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Study Unit 3 
 
 

LIGHT DIFFRACTION 

3.1. Huygens-Fresnel principle 

The phenomenon of interference is a clear confirmation of the wave 
nature of light. However, review of the wave properties of light would 
be incomplete without consideration of phenomenon of light diffraction. 

Since ancient times, observation of the distribution of light on the 
boundary between light and shadow of objects of different shapes forced 
researchers to think about the possible “rounding” obstacles by light. 
The first mention of it was found in the works of the famous artist, 
scientist and researcher Leonardo da Vinci (1452–1519).  

In 1665, Grimaldi described similar phenomena in detail. Prominent 
German physicist of the XX century Sommerfeld (1868–1951) defined 
the phenomenon of diffraction of light as deviation of light rays from a 
straight line that cannot be explained by reflection, refraction or 
distortion of rays in media with variable index of refraction. 

Diffraction of light, like interference, is explained by the wave 
nature of light and leads to light penetration into the zone of geometrical 
shadow. Phenomenon of diffraction is associated with interference. 

If light propagation in a homogeneous medium is free 
(unobstructed), interference of coherent secondary waves, which are 
generated by every elementary section of the wave surface, causes 
rectilinear propagation of light. Conversely, light waves meeting with 
obstacles cannot form full shade and bend around the obstacles, getting 
into the zone of the geometrical shadow. 

There are two types of diffraction. If an obstacle is placed near the 
light source and the screen, then falling or diffracted waves have curved 
(usually spherical) surface.  

This case is called Fresnel diffraction. If falling and diffracted waves 
can be considered as plane waves, this phenomenon is called Fraunhofer 
diffraction.  

Plane waves, necessary for the Fraunhofer diffraction, are obtained 
by distancing of the light source and screen from the obstacle or by 
using lenses. 
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There is no fundamental physical difference between diffraction and 
interference of light. Both phenomena are caused by the light flux 
redistribution as a result of superposition (overlapping) of coherent waves.  

Historically, redistribution of the light intensity arising as a result of 
superposition of waves excited by finite number of coherent sources is 
called interference. Redistribution of the light intensity arising from the 
superposition of waves excited by infinite number of coherent sources 
disposed continuously (for example, elementary sections of the wave 
surface) is called diffraction. 

Famous Dutch physicist Huygens was the first who proved the wave 
nature of light in 1690. The basis of the theory of light propagation is a 
principle named after him. Huygens principle states that every point to 
which a light wave comes can be regarded as a source of secondary 
coherent waves. To determine the wave front at later moment of time, 
we should build a surface that encircles these secondary waves. Using 
this principle Huygens explained the straightness of light propagation 
and laws of reflection and refraction. However, the amplitude (intensity) 
redistribution and rounding the obstacles by waves (light deviations 
from linearity) were not mentioned. 

The phenomenon of diffraction within the wave theory was 
explained by French physicist Fresnel in 1818; he completed the 
Huygens principle idea of interference of secondary waves. Considering 
the amplitudes and phases of the secondary waves gives possibility of 
finding amplitude and intensity of the resultant wave at any point in 
space. Modified Huygens principle is called the principle of Huygens-
Fresnel; it is the basic principle of wave optics. The principle allows us 
to consider the intensity of the resultant wave in different directions and 
solve the problem of diffraction of light. In accordance with the 
Huygens-Fresnel principle, secondary hemispherical waves are coherent. 
Hence, intensity of the resultant wave at some point of the screen is a result 
of interference of all secondary waves coming to the point.  

 
3.2. Fresnel zones 

Consider a monochromatic light which wavelength is λ; it spreads in 
a homogeneous environment. For simplicity, we assume a point source; 
therefore, a closed surface S around the source is a sphere with the 
radius a, the elementary areas ds of the surface are mutually coherent 
(Fig. 3.1). 
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Fig. 3.1 

 
In accordance with the Huygens-Fresnel principle, each elementary 

area ds of the luminous surface S (wavefront) is regarded as the center 
of the secondary source (secondary waves). Oscillations of light waves 
coming to the point P from each elementary area ds are described by the 
equation: 

0( ) cos( )a dsdE K t kr
r

= ϕ ω − + α ,                         (3.1) 

where 0( ) a dsA K
r

= ϕ  is the amplitude of oscillations in the point P 

caused by the action of the surface element ds; 0a  is a factor which is 
determined by the amplitude of the light wave at the location of the area 
ds; ( )tω + α  is the light wave phase at the location of the wave surface 
S; 2 /k = π λ  is the wave number; r is the distance from the element ds 
to the point P. Fresnel assumed that the slope coefficient ( )K ϕ  depends 
on the angle ϕ  between the normal n  to the surface element ds and the 
direction to the point P; it ranges from 1 ( 0ϕ = ) to 0 ( / 2ϕ ≥ π ). This 
means that the secondary sources do not emit in the opposite direction, 
it is why Fresnel secondary waves are hemispherical. 

Kirchhoff gave mathematical reasoning and refinement of the 
Huygens–Fresnel principle in 1882.  

He showed that ( ) (1 cos ) /K ϕ = + ϕ λ . This means that the amplitude 
of the secondary waves is zero not when / 2ϕ ≥ π , as Fresnel thought, 
but only if ϕ = π . However, in most cases of diffraction observation, the 
angle ϕ  is small (close to zero), so this explanation does not affect the 
final result. 

The resulting oscillation in the point P is the superposition of 
oscillations dE of all elements ds of the surface S: 
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0( ) cos( )
S

aE K t kr ds
r

= ϕ ω − + α∫ .                        (3.2) 

If a closed surface S is arbitrary taken, calculation of the integral 
(3.2) is difficult. However, as shown by Fresnel, the problem is greatly 
simplified, and the integration can be replaced by a simple algebraic or 
graphical addition, if the wave front is spherical. This method of 
approximate calculation of integrals (3.2) was named the method of 
Fresnel zones. 

In accordance with this method, the spherical wave front is divided 
into annular zones centered at the point O so that the lengths of straight 
lines that connect edges of the annular zones with the observation point 
P are differed by λ/2. Fig. 3.2 shows that a is a distance from the source 
to the top of the wave surface O; b is a distance from the top to the 
observation point P; b + mλ/2 is a distance from the outer edge of the  
m-th zone to the point R; m is the number of Fresnel zone. 

B
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Fig. 3.2 

 

This separation of the wave surface to Fresnel zones leads to the fact 
that oscillations of the waves coming to the point P from the 
neighboring Fresnel zones are opposite by phases, because the path 
difference between two adjacent zones to the point P is λ/2. Therefore, 
the phase difference between neighboring Fresnel zones equals π. Thus, 
the resulting oscillation amplitude at point the P can be represented as a 
series of amplitudes with alternating signs: 

mAAAAAA ±+−+−= ...4321 ,                   (3.3) 
where Am is the amplitude of the oscillations from the m-th Fresnel zone 
in the point P. Sign «+» corresponds to the odd and «–» to the even-
numbered zones. 

As it follows from equation (3.1), the amplitude of oscillations 
generated by m-th Fresnel zone in the point P depends on the area of  
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m-th zone, the angle between the outer normal to the surface area and 
the direction to the point P, and the distance between the m-th zone and 
the observation point P. To define an area mSΔ  of m-th Fresnel zone, 
consider Fig. 3.3. 
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Fig. 3.3 

 

The points B and B1 of the spherical segment BOB1 show the outside 
border of the Fresnel zone with the index m, the radius of the zone is 

mrABAB == 1 . From the triangles РВА and S0ВА we get: 
2

2 2 2 2( ) ( )
2m m mr a a h b m b hλ⎛ ⎞= − − = + − +⎜ ⎟

⎝ ⎠
,             (3.4) 

from (3.4) we define the height of the spherical segment 
2( / 2)

2( )m
bm mh

a b
λ + λ=

+
.                                 (3.5) 

Consider that bλ << , therefore, the second term in the numerator of 
the equation (3.5) can be neglected for small values of m. Finally, the 
height of the m-th segment is: 

2( )m
bmh
a b

λ=
+

.                                    (3.6) 

Considering that ahm << , we get from (3.4) that the outer radius of 
the m-th Fresnel zone is mm ahr 22 = , taking into account the equation 
(3.6), we get the final result: 

2m m
abr ah m

a b
= = λ

+
.                              (3.7) 
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If a wave that propagates from the source is plane, then ∞→a  and 

 mr m b= λ .                                  (3.7a) 

Inside of the spherical segment ВОВ1 (see Fig. 3.2 and 3.3) m 
Fresnel zones are placed and the segment area is 2m mS ah= π  (a is the 
sphere radius, mh  is the height of the spherical segment); the segment 
area is equal to the sum of areas of m Fresnel zones: 

1 22 ...m m m
abS ah m S S S

a b
π= π = λ = Δ + Δ + + Δ

+
. 

