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Abstract—Asymptotic behavior of the online gradient algo-
rithm with a constant step size employed for learning in neural
network models of nonlinear systems having hidden layer are
studied. The sufficient conditions guaranteeing the convergence
of this algorithe in the random enviranment are established.
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L INTRODUCTION

Neural networks containing at least one hidden layer play a
nle of universal models for any reasonable complex nonlinear
systems, in particular, flight control systems. This fact moti-
vates the theoretical studies of learning algorithms for the neu-
nl network models. Significant breakthrough in this research
area has been achieved in recent works [1]-{8]. Namely, the
convergence results have been derived in [7] provided that in-
put signals have a probabilistic nature. In their stochastic ap-
proach, the learning rate goes to zero as the learning process
tends to infinity. Unfortunately, this gives that the learning
goes taster 1n the beginning and slows dowit 1ii (¢ [4¢€ STage.

The convergence analysis of learning algorithms with de-
ferministic (non-stochastic) nature has been given in [8] by
ssuming that the learning set is finite. The difficulties in estab-
lishing the convergence results are that the neural networks
contain the parameters which appear nonlinearly in their equa-
fions. To the best of author’s knowledge, there are no results in
literature concerning the convergence properties of training
procedures with a fixed step size applicable to the case of infi-
nite learning set.

This paper generalizes some results obtained by the authors
in [9]. The main effort is focused on establishing sufficient
conditions under which the online gradient algorithms applied
for sequential learning neural networks with a constant step
size will converge in the case of infinite learning set. The key
idea 1 Studry' g TN dSYMpUtie PIUpRIiRS s vt vt SRpeii-
ing the stochastic counterpart of the Lyapunov function meth-
od, which is known in the probability theory as the
sipermartingale.
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II. PROBLEM FORMULATION
Let

y=F(x) m

be some nonlinear unknown function describing a complex
system. In this equation, y IR and x e IRY are the output

scalar and input vector variables, respectively, available for the
measurement at each nth time instant (n=1,2,...). This im-

plies that

y(n) = F(x(n-1)) 2

with an unknown mapping F': IRY > IR

To approximate (1), the two-layer neural network contain-
ing M (M=) newrons in its hidden layer is employed: The
inputs to the each jth neuron of this layer at the time instant »
are the components of x(n—1). Its output signal at the nth time
instant is given by

N
yﬁ»”(n)=c[b§”+ZW§‘)xi(n—1>} j=louM, ()

i=1

where x;(n—1) denotes the ith component of x(n—1), and

w,;l) and b§1) are the weight coefficients and the bias of this jth

neuron, respectively. o(-) represents the so-called activation

function. There is only one neuron in the output (second) layer,
whose inputs are the outputs of the hidden layer’s neurons. The

output signal of second layer, y@(n), at the time instant n is
determined by
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M
() _ 2 () 2)
P m) = WPy )+, (4)
=
where w?...., w2 are the weights of this neuron and »® is
its bias.

Since o(-) is assumed to be nonlinear, it follows from (3),

(4) together with (2) that y®(n) is a nonlinear function de-
pending on x(n—1) and also on the (M(N+2)+1)-
dimensional parameter vector

) M m M (. (2) (2) ()7
w=w WL B Wi s Wi B W T wyy L b )] .

To emphasize this fact, define the output signal of the neural
network in the form

¥y (n) = NN(x(n-1), w) )

with NN: IRV x [RYV+2# 5 IR,
The following basic assumption is made. There exists at
least an unique w=w" e IR gquch that F(x) can ex-

plicitly be approximated by NN(x.w")in the sense of
F(x)=NN(x, w") (6)

for all x from a given compact set X < IRY.

Define the training sequence {(x(n-—1), y(n))},_, of the
measurable pairs in which x(n—1)s are taken randomly from
X. Then, the online learning algorithm for updating the pa-
rameter estimate w(n) is formulated as the following standard
recursive gradient procedure:

w(n) =w(n—1)+ne(n,w(n-1)) grad,,NN(x(n —1), w(n—1)).
@)

In this algorithm,

e(n,w(n—1)) = y(n)—NN(x(n—1), w(n-1)) @®)

is the current estimation error and grad, NN(x(n—1), m(n—1))
denotes the gradient of NN(x, w) at the point w=w(n—1),
and n = const > 0 is its step size (the learning rate).

The problem is to study the properties of sequence {w(#n)}
caused by (7), (8) as n tends to oc.

Equations (2) and (7) together with (5), (6) and (8) describe
the closed-loop system for adaptive identification of (1).

90 2013 IEEE 2nd International Conference “Actual Problems of Unmanned Air Vehicles Developments” Proceedings

III. CONVERGENCE ANALYSIS

A. Preliminaries

To analyze the asymptotic behavior of (7), (8), the scalar
non-negative function ¥ (w) given by

V(w)=0 for w=w', Viw)>0 for w=w (O F

is exploited.

The variable ¥, :=V(w(n)) becomes immediately th
Lyapunov function of the algorithm (7), (8) if only
V<V vn (1

Since V¥, 20, the condition (10) under which 1’, does not ir-
crease is sufficient for existing a limit

lim ¥, =V,, (1l

N—0

where ¥V, is a random number depending on w(0) and

{x(n)}.

