

We study numerically a system of linearly coupled Goodwin oscillators for two regions, which, when isolated, differ in period and amplitude of regional business cycle. This system is described by the following equations [1]:

$$\varepsilon_{1}\theta_{1}\frac{d^{2}y_{1}}{dt^{2}} + (\gamma_{1} - \varphi_{1})\frac{dy_{1}}{dt} + s_{1}y_{1} - \theta_{1}\left(m_{1}\frac{dy_{1}}{dt} - m_{2}\frac{dy_{2}}{dt}\right) - m_{1}y_{1} + m_{2}y_{2} = 0,$$

$$\varepsilon_{2}\theta_{2}\frac{d^{2}y_{2}}{dt^{2}} + (\gamma_{2} - \varphi_{2})\frac{dy_{2}}{dt} + s_{2}y_{2} + \theta_{2}\left(m_{1}\frac{dy_{1}}{dt} - m_{2}\frac{dy_{2}}{dt}\right) + m_{1}y_{1} - m_{2}y_{2} = 0.$$

Here $y_i(t)$ = regional income, $\epsilon_i > 0$, $\theta_i > 0$ = time-lag of the dynamic multiplier and the time-lag between investment decisions and the resulting outlays, s_i = marginal propensity to save, $0 \le s_i \le 1$, $\gamma_i = \varepsilon_i + \theta_i s_i$, m_i = marginal propensity to import, $0 \le m_i \le 1$, $\varphi_i(x)$ = induced investment function, $\varphi_i(x) \ge 0$; $\varphi_i(0) = 0$; $\varphi_i'(0) = r_i > 0$; $\varphi(\dot{y}) \to -I_{\min i}$ if $x \to -\infty$; $\varphi_i(x) \to I_{\max i}$ if $x \to \infty$, i = 1, 2.

References

[1] T. Puu, Nonlinear Economic Dynamics, 4th edn, Springer-Verlag, Berlin and New York, 1997.

 $\rightarrow \infty \diamond \infty \leftarrow$