The area of the first ( 1=m ) zone is: 1
abS

a b
π λΔ =

+
, the area of m-th 

zone is: 

1m m m
abS S S

a b−
π λΔ = − =

+
. 

Thus, the areas of all Fresnel zones for small m ( 10<m ) can be 
considered as approximately equal: mSSS Δ==Δ=Δ ...21 . But the 
distance mb  from a zone to the point P slowly increases with the number 
of the zone m. The angle mϕ  between the normal to an area and the 
direction to the point P also increases with m; hence, slope coefficient 

( )mK ϕ  decreases with increasing number of area. All this leads to the 

fact that the amplitude 0( ) m
m m

m

E SA K
b
Δ= ϕ  of the oscillation from m-th 

zone in the point P gradually decreases with the increase of the number 
of zone. This means that the amplitudes of the oscillations in the point P 
monotonically (very slowly) decrease creating a sequence: 

...... 1121 >>>>>> +− mmm AAAAA  
Let us return to the alternating series (3.3) and represent it, for 

example for 3=m , as 

2222
33

2
11 AA

A
AA

A +⎟
⎠

⎞
⎜
⎝

⎛ +−+= , 

and for 4=m  as 
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222222
4433

2
11 AAAA

A
AA

A −⎟
⎠

⎞
⎜
⎝

⎛ −+⎟
⎠

⎞
⎜
⎝

⎛ +−+= . 

Because of the monotonic decrease of the amplitudes, it can be 
assumed that 12 AA ≈ , 32 AA ≈ , 2/2/ 312 AAA +≈  (in the general case 
( mA ≈ 1 1( )/2m mA A− +≈ + ). Consequently, the equation in brackets is equal 

to zero, so finally for 3=m  we get 
22

31 AAA += . Similarly, for 4=m , 

we get: 
22

41 AAA −= . Summarizing these results, we obtain: 

 
22

1 mAA
A ±= ,                                      (3.8) 

where the sign «+» corresponds to the odd and «–» to the even number 
of m. If the wave front is completely open ( ∞→m ) and 0,mA →  we 
obtain: 

2
1A

A = .                                         (3.9) 

The equation (3.9) shows that the light wave amplitude emitted by a 
completely open source in a point P is equal to half of the amplitude of 
the oscillations excited in this point by only the first one (central) 
Fresnel zone. If the opaque barrier with a hole that leaves open only the 
central Fresnel zone is placed on the path of spherical wave, the 
amplitude in the point P, according to the equation (3.8), equals 1A , that 
exceeds twice the amplitude A (3.9). This means that the light intensity 
in the point P if the obstacle is present, four times greater than the intensity 
if the obstacle is absent. At first glance, this result is paradoxical, but it is 
well confirmed by the experiments (see. chapter 3.4). 

 
3.3. Graphical calculation of the resultant amplitude. 

Zone plate 
 

The resulting oscillations amplitude can be obtained using a 
graphical method of adding oscillations. Harmonic oscillations can be 
represented as a vector which length is equal to the oscillations 
amplitude and the angle between the vector and the direction of the 
oscillations propagation is the oscillations phase. It is supposed that the 
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amplitude of the vector rotates counterclockwise around the axis passing 
through its beginning. Its angular velocity is considered as cyclic 
frequency of the oscillations.  

When we add oscillations, the resulting oscillations vector is equal to 
the vector sum of the components vectors and the angle that the 
resultant vector makes with the direction of oscillations propagation 
creates the resulting phase. 

To represent graphically the whole first Fresnel zone, it should be 
divided from the center into equal subzones so narrow that the phase of 
every subzone could be considered constant.  

Then the oscillations caused by the action of the first subzone at the 
point P can be represented by a vector which length is proportional to 
the amplitude and direction is determined by the phase of this subzone. 
As a result of increasing the distance r and the reduction of the slope 
coefficient ( )K ϕ  (see Fig. 3.1), the vector of oscillations of each 
consequent subzone decreases in magnitude and has the phase lag from 
the oscillations generated by the previous subzone. So, the second 
(adjacent) subzone can be represented by a vector a little turned 
relatively to the first vector.  

The length of this vector does not almost differ from the first one, 
since the value of r changes very little. Thus, the vector diagram that 
defines the action of a number of subzones, forming a Fresnel zone, is 
shown by a broken line.  

This line is a chain of vectors iAΔ , the sum of which will be a 
resulting oscillation amplitude ∑Δ= iP AA  of a Fresnel zone at the 
point P. 

Fig. 3.4 a, b, c shows vector diagrams where the values of the resulting 
vectors 1A , 2A  and 3A  are amplitudes of oscillations excited in the 
point P respectively by the first, the first two and the first three Fresnel 
zones.  

Fig. 3.4 shows that the first Fresnel zone is divided into six subzones 
6=i . Since the width of each Fresnel zone corresponds to a change in 

the phase by π, then each subzone vector creates the angle / 6δ = π  with 
the previous one.  
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Fig. 3.4 
 
If we divide each Fresnel zone into an infinite number of subzones, 

the broken line becomes a curve and each Fresnel zone will be shown as 
one semicircle. Obviously, if all Fresnel zones are open (entirely open 
wavefront), we obtain a spiral with a focus at the point ∞A  (Fig. 3.5) 
which is called Fresnel spiral. Fig. 3.5 shows that 2/1AA =∞ , it 
coincides with the result of algebraic addition of (3.9). 

 

∞A

1A

B

О Х   
Fig. 3.5 

Oscillations of light waves of even and odd Fresnel zones in the 
point P have opposite phases and therefore mutually weak each other. If 
on the way of a light wave we put an obstacle in the form of small plates 
that would overlap all even or odd areas, the light intensity in the point 
P will increase significantly.  
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This obstacle is called amplitude zone plate that can be made using 
Newton's rings pattern. Amplitude zone plate acts like a convex lens. 

Greater effect can be achieved if we change the phase of oscillations 
of even or odd Fresnel zones to the opposite one, i.e. by π. This plate is 
called phase zone plate.  

The first phase zone plate was made by Wood. He covered the glass 
with a thin layer of paint and engraved phase zone plate so that the 
optical thickness of the odd zones differed from even ones by the 
thickness / 2λ .  

A phase plate increases the resulting amplitude twice and light 
intensity four times in comparison with an amplitude plate. 

 
3.4. Fresnel diffraction by simple obstacles 

 
Diffraction by round hole. Let us place an opaque screen with a 

circular aperture of the radius 0r  towards a spherical wave from the 
point source 0S . The screen E is placed perpendicularly to the line 
passing through the point source 0S  and the center of the hole O  
(Fig. 3.6).  

If 0r  is much less than the lengths a and b, the length a can be 
considered as the distance from the source to the obstacle and the length 
b can be considered as distance from the obstacle to the point P. 

r0S0 a
O

r b

E

P

P1

 
Fig. 3.6 

 
The method of Fresnel zones makes it easy to determine the intensity 

of light in the point P at the center of the diffraction pattern. If the 
distances a and b satisfy the relation (3.7) 
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0 = = λ
+m
abr r m

a b
                                  (3.10) 

where m is integer, the hole opens exactly m of the first Fresnel zones.  
Thus, the intensity in the point P is determined by the number of 

Fresnel zones m, which fit into the hole. If m is an even number, the 
intensity in the point P is minimal and for the small values of m is 
almost zero because the oscillations of the light waves in the point P, 
which are generated by adjacent Fresnel zones, are antiphase and 
mutually destroyed.  

Accordingly, the intensity at the point P is maximal if m is an odd 
number, because the oscillations from one zone will not compensate. 
Moreover, as it can be seen from the equation (3.3) for small m, 
amplitude mA  differs a little from 1A . Thus, for any odd m, the resultant 
amplitude in the point P is approximately equal to 1A . From the 
equation (3.10) we can see that the number of open Fresnel zones is: 

2
0 1 1⎛ ⎞= +⎜ ⎟λ ⎝ ⎠

rm
a b

. 

Calculation of light intensity in the other points of the screen is much 
more complex since the relevant Fresnel zones are partially closed by 
the opaque obstacle.  

