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Introduction 

It is difficult to identify areas of applied science, 
engineering or economics wherever the results, 
obtained in the space industry, are used. This is 
communication and navigation, remote sensing of 
the Earth and meteorology, television etc [1; 2].  

Quality of target-oriented solution of problems of 
space systems largely depends on the efficiency of 
navigation spacecraft: observation of the motion 
trajectory, determination of its location (the initial 
conditions of motion, and the formation of control 
commands. That is why, we put stringent 
performance requirements of spacecraft navigation 
and according to the efficiency and accuracy of the 
initial conditions of their movement. Hence, there is 
a problem of rapid and highly-precise determination 
of the initial conditions of spacecraft motion. 

Analysis of existing approaches 

Definition of the initial conditions of spacecraft 
motion is carried by statistical processing of the 
sample experimental data, that’s is discrete object 
measurements of selected observations. The use of 
adequate mathematical model of the process is the 
base for the effective implementation of statistical 
algorithms of data processing. According to the 
nonlinear nature of spacecraft motion, especially on 
the areas of apogee, perigee, with adequate 
corrective maneuvers his motion model that will be 
used for statistical data processing algorithms will 
have complex, nonlinear form. The problem of 
building mathematical models of processes, studied 
by the experimental data, was solved in the work of 
many authors [2–6].  

This presentation of nonlinearity of experimental 
process is achieved by using polynomial smoothing, 
nonlinear parametric models with further 
linearization or numerical solution of nonlinear 
equations. However, polynomial smoothing does not 
include a priori information about the view of a 
nonlinear model of experimental process. The 
traditional approach for building the nonlinear 
models has some disadvantages that reduce the 
accuracy of the original information. So, not enough 
attention was paid to the reduction the impact of 
random errors and linearized dynamic models on 
nonlinear parametric model. There is a large 
computational complexity of the procedures for 
parameters of nonlinear models using numerical 
solutions and the dependence of accuracy of 
obtained solutions on the capabilities of applied 
numerical methods. This lack of finite analytical 
smoothing algorithm does not allow to form unified 
form of the construction of nonlinear mathematical 
models. Moreover, existing approaches to the 
construction of nonlinear parametric models are 
difficult to apply for the models with significant 
nonlinearities, which are defined by differential 
equations.  

Thus, the purpose of the article is to develop 
approaches to the construction of the nonlinear 
parametric models of spacecraft motion by 
experimental data. 

The main material 

In general there are two basic approaches to the 
research of simulation process, namely: purely 
theoretical and purely empirical approaches [7].  
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The first approach uses analytical methods and 
applies when the laws that describe the change of the 
investigation process were put. It provides high 
accuracy of general conclusions, caused by the use 
of detailed mathematical models.  

However, the absence of the connection with real 
processes, including the complexity of analytical 
models of the form, does not ensure their effective 
application. At the same time a purely empirical 
approach connect the results to a particular process 
and has worse prognostic features. Thus, theoretical 
and experimental approach that takes into account 
the information about the analytical description of 
the process and experimental data for the model 
parameters determination, is the most appropriate for 
developing mathematical models. So, the use of the 
method of differential transformations (DT) for the 
study of complex nonlinear processes enables the 
realization of that problem.  

Differential transformations – is the operational 
method, which was established by G.E. Pukhov, 
member of National Academy of Sciences of 
Ukraine, and which is based on the transfer of the 
original image in the region of images through the 
operation of differentiation. Differential changes in 
the general case is a functional transformation in the 
form of [8; 9]: 
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( ) ( ),z t f t c= , (2) 

where t∗  – a meaning of argument in which the 
conversion is carried out;  

( )Z k  – discrete function of integer 

argument 0,1,2,k = …;  

H  – the argument section, on which function 

( )z t  is considered;  

( ),f t c  – restoring or approximating function;  

c  –  a set of free coefficients.  
Expression (1) determines the direct conversion, 

which allows you with a help of original image 

( )z t  to find the image ( )Z k . Inverse 

transformation that restores the original ( )z t  in the 

form of approximating functions is defined by the 
expression (2).  