In the presence of the one-point W” ={w"}, the function
V(w) satisfying (9) is usually chosen as

V(w)=||w* —w||2, (1

where |||| denotes the Euclidean vector norm. It turned out tha ‘

if the neural network contains the hidden layer, then W" cor

sists of several isolated w's. In particular, in the simplest cas,
when there is one neuron in the hidden layer (N =1, M=)

and of-) is described by

1
i exp(—s) ’

o(s)

the set W* contains two points: w; = [w;, ws, w3, w;]" o

* * * * * *17
wy =[—w, —wy, —ws, wy +wy]".

T the case when W™ is not one-point, V(w) is designeds

V(w)=w_i1€1pr_ //w‘—uf/z (14

but not as defined in (12).

We first observed in simulation examples that {w(n)} may

not converge even in the presence of bounded {x(x)} if ther

are no additional restrictions on this input sequence. Suchan
ultimate feature of (7), (8) implies that



lim w(n) =w,,
N—>0

s)

may not exist. Nevertheless, if (15) is achieved, then the fol-
lowing asymptotic properties of {w(#n)} can be established:

a) {w(n)} converges to some w,, in sense of (15) with

w,, €liminfW,,

Where

liminf W, :=

>
I
=

iCs
Os
=

denotes the limit set in which

W, :={w: y(n)—=NN(x(n-1), w)=0};

b) the identification error given by (8) satisfies

lim &(n,w(n—1)) = 0. (16)

Note that lim inf /¥, represents a nonlinear manifold on

R™+2*! whose dimension satisfies

0 <dim liminf W, < M(N +2).

B. Simulation Examples

To demonstrate these asymptotic properties, three simula-
fion experiments with

_ 3.75+0.05exp(=7.15x)
1+0.19exp(-7.15x)

was performed. This nonlinear function can explicitly be ap-
poximated by the two-layer neural network described by (5),

(6, (8) and (13) with w()* =7.15, b =1.65, w®" =3.45,
" =03. In all of these experiments, 1 was taken as
1=0.02.

The simulation results are depicted in Figures 1-3.

Fig. 1 shows that {/,} has no limit if the input sequence
{x(n)} is non-stochastic. (The definition of the non-stochastic
squence can be found in the paper [9].) In this case, the model
wmor e(n,w(n—1)) does not go to zero, i. €., (16) is not satis-
fied.
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Fig. 1. Leaming processes in simulation

experiment 1:
(a) the input signal; (b) the function Vn given by (14); (c) the current model
error

In second experiment, x(n)s were sequentially chosen
from the finite set containing three points: xV =-0.4442;
x? =0.5158; x® =0.8761. Fig. 2 illustrates the result of this
w((0)=0.529, b (0)=-0.5012,
w?(0) =-0.9168, 5 (0) = 1.0409.
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Fig.2. Leaming processes in simulation experiment 2:
(a) the function Vn given by (14); (b) the current model error

We can observe that {/,} is convergent, however its con-
vergence is not monotonic as in (10). It turned out that in this
case, {w(n)} converges to w, =[5.4120, 1.3172, 3.8233,

-0.0475]" which lies on lim inf #, but not to one of two
points wl' =[7.15, 1.65, 3.45, 0.3]T or to wl' =[-7.15, -1.65,
-3.45,3.75] 7.
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The case where {V,} converges monotonically is demon-

strated 1n Fig. 3. In this case, the initial estimates were chosen
as follows: w{{(0)=14, b"(0)=-0.1, w?(0)=-0.56,
b'¥(0) = 0.46.

It turned out that {w(n)} tends to the limit point w,
=[7.15,1.65,3.45,03)" as n > .
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Fig. 3.
(a) the function V,, given by (14); (b) the current model error

Learning processes in simulation experiment 3:

. MAIN RESULT

Main theoretical result concerning the asymptotical behav-
ior of (7), (8) is based on following additional assumptions:

{x,(n)} are the stochastic sequences of independent ran-
dom variables having the probability density function

px(n)| x(n=1),..., x(0)) = p(x(n)) : = p(x) (17)
with the properties that
P{x(n)e X'} = j P dx>0, (18)
for any subset X' < X, and
P{x(n)e X"} =0

if dim X" =0, where P{} denotes the probability of corre-

sponding event.

Let W(w") denote a neighborhood of some w' eW”

which does not contain another points of W*. With this
W(w"), we have established that if the assumptions (6), (17) —

(19) are satisfied and the conditions

0<n<?2,
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(19)

J' _INNGr, w") = NN(x, w)lerad [, NN(x, w)(w' = w)p(x)de

> ]| INNG.w') = NNGe, ) Jerad  NNGe, wiff plods

hold for any x € X and for arbitrary w from W (w"), thenf
limit (11) is valid with probability 1. Again,

lim w(n)=w"
n—oo

almost sure (a. s.).

The proof of this result essentially utilizes the Borel-
Cantelli lemma and Doob’s martingale convergence theoren

(see [9]).

V. CONCLUSION

In general case, the standard online gradient algorithms ap-
plied to sequential learning in neural networks with hidder
layer may not converge. To guarantee their convergence, &
tain conditions need to be satisfied.

|
|
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