But for reasons of axial symmetry and according to the law of 
conservation of energy it is obvious that the total diffraction pattern 
around the point P in monochromatic light must be in the form of 
concentric light and dark alternating rings transferred smoothly into 
each other.  

If the distance from the point P increases, intensity maxima 
decrease. If the light is white, the rings are rainbow colored. 

Diffraction patterns for the three cases of open Fresnel zones and 
appropriate distribution of light intensity along the diameter of the 
diffraction pattern are shown in Fig. 3.7. 

If the hole r0 opens the first ( )1m =  Fresnel zone or its part, a bright 
spot appears in the point P of the screen; the spot intensity is maximal in 
the center of the screen.  

It gradually decreases from the center, alternating light and dark 
rings do not occur in this case. 
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Fig. 3.7 

 
If the hole opens the first two Fresnel zones ( 2=m ), a dark spot 

appears in the center of the screen; a bright ring appears around the dark 
spot. If 3=m , on the contrary, there is a bright spot in the center, and a 
dark ring around it. The increase of the number m of open Fresnel zones 
leads to the increase of the number of the light and dark rings. If the 
number m is odd, the center is bright. If the number m is even, the center 
is dark. If the hole includes a large number of Fresnel zones, the 
intensity in the center becomes almost uniform and just on the edge near 
the geometrical shadow can be seen the narrow alternating light and 
dark rings. 

Diffraction by round disk. Let us place an opaque obstacle in the 
form of a small circular disk of radius r0 perpendicular to the direction 
of propagation of the spherical waves (Fig. 3.8). 
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P1

a b 

 
Fig. 3.8 
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The diffraction pattern on the screen is determined by the number of 
Fresnel zones that remain open because the disc covers the first Fresnel 
zones. If the disc closes m the first Fresnel zones, we can use the 
equation (3.8) to determine the amplitude of the light wave in the screen 
central point P, but instead of the amplitude of the first zone 1A , we 
have to substitute the amplitude of the first open zone 1+mA ; instead of 

mA  we have to substitute the amplitude of the last open zone nA : 

22
1 nm AA

A ±= + . 

If the value of m is small and ∞→n , the amplitude of the last open 
zone tends to zero 0→nA ; therefore, 

2
1+= mA

A . 

Thus, in contrast to diffraction by round hole, if we observe 
diffraction by round disk, diffraction maximum (bright spot) is always 
observed in the center of the diffraction pattern. Its amplitude equals 
half of the first open Fresnel zone amplitude.  

Light intensity in an arbitrary point (Fig. 3.8) of the geometric 
shadow of the disc is much more difficult for calculation, but it is clear 
that the diffraction pattern is axially symmetric around the point P. 
Accurate calculation and the experiment show that the diffraction 
pattern consists of the light and dark rings that change smoothly into 
each other. The number of rings is determined by the number of closed 
Fresnel zones. Diffraction patterns created by the discs that cover one, 
two, and three Fresnel zones are shown on Fig. 3.9. In all cases, a light 
spot is in the center of the diffraction pattern. 

 
 

3 zones 2 zones 1 zone 

 
Fig. 3.9 
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If a disc covers only a small part of the first Fresnel zone, it does not 
create any shadows; light intensity on the screen remains the same as in 
the case without obstacles. If a disc radius is big and the disc covers a 
large number of Fresnel zones ( 11 AAm <<+ ), a geometrical shadow is 
observed behind the disc.  

There is an interesting historical fact. In 1918, Fresnel put forward 
his theory of diffraction for the award of French Académie. A member 
of the premiums Poisson (a supporter of the corpuscular theory of light) 
had proved on the basis of Fresnel theory that a bright spot has to be 
observed in the geometric center of the shadow of a small disk; the spot 
was called Poisson's spot. But the first experiments did not confirm the 
Poisson prediction. On this basis, Poisson concluded that the Fresnel 
theory is false. However, another member of the committee, Arago 
prepared more detailed experiment and proved the existence of the light 
spot in the center of the diffraction pattern. That was a victory of the 
wave theory of light. 

Diffraction by straight edge of a half plane. Using the principle of 
Huygens-Fresnel, spherical diffraction by round hole and a disc was 
studied; axial symmetry prompted the choice of shape of division of the 
wave surface areas in the form of the circular Fresnel zones. Plane obstacles 
require division of the open part of the wave surface by Fresnel zones in the 
form of straight strips parallel to the edge of the plane. 

Let a plane monochromatic wave of length λ  fall on a plane opaque 
obstacle with the straight edge. The obstacle B is installed perpendicular 
to the direction of the wave propagation. The screen E is placed at the 
distance l behind the obstacle parallel to the plane. Then, the half plane 
B is a part of the plane wave surface S, shown by dotted line (Fig. 3.10). 

Using the vector diagram, determine the oscillations amplitude at the 
point 0P  on the geometric shadow edge. We divide the open part of the 
wave surface S into zones as narrow strips. Let us select the width of the 
zones d1, d2, d3, … so that the path difference from the edges of the 
adjacent zones is / 2Δ = λ  (Fig. 3.10, a). Oscillations in the point 0P  
created by waves from adjacent zones will differ in phase by π. The 
amplitudes of the oscillations of the respective zones are determined by 
areas of these zones, hence, by the dimensions of d1, d2, d3, … . We can 
deduce from Fig. 3.10 that the total width of the first m zones is:  

2 2 2 2
1 2 ... ( / 2) ( / 2)md d d l m l lm m+ + + = + λ − = λ + λ . 
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Fig. 3.10 
 
Since the zones are narrow, l<<λ 2/ ; therefore, for the small m the 

second term under the root can be neglected. Then 

 λ=+++ lmddd m...21 .                        (3.11) 

The equation (3.11) shows that λ= ld1 , so 1 2 1... ,md d d d m+ + + =  
then 

 ( )11 −−= mmddm .                          (3.12) 

The calculation of md  by the equation (3.12) gives: 

  1d  : 2d  : 3d : 4d : 5d :… = 1 : 0.41 : 0.32 : 0.27 : 0.23 :.. .  (3.13) 
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Obviously, the areas of the zones as narrow straight strips are in the 
same ratio. 

According to the series (3.13), the areas and, hence, the amplitudes 
of waves generated from the respective zones in the point 0P  will 
initially (for the first zones) rapidly decrease, then this decrease 
becomes very slow. For this reason, a broken line formed by the 
oscillations graphical adding is initially flat and then goes into a spiral. 

Fig. 3.11 shows comparison of two vector diagrams for the case of 
circular zones (zones of approximately equal areas) and straight lines 
(areas decreasing); we see that the amplitudes for circular areas are 
about the same but the amplitudes for the straight strips are reduced 
according to the proportion (3.13). In both cases, the lag phase for each 
subsequent vector is the same. 

 

О  О
 

а b 
Fig. 3.11 

 
If the width of the zones goes to zero, the broken line on Fig. 3.11 

turns into a smooth curve, which is the right half of a Cornu spiral  
(Fig. 3.12). 
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Fig. 3.12 



 

 62

Along with the right part, the Cornu spiral has the left side 
symmetric relatively to the point O. This part corresponds to the action 
of oscillations coming from the same points of the zones located to the 
left from the point O that means the absence of half-plane B (Fig. 3.10). 
The amplitude in the point 0P  from the completely open wave surface is 
a segment +− FF  that connects two points (spiral focuses); the spiral 
approaches asymptotically to the focuses. If the half-plane B is present 
(see Fig. 3.10, a), the light wave amplitude in the point 0P  on the 
geometric shadow boundary is a segment +OF  that is twice smaller than 
the segment +− FF  (Fig. 3.12). This means that the light intensity in the 
point 0P  equals ¼ of the intensity if the wave surface is completely 
open 0 0( ) 0,25I P I= . The value 0I  corresponds to the intensity if the 
wave surface is completely open (absence of the half-plane). The 
diffraction pattern created by the half-plane is shown on Fig. 3.13. 
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Fig. 3.13 

 

Diffraction by narrow slit. Let us consider diffraction by narrow 
slit (Fig. 3.14) using the Cornu spiral 

 

E 
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Fig. 3.14 
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The diffraction pattern created by a narrow slit is a result of 
superposition of diffraction patterns from the two half-planes. The 
resulting amplitude A  in the point P equals a distance between the 
symmetrical points of the spiral (Fig. 3.15). 

 
A  A A
О О О

 
а   b c 

Fig. 3.15 

If the slit width increases, the amplitude A  in the point P changes 
from maximums (Fig. 3.15, a, c) to minimums (Fig. 3.15, b) and vice 
versa. 