Differential image ( )Z k  is called a differential 

spectrum (DS), or P-spectrum, and the meaning of 

function ( )Z k  with the particular values of the 

argument k  – is DS-discretes, or P-discretes. In the 

simplest case, restoring function ( ),f t c  looks like 

a polynomial, and the recovery of the original is 
reduced to the summation of discrete P-spectrum in 
the form of Taylor segment series. In this case 
differential transformations are called the principal 
or Taylor’s differential transformations [8; 9].  

Their disadvantage is the small interval of precise 
recovery process through a limited radius of 
convergence of Taylor series. In order to enhance 
the capacity of the solutions which were obtained by 
DT [10], the restoration of the originals in the form 
of arbitrary approximating functions was introduced. 
In this case, DT is called non-Taylor’s differential 
transformations (NDT). Free coefficients ic  of 

restoring function ( , )f t с  for non-Taylor’s 
differential transformations can be determined by 
minimizing the deficiency ( )tε  between the original 
and approximating functions for the selected criteria, 
which in the agreed notation has the form [10]: 
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where ( ) ( ) ( , )E k Z k F k c= −  characterizes the 

deficiency of DS. 
For general DT the definition of P-spectrum by 

the expression (1) is for zero values of argumentt∗ . 
On the one hand, it simplifies the subsequent 
conversion, on the other hand - reduces prognostic 
properties of obtained models. In order to enhance 
the properties of the models which were obtained by 
DT, in [11] shifted DT are proposed, that provide a 
precise solution for every argument functions. 
Shifted differential transformation are transformed 
basic DT (1) and (2) have the following form 
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( ) ( ),v vz t f t c+ τ = + τ
,  

( ) ( ),v vz t f t c− τ = − τ
, 

where ( ), vZ k t  – direct and inversed P-spectra of 

the initial function;  
τ  – local argument the value of which is chosen 

within 0H ≥ τ ≥ τ ;  

( )vz t + τ , ( )vz t − τ  – direct and inversed 

model.  
Simultaneous usage of direct and inverse P-

models in the NDT-scheme provides the 
compensation of disadvantages of simplified 
approximating functions.  

Thus, while determining the parameters of 
nonlinear models with experimental data to reduce 
the impact of measurement errors on the simulation 
results, it is expedient to use dislocated DT on the 
basis of non-Taylor’s differential transformations.  

The essence of the problem of mathematical 
change of the coordinates for the model 
determination of the initial conditions of motion of 
his movement has such view. Let an experimental 

polynomial model ( )z t  with the measured data of 

selected coordinate of the spacecraft according to the 
algorithm of the classical method of the least squares 
is built. Nonlinear (theoretical) model of the process 
is considered to be a priori known in the form of 

( ),f t c . It is necessary to define the parameters of 

the model ( ),f t c  with a help of well-known 

experimental function ( )z t . 

In order to solve the problem we use the criterion 
of the method of equal planes (MEP) in the NDT (3) 
[10]. This choice is justified when the construction 
of a nonlinear model of the process is in a class of 
smooth functions.  

According to the MEP, criterion of minimizing 
the deficiency between the experimental and 
theoretical models is formed as follows: 
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b

a

dtctfdttz , .                                   (5) 

The essence of MEP criteria for the construction 
of nonlinear parametric models of the experimental 
processes is the requirement of equality planes 
limited by the curves of experimental and theoretical 

models on a limited range. To simplify the operation 
of integration we transfer the criterion (5) into the 
range of images by using the basic DT (1): 
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where ( ) ( ), ,z k F k с  are DS originals ( )z t  and 

( ),f t c  respectively.  

In order to determine the parameters { }ic c=  of 

nonlinear model of the system ( ),f t c , it is 

necessary to make the system with m  (the number 
of unknown parameters of theoretical model is 
known) equations, following the criterion (5).  