If the slit width is big, the diffraction patterns are observed only near 
the slit edges; the light intensity 0I  in the center is constant (Fig. 3.16). 

I

x
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0  
Fig. 3.16 

 
3.5. Fraunhofer Diffraction 

 
The examples of Fresnel diffraction are observed without any optical 

devices. A screen is placed at a short distance from the obstacle; 
therefore, the diffraction patterns are produced by divergent secondary 
spherical waves. This diffraction was scrupulously researched by Fresnel; 
thus, it is called Fresnel diffraction or diffraction at divergent rays. 

Fraunhofer proposed another way of diffraction observing. A direct 
beam of parallel rays (plane wave) is directed to the opening or the slit, 
and the diffraction pattern is observed on the screen placed far from the 
obstacles. Therefore, it can be considered that the screen is placed at 
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infinity, and the diffraction pattern is observed in parallel rays. As a 
result, the diffracted wave is also flat. Since the incident and diffracted 
rays are parallel, this is called diffraction in parallel rays or Fraunhofer 
diffraction. In practice, the screen is not placed at a long distance; 
instead, the diffraction pattern is watching using a lens or a telescope 
fixed at infinity. 

Thus, in the case of Fraunhofer diffraction, two conditions have to be 
realized: incident and diffracted waves are flat. If at least one of two 
conditions is not occurred, we have the case of Fresnel diffraction. 

A device for Fraunhofer diffraction observations is shown on  
Fig. 3.17. A point source is placed in the lens main focal plane 1L .  

After the lens, a parallel beam goes to an opaque obstacle B with an 
opening. The diffraction pattern is observed in the focal plane of the 
second lens 2L . 
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Fig. 3.17 

 
The criterion that characterizes the type of diffraction. Although 

there is no fundamental physical difference between Fraunhofer and 
Fresnel diffraction, but there are geometrical conditions under which it 
is possible to observe a particular type of diffraction.  

Set the approximate quantitative criterion that allows determining 
the type of diffraction. For this purpose, we use the formula (3.7a) 

.mr m b= λ  

This formula describes the case when a flat wave ( ∞→a ) normally 
falls to the opening of radius mr ; m is the number of Fresnel zones that 
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are fitted in the opening for the observation of the point P, distanced 
from the opening at a distance b. Using (3.7a), we get 2 /mm r b= λ . Since 
the nature of the diffraction pattern is determined exclusively by the 
number of the open Fresnel zones, the last equation can be taken as a 
criterion p for determining the diffraction type. Substituting mr  for a 
characteristic size d of the opening, and b for l, we obtain 

2 /p d l= λ , 

where d is the radius of the opening or disc or, for example, the width of 
the slit and so on. 

The value of this dimensionless parameter determines the nature of 
the diffraction: 

if 1~p , this is Fresnel diffraction; 
if 1>>p ,  this is approximation of geometrical optics; 
if 1<<p , this is Fraunhofer diffraction. 
In fact, if 1~p  (a small number of Fresnel zones is open), we have 

a classic case of Fresnel diffraction when minima and maxima of 
intensity are observed on the screen. Depending on the number of the 
open Fresnel zones, it can be either a maximum or a minimum in the 
center of the diffraction pattern. 

The case 1>>p  corresponds to a large number of open Fresnel 
zones. Under this condition, the central part of the screen is equally lit 
and a microscopic diffraction pattern is observed only on the boundary 
of the geometrical shadow. This case is classified as an approximation 
of geometrical optics when you can ignore the phenomenon of 
diffraction and use the ordinary laws of geometrical optics. The criterion 
for the application of geometrical optics is not just the smallness of the 
wavelength compared with the size of the obstacles (eg, slit width), and 
the value p that should be 1>>p . For example, / 1000d λ =  ( dλ << ) і 

1000/ =dl . But, 2 / 1p d l= λ = . So, we have a perfect Fresnel 
diffraction in this case. 

Fraunhofer diffraction by slit. Let us consider the example of 
Fraunhofer diffraction of a plane monochromatic wave passing through 
a narrow infinitely long slit OO ′  of the width b in the opaque obstacle 
B. The incident plane wave front, the slit, and the screen are parallel to 
each other (Fig. 3.18). Fraunhofer Diffraction by narrow slit is a system 
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of interference maxima (blur images of the light source) separated by 
dark interference minima. 
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Fig. 3.18 

 
Let us divide the open part of the wave front into an infinite number 

of parallel to the slit edges elementary zones of the width .dx  One of 
these zones is shown at a distance x from the slit left edge (point O). 
Secondary waves propagated from the zones at the angle φ are collected 
by the lens L at the point .Pϕ  The lens collects flat (non-spherical) 
waves in the focal plane, so factor 1/ r  in the equation (3.1) is absent in 
the case of Fraunhofer diffraction. If the angles φ are not very large, the 
factor ( )K ϕ  in (3.1) is constant. Then the amplitude depends only on 
the area of the zone. The area is proportional to dx ; therefore, the 
amplitude ,dA Cdx=  where C is a constant. The oscillations from all 
elementary zones of the slit come to the point 0P  with the same phases 
and mutually reinforce each other: 

0
0

,
b

A dA Cdx Cb= = =∫ ∫  hence 0AC
b

=  і 0AdA dx
b

= . 

To determine the resultant amplitude in any point ϕP  on the screen, 
it is necessary to take into account the phase difference between the 
waves coming from the different zones of the slit to the observation 
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point. If the phase of oscillations produced by the elementary zone 
located near the left edge of the slit (point A) is taken as zero, the phase 
of oscillations from the zone dx  (Fig. 3.18) is 

2 sink xπδ = ⋅ Δ = ϕ
λ

, 

Where 2 /k = π λ  is the wavenumber; sinxΔ = ϕ  is the optical path 
difference.  

Thus, the oscillations caused by the elementary zone of coordinate x 
at the point ϕP  (its position is determined by the angle of diffraction φ) 
can be represented as 

0 2cos sin
A dxdE t x

bϕ
π⎛ ⎞= ω − ϕ⎜ ⎟λ⎝ ⎠

, 

which is the real part of the equation: 
2 sin

0
i t xA dxdE e

b

π⎛ ⎞ω − ϕ⎜ ⎟λ⎝ ⎠
ϕ = , 

where the initial phase can be regarded as equal to zero. 
Oscillations of all the elementary zones are coherent (because they 

are parts of a plane wave surface).  
So, finding the resultant amplitude in an arbitrary point comes down 

to the interference problem or the summation of oscillations. This is 
expressed by an integral over the entire width of the slit for all values of 
x from zero to b: 

2 sin
0

0

b i t xAE e dx
b

π⎛ ⎞ω − ϕ⎜ ⎟λ⎝ ⎠
ϕ = ∫ . 

Let us put before the integral sign factors that do not depend on x, 

and take sinπγ = ϕ
λ

, then 

2 20 0

0

(1 )
2

b
i t i x i t i bA AE e e dx e e

b i b
ω − γ ω − γ

ϕ = = −
γ∫ , 

or 

       ( )0 0 sin( )
2

i b i b
i t i b i t bA A be eE e e e

b i b

γ − γ
ω − γ ω −γ

ϕ

⎛ ⎞ γ−= = ⋅⎜ ⎟γ γ⎝ ⎠
       (3.14) 
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The real part of (3.14) expresses the resulting oscillations of the light 
wave in the point Pϕ  

0 sin( ) cos( )A bE t b
bϕ

γ
= ω − γ

γ
, 

which amplitude is 

0
0

sin( ) sin( sin / )
sin /

A b bA A
b bϕ

γ π ϕ λ= =
γ π ϕ λ

. 

Light intensity is proportional to the square of the amplitude, 
therefore, 

2 2

0 02 2

sin ( sin / ) sin
( sin / )

bI I I
bϕ
π ϕ λ α= =

π ϕ λ α
 ,                   (3.15) 

Where sin /bα = π ϕ λ ; 0I  is the intensity in the center of the 
diffraction pattern. Using (3.15) we see that I Iϕ −ϕ= . This means that 
the diffraction pattern is symmetrical relatively to the center of the lens. 
If the slit is displaced parallel to the screen (along the x, Fig. 3.18), the 
diffraction pattern on the screen remains fixed (its middle lies across the 
center of the lens). Instead, the shift of the lens at the fixed slit is 
accompanied by the same shift of the diffraction pattern on the screen. 

The intensity distribution. The intensity distribution according to 
formula (3.15) is shown on Fig. 3.19. Let us analyze it. 

 
 I0 

I 

0,4I0 

2b
λ

2b
λ−

b
λ 2

b
λ

b
λ−2

b
λ−

sin ϕ0 

 
Fig. 3.19 

It is known that the limit 
0

sinlim
α→

α
α

 goes to one. Then, from (3.15) it 

follows that the main central maximum is in the center of the diffraction 
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pattern. Obviously, the condition for the existence of the main peak does 
not depend on λ , and its position remains the same for all wavelengths. 
Thus, in case of Fraunhofer diffraction, maximum is always observed in 
the center of the diffraction pattern, which has the form of the light and 
dark alternating bands. Remember that in Fresnel diffraction, central 
diffraction band can be both bright and dark. 

Positions of diffraction maxima and minima of each number except 
of the first depend on the wavelength. Therefore, if a slit is illuminated 
by a white light, the central maximum position remains unchanged but it 
will have a rainbow color around the edges. Minima of the light will not 
be observed in any point of the screen, as both the maxima and minima 
of light with different λ  overlap. 

Equation (3.15) shows that the minimum position is defined by 
    sin / sin /b n n bπ ϕ λ = ± π⇒ ϕ = ± λ    ( ...,3,2,1=n ),      (3.16) 

where n is the order of diffraction, 0≠n  while the central maximum is 
formed for 0=n ; sinbΔ = ϕ  is the path difference between the beams 
that spread from the edges of the slit (Fig. 3.18).  

Equation (3.16) shows that the decrease of the slit width b is 
accompanied by expansion of the diffraction pattern. 

Between these minima, the secondary maxima are placed (Fig. 3.19). 
The angles of diffraction maxima can be found through graphic solving 
of the transcendental equation tgα = α , where sin /bα=π ϕ λ . These 
equations are based on the conditions for an extremum of (3.15), i.e. the 
extremum of sin /α α . It is enough to take the derivative of sin /α α  and 
equate it to zero. Graphical solution of transcendent equation: 

1 1sin / 1,43bα = π ϕ λ = ± π ;   2 2sin / 2,46 ;bα = π ϕ λ = ± π  

3 3sin / 3,47bα = π ϕ λ = ± π ;   4 4sin / 4,48bα = π ϕ λ = ± π  etc. 

Substituting them into equation (3.15) and taking into account that 
for 0 0α =  the intensity equals 0I , we get: 

0 1 2 3: : : : ... 1: 0.045 : 0.016 : 0.008I I I I = : .... 

It shows that the intensity of the secondary maxima rapidly decrease, 
in particular, the intensity of the first peak does not exceed 5 % of the 
intensity of the central peak. This means that most of the light flux that 
has passed through the slit is concentrated in the central maximum. 
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The method of Fresnel zones. Considered calculation of the 
diffraction pattern is mathematically accurate. Let us show that using 
the less accurate method of Fresnel zones leads to the same results, but 
by much simpler way. 

Division of the slit on the Fresnel zones of width /(2sin )λ ϕ  
provides that the optical path difference from the edges of each Fresnel 
zone is / 2Δ = λ . All zones emit exactly identical waves. So, 
interference from each pair of adjacent zones gives zero resulting 
oscillation amplitude, since these zones are the sources of oscillations 
with the same amplitude but with the opposite phases.  

Thus, the result of interference in a point is determined by how many 
Fresnel zones are fitted into the slit.  

If the number of zones is even: 

 sin 2
2

b n λϕ = ± , ( 1, 2, 3,...n = ),  

diffraction minimum is observed. If the number of zones is odd: 

     sin (2 1)
2
λϕ = ± +b n    ( ...,3,2,1=n ),                  (3.17) 

diffraction maximum is observed due to a non-compensated Fresnel 
zone.  

Using the formula for the maxima (3.17), we can define the variable 
sin / ( 1/ 2)b nα = π ϕ λ = ±π + : 

1 1.5α = ± π , 2 2.5α = ± π , 3 3.5α = ± π , 4 4.5α = ± π  etc. 

Comparing these values with previous ones, we can see that the 
difference between them is small; so, in practice the position of the 
maxima is convenient to calculate by the formula (3.17). 

The method of graphical addition of amplitudes. Let us divide the 
slit (the open part of the wave surface) into N zones of equal width. In 
general, the amplitude AΔ  of each zone depends on the coefficient 

( )K ϕ .  
However, we can neglect this dependence for the small angles and 

assume that the oscillations of each zone have the same amplitude. 
Different values of the phase difference 2 sin /k bδ = Δ = π ϕ λ  give 
different curvature of the broken line.  
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Hence, using the graphical images we can get a chain of equal in 
magnitude vectors AΔ  and they are rotated relatively to each other at 
the same angle; the resultant amplitude A  is the sum of vectors AΔ . 

For 0ϕ = , the phase difference δ  is zero and the vector diagram has 
the form shown on Fig. 3.20, a. The amplitude of the resulting 
oscillations is equal to the sum of amplitudes 0N A AΔ = . 
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Fig. 3.20 

If δ = π  ( sin / 2bΔ = ϕ = λ ), the oscillations from the edges of the slit 
are antiphase. The vectors AΔ  form a semi-circle of the length 0A   
(Fig. 3.20, b). Thus, the resulting amplitude is equal to 02 /A π . The 
intensity is proportional to the amplitude squared; so, the intensity at 
these points is 2

0 04 / 0.4I Iπ ≈  (see Fig. 3.19). 
If 2δ = π  ( sinbΔ = ϕ = λ ), the broken line is being closed forming a 

circle of the length 0A  and diameter 0 /A nπ  (Fig. 3.20, c).  
The first maximum is observed if 3δ = π  ( sin 3 /2bΔ= ϕ= λ ); then, 

1 02 / 3A A≈ π , (Fig. 3.20, d).  



 

 72

The intensity of this peak is 2
1 0 04 / 9 0.045I I I= π ≈ . 

Similarly, we can find the relative intensity of other secondary 
maxima. As a result, we obtain the known relation: 

0 1 2 3 2 2 2

4 4 4: : : : ... 1: : : : ...
9 25 49

I I I I ⎛ ⎞ ⎛ ⎞ ⎛ ⎞= =⎜ ⎟ ⎜ ⎟ ⎜ ⎟π π π⎝ ⎠ ⎝ ⎠ ⎝ ⎠
 

1: 0.045: 0.016 : 0.008= : ... 
Width of the slit. Let us consider the influence of the slit width onto 

the Fraunhofer diffraction pattern. Fig. 3.19 shows that the edges of the 
central peak fall on the first minima, which correspond to the values of 
sin /bϕ=±λ . So, the angular width of the central maximum on the screen is: 

2arcsin( / )bΔϕ = λ .                               (3.18) 
It shows that with the decreasing size of the slit b the angular width 

of the central maximum increases. This means that the central maximum 
(all secondary maxima as well) expands. If b = λ , the angular width of 
the central peak is Δϕ = π  (the central maximum extends to infinity), 
and there are no minimums.  

If /b λ  is small (very narrow slit), the diffraction peaks are broad, 
and the whole picture is fuzzy.  

With the further increase in the slit size, the diffraction pattern 
becomes clearer with the brighter and sharper peaks. Diffraction 
patterns for the narrow and wide slits are shown on Fig. 3.21, a, b. 

    
                      а                                                              б 

Fig. 3.21 
 
Finally, if /b λ  is large ( b >> λ ), the central maximum becomes 

very narrow and bright.  
It is a screen image formed by the lens according to the laws of 

geometrical optics. In this case, the value of sin / bϕ = ±λ  can be 
replaced by / bϕ ≈ ±λ , then, formula (3.18) for the angular width of the 
central maximum is simplified to the form: 

2 / bΔϕ ≈ λ . 
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3.6. Diffraction grating 
 
The diffraction grating is an optical instrument designed for the 

decomposition of light into a spectrum and wavelengths measuring. The 
simplest one-dimensional grating is a collection of parallel pitches 
drawn on a glass plate and placed at equal distances from each other; the 
transparent parts between pitches act as slits. This grating is called the 
amplitude grating; it has different transparency in different places that 
changes the amplitude (intensity) of the transmitted light. 

The diffraction grating is shown on Fig. 3.22. The slit width is b, the 
width of the opaque barrier between the slits is a. The value bad +=  is 
called a period or diffraction grating constant. The collecting lens L is 
placed parallel to the grating; the screen E is placed in the lens focal 
plane. The light source is a brightly illuminated slit placed in the focal 
plane of another lens placed before the diffraction grating. Under this 
condition, the diffraction pattern is observed in parallel rays (Fraunhofer 
diffraction). 
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Fig. 3.22 

 
Each slit separately gives a diffraction pattern shown on Fig. 3.19. 