In order to receive the system of equations, the 
solution of which are unknown parameters of 

nonlinear model, the interval of integration [ ],a b  

is broken into m subinterval. So, if common 

interval [ ]0, H  is considered, the subintervals are  

[ ]10,b , [ ]1 2,b b , …, [ ]1,m mb b H− = .  

The division of the limit construction of nonlinear 
models to the subintervals allows to apply technology 
and advantages of shifted DT. According to this we can 
receive the system of equation in the form of 
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In the system (6) DS functions ( )z t , ( ),f t c  are 

presented in assumption of the basic DT (1). In this case 
the increase of imaging accuracy of obtained analytical 
solutions is provided by using NDT basis as nonlinear 
model ( ),f t c . In order to satisfy opportunities for 

shifted DT a number of successive actions is usually 
applied. Let the observation interval of experimental 

process is equal to [ ],H H− , we define the direct and 

inversed model of functions ( )z t  and ( ),f t c . 

According to the shifted DT (4) P-spectrum of models 

( )z t , ( ),f t c  in the initial point 0tν =  is equal to 

( ) ( ),Z k t Z kν ν= ,                                          (7) 

( ) ( ), , ,F k t с F k сν ν= .  

We can write direct and inversed analogues 
respectively in points vt Н= ±  while using the DT 

of model functions (7) for the initial point 0vt =  
including transformation (4). 

( ) ( ),Z k t H Z kν ν+ = ,  

( ) ( ) ( ), 1
k

Z k t H Z kν ν− = − ,  

( ) ( ), , ,F k t H c F k cν ν+ = ,                           (8) 

( ) ( ) ( ), , 1 ,
k

F k t H c F k cν ν− = − .  

Here the notion of direct and inversed models is 
used to explain the direction of arguments change of 
functions which are considered: direct model - with 
the change of argument from left to right, inversed - 
with the change of argument in the opposite 
direction to a direct model of order.  

So, obtained direct models ( )Z k , ( ),F k с  

characterize experimental process for identifying the 
range of its observations. Properties of shifted DT 
allow to form analytical functions of the 
experimental process beyond an interval of 
observation process in the form of their inversed 
analogues ( )Z k , ( ),F k с . Usage of direct and 

inversed models in the calculations, allows to 
expand the overall recovery interval parameters of 
these experimental processes and compensate the 
errors of complete solutions. The usage of inversed 
models is similar to the usage of additional 
information channel. In order to combine the 
properties of shifted and NDT, including obtained 
the P-spectra of the models (8), the system (6) is 
transformed to the form 
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(9) 

 
Solving the system (9) relatively to c , we 

determine the unknown parameters of nonlinear 

model ( ),f t c . In this case we formulate the 

techniques of the construction nonlinear models of 
experimental process by using MEP in the shifted 
NDT. 

1. Determination of direct and inversed P-model 

of the form (8), experimental ( )z t  and non-linear 

model ( ),f t c  according to expressions (1), (4).  

2. Formation of a system of equations in the form 
(9) by equating the values of integrals for functions 

( )z t , ( ),f t c  on m (with the number of unknown 

parameters of nonlinear model c ) of observation 
subintervals of experimental process. While forming 
the system (9), the use of direct and inversed models 
for subinterval sequentially alternates.  

3. The solution of formed techniques of the 
equation system in paragraph 2 relatively to 
unknown parameters of nonlinear models.  