However, oscillations from all slits are coherent as they all belong to the 
same wave surface. Hence, the rays from different slits interfere in all 
points of the screen. So, the resulting oscillation in a point Pϕ  is the 
vector sum of N amplitudes (N is the number of slits in a diffraction 
grating); the amplitudes Aϕ  are the same and the phases differ by the 
same value: 
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2 sink dπδ = Δ = ϕ
λ

,                               (3.19) 

where sindΔ = ϕ  is the optical path difference between two rays from 
the adjacent slits (Fig. 3.22). 

Oscillations of light waves from the first slit in the point Pϕ  have the 

form 1
i tE A e ω

ϕ= . Then, the phases of oscillations from the other slits lag 
behind (or outstrip) by δ  and the other oscillations can be described by 
the equations:  

( )
2 1

i t iE A e E eω −δ − δ
ϕ= = , 2

3 1
iE E e− δ= , … ( 1)

1
N i

NE E e− − δ= ,... . 

The sum of these oscillations is the resulting oscillation in the 
direction ϕ  relatively to the diffraction grating: 

2 ( 1)
gr 1( ) [1 ... ]i i N iE E e e e− δ − δ − − δ

ϕ = + + + + . 

The equation in brackets is the sum of N exponentially terms with 
the first term, which is equal to one. Using the formula for the sum of 
geometric progression terms, we obtain 

gr 1
1 1( )
1 1

iN iN
i t

i i
e eE E A e
e e

− δ − δ
ω

ϕ ϕ− δ − δ

− −= =
− −

.                (3.20) 

Square of the amplitude is the intensity of the light wave in the focal 
plane of the lens. Multiplying the left and the right sides of (3.20) by the 
complex conjugate values, we obtain: 

* 2
gr gr gr

(1 )(1 )( ) ( ) ( )
(1 )(1 )

iN iN
i t i t

i i
e eI E E A e e
e e

− δ δ
ω − ω

ϕ ϕ ϕ ϕ − δ δ

− −= =
− −

, 

where 
2

2 2 2
гр 2

2 ( ) 1 cos sin ( / 2)( )
2 ( ) 1 cos sin ( / 2)

iN iN

i i

e e N NI A A A
e e

δ − δ

ϕ ϕ ϕ ϕδ − δ

− − − δ δ= = =
− − − δ δ

 

[we have used the well-known transformation formula: 
xee ixix cos2=− − , )2/(sin2cos1 2 xx =− ]. Substituting the values 

2I Aϕ ϕ=  from one slit from the equation (3.15): 
2 2

gr 0 2 2

sin sin ( / 2)( )
sin ( / 2)

NI Iϕ
α δ= ⋅

α δ
,                          (3.21) 
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or taking into account formulas (3.19) and sin /bα = π ϕ λ  
2 2

gr 0 2 2

sin ( sin / ) sin ( sin / )( )
( sin / ) sin ( sin / )

b N dI I
b dϕ
π ϕ λ π ϕ λ= ⋅

π ϕ λ π ϕ λ
,           (3.22) 

where 2
00 AI =  is the intensity created by one slit across the center of 

the lens at the point 0P . 
The first factor in (3.22) is responsible for the diffraction intensity 

distribution from each slit. It is zero at the points for which 
   sinb nϕ = ± λ   ( ...,3,2,1=n ).                 (3.23) 

At these points, the intensity of the wave created by each individual 
slit is zero [see condition (3.16)]. Since all of the diffraction grating slits 
are identical, the minimum condition (3.23) is true for all the other slits 
and for the whole grating. 

The second factor in equation (3.22), which is responsible for the 
interference of waves from the slits, gives the value 2N  in the points 
that satisfy the condition: 

 sind mϕ = ± λ ,  ( ...,3,2,1,0=m ).                    (3.24) 
The equation (3.24) represents condition of the main maximum of the 

diffraction grating; m is the order of the main maximum. As it will be 
shown below, the greater the diffraction grating numbers of slits N, the 
narrower and sharper the maxima. 

In the intervals between adjacent maxima, the additional minima 
arise for the areas where the oscillations of the slits mutually extinguish 
each other. Interference from slits is described by the second factor in 
(3.21); so, the additional interference minima appear when 
sin( / 2) 0Nδ = , however sin( / 2) 0δ ≠ . That is sin /N d hπ ϕ λ = π  
( 2 /h Nδ = π ), and 

sin hd
N

ϕ = ± λ                                (3.25) 

( 1, 2,..., 1, 1,..., 2 1, 2 1, ...h N N N N= − + − + ).  
The value h  in the formula (3.25) takes all integer values except of 

0, N, 2N ... If ...,2,,0 NNh =  the ratio Nh /  is an integer ( Nhm /= ) 
and minimum additional condition (3.25) becomes the condition of 
maximum (3.24). The function (3.22) graph for 4=N  and 3/1/ =db  is 
shown on Fig. 3.23.  
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The dotted curve that goes around the top of the main maxima 
represents the intensity of light from one slit multiplied by 2N . It is seen 
that three additional minima and two secondary maxima are located 
between every two main maxima. If 3/1/ =db , the main maxima of the 
3rd, 6th, etc. orders fall on minimum intensity from one slit (their 
positions are given in brackets), hence, these peaks disappear. 
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Indeed, if the condition (3.24) takes place, the formula (3.22) takes 

the form 
2

2
0 2

sin ( sin / )
( sin / )m

bI I N
b
π ϕ λ=

π ϕ λ
. 

If sin /m dϕ = λ , we obtain 
2 2

20
2 2 2 sinm

I N d mbI
m b d

π=
π

.                              (3.26) 

We have two conclusions from the equation (3.26). First, with the 
increase of the order of diffraction m the intensity of the corresponding 
maximum sharply decreases inversely proportional to the square of the 
order of diffraction 2/1~ mIm . Second, the light intensity of the m-th 
maximum depends on the relationship db /  and when dmb /  is an 
integer, sin( / ) 0md dπ =  and the intensity of the corresponding main 
maximum becomes zero 0=mI .  
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The number of main maxima is determined by the ratio of the 
grating period d and the wavelength λ. Since the module of sin ϕ cannot 
be greater than one, then the formula (3.24) gives 

/m d≤ λ .                                      (3.27) 
Let us estimate the angular width of the main maxima. The equation 

(3.25) shows that the main maximum of m-th order occurs when 
mNh = . So, the next adjacent minima occur if 1−= mNh  and 

1+= mNh . According to the equation (3.25) 1sin m
mN

Nd
+′ϕ = λ , 

1sin m
mN

Nd
−′′ϕ = λ , and the difference of the sines of the angles is: 

2sin sin 2cos sin
2 2

m m m m
m m Nd

′ ′′ ′ ′′ϕ + ϕ ϕ − ϕ λ′ ′′ϕ − ϕ = = . 

For the large values of N, the difference m m′ ′′ϕ − ϕ  is small; hence, 

sin
2 2

m m m′ ′′ϕ − ϕ δϕ
≈  and 2m m m′ ′′ϕ + ϕ ≈ ϕ . Then, taking into account the 

formula (3.24) we obtain: 

2 2 2 2

2 2 2
cos 1 sin 1 /

m
m m

Nd Nd Nd m d
λ λ λδϕ = = =

ϕ − ϕ − λ
.        (3.28) 

As it can be seen from the equation (3.28), the angular width of the 
maxima is directly proportional to the wavelength λ  and inversely 
proportional to the total width of the diffraction grating Nd . The greater 
the number of the diffraction grating slits N, the narrower and sharper 
the main maxima. Diffraction patterns, which are formed respectively 
by one, five, and twenty slots, are shown on Fig. 3.24. 

   
N =1 N = 5 N = 20 

Fig. 3.24 
 

If the sun (white) light is falling to the diffraction grating, maxima 
for different wavelengths do not coincide with each other [except the 
central maximum ( 0=m )].  
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Therefore, the central maximum is white, and the other maxima look 
like colored stripes, that are spectra of the first, second, third, etc. 
orders. The color of each strip changes from violet on the inner edge 
(the closest to the zero-order maximum) to red on the outer edge. 

The property of diffraction grating is widely used to study the 
spectral composition of light, determination of wavelengths and 
intensities of all its monochromatic components. Measurement methods 
of Angstrom (1868) and especially Rowland (1888) gave possibility to 
create a detailed atlas of the spectra of sunlight. They were able to 
measure wavelengths up to the sixth decimal place. 

Apparatus for the spectral composition of light study on the base of 
diffraction grating is called diffraction spectrograph. The main 
characteristics of any spectral instrument are the angular dispersion, 
spectral resolution and dispersion region. 

The angular dispersion D. Using angular dispersion D, we can 
determine the degree of angular separation of different wave lengths.  

D δϕ=
δλ

, 

where δϕ  is the angular distance between the spectral lines that differ in 
the wavelength by δλ .  

Differentiation of the equation (3.24) with the constants m gives 
cosd mϕδϕ = δλ , where 

cos
mD

d
δϕ= =
δλ ϕ

. 

One can see that for some order of the spectrum m, the smaller the 
diffraction grating period d, the greater the angular dispersion. In 
addition, the angular dispersion increases with m, i.e. the higher the 
order of spectrum m, the greater the angular dispersion. For small angles 
cos 1ϕ ≈ , so:  

d
mD ≈ . 

Linear dispersion. Since the diffraction lines are often observed on 
a screen or a photographic plate, then, it is conveniently to replace the 
angular distance between the lines on the linear distance lδ . Obviously 
that l fδ = δϕ , so the linear dispersion is: 
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lin
lD fDδ= =

δλ
, 

or for the small angles 

lin
mD f
d

= . 

Linear dispersion is measured in millimeters per angstroms. 
Spectral resolution. Spectral resolution shows the possibility to 

distinguish two close spectral lines with the wavelengths λ  and λ + δλ . 
If the diffraction maxima are blurred, they mix into each other and you 
cannot distinguish them. The narrower maxima require the smaller angle 
between them to resolute them in the space. 

Spectral resolution of the diffraction grating is a dimensionless value 

R λ=
δλ

, 

where δλ  is the smallest difference of two wavelengths of the spectral 
lines when these lines are observed separately. 

According to the Rayleigh criterion, two 
spectral lines of the same intensity with the 
similar wavelengths λ  and λ + δλ  are 
resoluted if maximum of the wavelength λ  
coincides with minimum for the 
wavelength λ + δλ  (Fig. 3.25). Under this 
condition, the light intensity between 
maxima is not more than 80 % of the 
maximum. This is enough to see these two 
maxima separately. 

According to (3.25), the condition of  
m-th order first minimum is 1+= mNh ; hence, for the wavelength λ : 

minsin ( 1) / ( 1/ )d mN N m Nλϕ = + λ = + λ . 

According to the Rayleigh criterion, this minimum coincides with 
the m-th order maximum for the wavelength λ + δλ : 

maxsin ( )d mλ+δλϕ = λ + δλ . 
Since min max

λ λ+δλϕ = ϕ , then 

 ( ) ( 1/ )m m Nλ + δλ = + λ , 

 

 φλ    = φλ + δλ 
min max 

λ + δλ λ 

φ 

 
Fig. 3.25 
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where 

R mNλ= =
δλ

. 

According to equation (3.27), the maximum order of diffraction is 
/m d= λ . Accordingly, the maximum value of spectral resolution is 

max
NdR =
λ

, 

where the product Nd  is equal to the total width of the diffraction 
grating.  

Dispersion region. Spectral instrument is not suitable for the study 
of certain areas of the spectrum if the spectra of adjacent orders overlap. 
Let us find the width of the spectral interval in which there is no overlap 
of the spectra of the adjacent orders. The long-wavelength edge of the 
m-th order spectrum coincides with the edge of the shortwave spectrum 
(m +1)-th order if ( ) ( 1)λ + Δλ = + λm m ; so, the dispersion region is: 

λΔλ =
m

. 

Spectra of the first, second or third orders are usually observed. 
Accordingly, the dispersion regions Δλ = λ , / 2Δλ = λ  or / 3Δλ = λ  are 
sufficiently large. In particular, the first-order diffraction grating 
dispersion region coincides with the whole area of the visible spectrum; 
so, you can analyze even white light. This is a huge advantage of the 
diffraction grating compared to interferential spectral instruments, 
including Fabry-Perot interferometer. 

 
3.6.1. Resolution of the lens objective 

 
The main component of optical instruments such as telescopes, 

cameras, etc., is a lens that mainly provides precision of this optical 
system.  

Resolution is directly related to the wave nature of light, whereas it 
was believed in geometrical optics that the ideal optical system can 
show any point of the object as a point of the screen image. However, 
the diffraction of light limits images resolution. Therefore, we must take 
into account Fraunhofer diffraction for determining the resolution of 
optical instruments. 
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Due to diffraction by round lens aperture, not the point source image 
but the combined intensity distribution is formed in its focal plane  
(Fig. 3.26). It has the form of a central maximum surrounded by the 
concentric dark and light rings. When the light is white, the rings have 
rainbow colors, but the central maximum always remains white. 

 

1f 
I φ1

λ

0.017

Lens  

0.004

0  
Fig. 3.26 

 
The calculation shows that the angular size of the first dark ring is 

determined by: 

1sin 1.22 / Dϕ = λ , 

where D is the lens frame diameter. If >> λD , we can assume that 
 1 1.22 / Dϕ ≈ λ .                                   (3.29) 

Approximately 84 % of the luminous flux passing through the frame 
of the lens falls on the central maximum. The intensity of the first bright 
ring is 1.75 % and for second one is 0.4 % of the intensity of the central 
maximum. In the first approximation, we can assume that the diffraction 
pattern consists of only one central maximum; its angle radius is 
determined by the formula (3.29). This maximum is a blur image (due to 
diffraction of light) of infinitely distant point source. Hence, the wave 
nature of light leads to the fact that even the most perfect lens cannot 
provide perfect optical image. 

Let us consider two incoherent point sources, for example, two close 
stars, which are observed by the telescope. If the distance between the 
centers of their images is compared with the size of the central maxima, 
the resulting image does not differ from the image of one point source. 
Then, the optical device does not recognize the two points. Starting 
from a certain distance between the sources, a hollow appears between 
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the centers of the two maxima, and it will be observed as separate 
images of two point sources (Fig. 3.27). 

 f 

S1 

S2 

φmin 

 
Fig. 3.27 

 
According to the Rayleigh criterion, two incoherent point sources are 

observed separately if the center of the diffraction maximum of one of 
them coincides with the nearest minimum. Fig. 3.26 shows that it occurs 
when the angular distance between the point sources is minimal, that is 
defined by the formula (3.29) 

min 1.22 / Dϕ = λ . 

The value inversed to the minimum angle is called resolution of an 
optical device: 

 min1/ /1.22R D= ϕ = λ .                            (3.30) 

Formula (3.30) shows that the larger the diameter, the greater the 
resolution of the optical device. We can consider the pupil of the eye as 
the lens diameter. Assuming that the diameter of the pupil is 4 mm, we 
obtain that minimum angular distance between two incoherent point 
sources that are perceived separately by our eyes is: 

3
3

min
0.55 101.22 0.17 10 rad 35

4

−
−⋅ ′′ϕ = ≈ ⋅ ≈ . 

The concept of resolution is especially important for telescopes. A 
telescope with one of the world’s largest mirror of the 5 m diameter 
could theoretically provide angular resolution 

6
7

min
0.55 101.22 1.3 10 rad 0.03

5

−
−⋅ ′′ϕ = ≈ ⋅ ≈    

and resolution 710~R . 
Note that the large size of astronomical telescopes is a result of both 

the size of a mirror and the lens. The great lens increases the light flux 
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incoming into the telescope from celestial objects. It is proportional to 
the lens diameter squared; so, large telescopes can detect and 
photograph celestial objects of low brightness. 

To increase the resolution of astronomical telescopes, we should also 
get rid of the negative effects of the atmosphere. The removal of 
telescopes into space is one of the solutions of the problem. An example 
is the American telescope «Hubble» with a mirror diameter of 2.4 m, 
which is on the Earth orbit (the altitude is 589 km) since 1990. Due to 
the absence of turbulent flows in the atmosphere, resolution of 
«Hubble» is 7–10 times greater than the analogous telescope located on 
the Earth. In addition, «Hubble» is able to record the electromagnetic 
radiation in the infrared and ultraviolet (including relict soft X-ray 
emission) wavelengths, where the absorption of these radiations by the 
Earth's atmosphere is very large. 

Due to «Hubble», science has unique information about the 
formation and existence of the Universe. In particular, as the results of 
observations of quasars, the modern cosmological model is built in 
which the Universe filled with dark energy expands with acceleration. 
Also, the specified age of the Universe is 13.7 billion years. 