Example of the application of the developed 
techniques concerns the solution of the problem of 
determining the initial conditions of spacecraft 
motion and demonstrates the practical side of the 
obtained results. In practice, the navigations of 
spacecraft is carried on the ground points of the 
signal from the board of the spacecraft – the 
command-measuring systems using the results of 
measured arrays, for example the Doppler’s 
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frequency of a signal transferred in radial velocity. 
Let obtain polynomial model, including the results 
of processing a sample of radial velocity, which 
characterizes the motion of spacecraft in circular 
orbit: 

( ) 2

3 3 8 4

5,09671 0,01604 0,00192

0,01039 10 0,25773 10 .

pr t t t

t t− −

= − − ⋅ + ⋅ −

− ⋅ ⋅ + ⋅ ⋅
 

It is known that in the interval of observation 
changes the model radial velocity can be described 
by nonlinear parametric theoretical model of the 
form 

( ) ( )nr t a arctg t= ⋅ ω ,  

where ,a ω  are unknown parameters that 

characterize the change of the experimental process.  
It is necessary to determine the parameters of 

nonlinear model ( )nr t . According to the proposed 

techniques, including input signs, we have. 
1. Direct and inversed P-model of polynomial 

( )pr t  and nonlinear functions ( )nr t  have the 

values given by expressions 

( ) ( )
( ) ( )
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4 0,25773 10 ;                                       (10)
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( ) ( ) ( )
( ) ( )3 3

0 0, 1 , 2 0;

3 (1/3) , 4 0;                 (11)
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( ) ( )3 3

0 0, 1 , 2 0;

3 (1/3) , 4 0.

n n n
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R R awH R

R aw H R
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= =
  

2. In order to find the parameters of nonlinear 
model – ,a ω  taking into account the general form 

of the equations system (9) and P-spectra (10) (11), 
we have 

3

9 3

5762,01125

0,11066 98,95855,

17286,03375

0,166 10 10453,55658.

aw

aw

aw

aw−

⋅ −
 − ⋅ = −
− ⋅ +
 + ⋅ ⋅ =

  

Solving formed system relatively unknown 
parameters ,a w of nonlinear models, it was defined 

5,34224, 0,02428.r ra w= =  Ideal values of the 
nonlinear model are assumed to be known and 

5,34322, 0,02424.i ia w= =  
The results of evaluation the value and dynamic 

error of reproduction experimental process of the 
change spacecraft radial velocity are given in table. 

Results of evaluation the value and dynamic error 

Interval point of spacecraft 
Parameter 

initial medium final 
МLS, кm/с -5,09640 -0,25382 5,05769 
МEP, кm/с -5,33694 -0,12969 5,33693 
Stand. кm/с -5,33393 -0,12950 5,33393 

MLS∆  0,23753 0,12432 0,27652 

MEP∆  0,00300 0,00018 0,00300 

MLSσ , кm/с 0,000457 0,000198 0,000502 

MEPσ , кm/с 0,000109 0,000022 0,000114 

 
These results were obtained with the absence of 

random measurement errors of experimental data. For 
the real terms of determination of radial velocity 
measurements by Doppler’s frequency the calculations 
were carried out with the value of standard deviation 
error of radial velocity 002.0=σ  km/c. The value of 
random errors of the image of experimental process 
using the models obtained in accordance with the 
proposed techniques compared with classical MLS 
given in the last two rows of table. 

Analysis of the results of research shows that 
compared with the traditional approach of using the 
proposed technique for modeling a nonlinear process 
changes, it allows to improve the accuracy of his 
image including dynamic, and a random error 
components. Getting a win in the dynamic accuracy 
of smoothing is explained by using nonlinear model 
for approximation of the measured values that are 
more adequate representation of the experimental 
process. The increase of accuracy smoothing 
according to a random error component is explained 
by the use of direct and inversed models in NDT, 
which provides partial compensation of random 
errors.  

Conclusions 

Thus, proposed technique is based on the use of 
MEP in the vicinity of experimental and theoretical 
functions. The distinction of this technique is to 
combine construction of nonlinear parametric 
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models of experimental processes of positive 
opportunities of NDT and shifted DT within a single 
solution. 

The results of applying the developed technique 
to solve the practical problem of determining the 
initial conditions of spacecraft motion proved its 
effectiveness by the criterion of accuracy of final 
results. In its turn, the increase of the accuracy of the 
initial conditions of motion provides quality 
improvement of solution of the spacecraft navigation 
problem. 
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