 
3.7. Diffraction by two-dimensional  

and three-dimensional gratings. X-ray diffraction 
 
Conditions (3.24) for the diffraction maxima formation is written for 

the case of perpendicular incidence of the plane wave on the grating (see 
Fig. 3.18).  

Determine the condition of the maxima if a plane wave falls incline 
(Fig. 3.28). In this case, we should consider that the interfering parallel 
rays 1′  and 2′  from the adjacent grating slits, except the path difference 

1Δ  must have an additional path difference 2Δ  caused by the incline 
fall of the beams.  

Fig. 3.28 shows that the total path difference of the interfering  
rays is: 

1 2 (sin sin )dΔ = Δ − Δ = ϕ − ψ . 

Thus, the condition for the diffraction maxima for the plane wave 
incline fall is: 

 (sin sin )d mϕ − ψ = ± λ .                             (3.31) 
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Fig. 3.28 

 
It is more convenient to characterize the direction of the incident 

wave through the angles 0α  and α  between the beams and the axis x 
(slide angles), (Fig. 3.28). It is obvious that the equation (3.31) turns 
into the form 

 0(cos cos )d mα − α = ± λ .                       (3.32) 

If two one-dimensional diffraction gratings are placed one after the 
other so that their strokes intersect, then we obtain a flat two-
dimensional periodic structure. Diffraction of such structures is 
overlapping of diffraction patterns from the corresponding one-
dimensional gratings. The maxima and minima of the gratings are 
placed mutually perpendicular. Let the first grating create several 
maxima determined by the condition: 

1 1 1sind mϕ = ± λ ;    ( =1m 0, 1, 2,…).                   (3.33) 

The second grating divides the first maxima according to the 
condition: 

2 2 2sind mϕ = ± λ ;   ( =2m 0, 1, 2,…).                   (3.34) 
As a result, the diffraction pattern will have the form of the properly 

placed spots in the plane. Each spot is described by two indices of 
diffraction 1m  and 2m  (Fig. 3.29). 
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Fig. 3.29 

 
By measuring the angles 1ϕ  and 2ϕ  that determine the positions of 

the maxima and knowing wavelength λ , we can find the two-
dimensional diffraction grating periods 1d  and 2d  by formulas (3.33) 
and (3.34).  

Diffraction is also observed in the three-dimensional structures (the 
crystal grating of solids). Atoms (molecules) play a role of centers that 
coherently scatter the incident light. 

Assume that 1d , 2d , 3d  are periods of a rectangular grating along 
the three axes X, Y, Z, parallel to the three edges of the grating. Then the 
principal Fraunhofer diffraction maxima must satisfy three conditions 
arising from the condition (3.32) for the maxima of a one-dimensional 
diffraction grating. These relations are called Laue conditions: 

 1 0 1(cos cos ) ;d mα − α = ± λ  

2 0 2(cos cos ) ;d mβ − β = ± λ                             (3.35) 

 3 0 3(cos cos ) ,d mγ − γ = ± λ  

where, 0α , 0β , 0γ  and α , β , γ  are the angles between the axes X, Y, Z 
and the directions of the incident and diffracted waves; 1m , 2m , 3m  are 
the integers presenting the maximum order (diffraction indices); λ  is 
the wavelength. 

Obviously, there is a condition for a rectangular coordinate system:  
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2 2 2cos cos cos 1α + β + γ = .                            (3.36) 

The angles α , β , γ , which determine the diffraction maxima 
directions, can be found by solving the equations (3.35) and (3.36). 

In particular, for a rectangular three-dimensional grating, it follows 
that the wavelength should be: 

31 2
0 0 0

1 2 3
2 2 2

1 1 2 2 3 3

cos cos cos
2

( / ) ( / ) ( / )

mm m
d d d
m d m d m d

α + β + γ
λ = −

+ +
. 

A grating dimension (d ~ 0.5 nm) is much smaller than the 
wavelengths of visible light (λ ~ 500 nm), so the condition min2dλ <  is 
not satisfied for the visible light. However, X-rays with the wavelengths 
(0.1–0.01 nm) satisfy this condition. This means that crystals are natural 
diffraction gratings for X-ray. 

In 1912, X-ray diffraction was first recorded on a film by Laue, 
Friedrich and Knipplinh. At that time, this event was of great scientific 
importance because: 

a) it was definitively proved that X-rays have the same 
electromagnetic nature as visible light but differ from it by the 
significantly smaller wavelength that leads to their great penetrating 
power. At the scale of the wavelength, X-rays take place between 
ultraviolet light and gamma radiation; 

b) all scientists accepted the idea of a discrete and periodic structure 
of crystalline substances. 

Visual explanation of the phenomenon of diffraction of X-rays 
passing through a crystal is much simpler, if we consider the diffraction 
of X-rays as a result of reflection on crystal parallel planes, which 
consist of atoms (molecules) of a crystal grating. This explanation was 
independently proposed by Bragg and Wolf.  

Secondary waves, reflected on different atomic planes, are coherent; 
so, as a result of interference, we get maxima, if the path differences 
between neighboring waves are multiple λ . The refractive index of all 
substances for X-rays is practically equal to one; so, the path difference 
of the two waves reflected on the adjacent crystal planes is 

2 sinAO OB d+ = ϑ  (Fig. 3.30, a), where d is the interplanar distance;  
ϑ  is the angle of sliding. Fraunhofer diffraction maxima are determined 
by the Bragg–Wulff formula: 



 87

2 sind mϑ = ± λ ,   ( m = 0, 1, 2,…).                (3.37) 

A lot of parallel atomic planes in different directions can be drawn in 
a crystal (Fig. 3.30, b). Each of these systems can create some 
diffraction maxima. However, the most effective are the planes where 
the atoms are placed most densely. 

 

ϑ  ϑ

A 
O 

B 
d ϑ  ϑ  

    

 

 
                               a                                                               b 

Fig. 3.30 
 
Note that the Bragg–Wolf formula (3.37) can be obtained as a 

consequence of the Laue conditions (3.35). 
Diffraction of X-rays by crystals was developed in two main 

directions: X-ray spectroscopy (the study of the spectral composition of 
radiation) and X-ray structure analysis (the study of the structure of 
crystals). These two ways are based on the use of formula (3.37). 

Knowing the grating parameters, we can define the directions of 
diffraction maxima that perform spectral analysis of X-rays. Conversely, 
knowing the wavelength and the type of diffraction pattern, we can find 
the crystal structure, i.e. to do X-ray analysis. In particular, the Lauye 
method is based on diffraction of a narrow beam of «white» X-rays (a 
continuous spectrum of the different wavelengths) by fixed 
monocrystalline sample. As a result, a system of diffraction spots is 
formed on the photographic plate. We can determine the symmetry type 
of the crystal by the location of the diffraction spots. 

These methods have a significant disadvantage – a small amount of 
diffraction spots (several dozen) recorded on a film. Powerful X-ray 
analysis can be performed using modern diffractometers equipped with 



 

 88

computers. Such devices use very powerful monochromatic X-rays; it is 
possible to rotate a single-crystal sample arbitrarily relative to the 
direction of the incident X-ray beam.  

This allows focusing a single-crystal sample that condition (3.37) 
can be established for each of the crystal planes, and then measuring the 
intensity of every maximum. As a result, we can observe hundreds or 
thousands of diffraction maxima.  

This increase in diffraction data allows to perform complete 
decryption of the crystal structure (establish types of atoms and their 
coordinates in the unit cell of the crystal).  

If we know the atoms coordinates, we can calculate any geometrical 
parameters of molecules (distance and angles between atoms, etc.) and 
the crystal grating.  

This is why X-ray analysis method is considered as the most 
informative of all existing physical and chemical methods of three-
dimensional structure of crystal bodies. 

 
 

 
 

1. What is diffraction of light? 
2. Formulate the Huygens-Fresnel principle. 
3. What is the Fresnel zone? 
4. Build the scheme of Fresnel diffraction by round hole. 
5. Build the scheme of Fresnel diffraction by round disk. 
6. Explain the Fresnel spiral principle. 
7. Build the scheme of Fresnel diffraction by straight edge of a half plane. 
8. Build the scheme of Fresnel diffraction by slit in the opaque screen. 
9. Explain the Cornu spiral principle. 

10. What is the criterion of transition from Fresnel diffraction to Fraunhofer 
diffraction and to geometric optics? 

11. Build the scheme of the experiment of Fraunhofer diffraction by slit in an 
opaque screen. 

12. What is a diffraction grating? 
13. Write the condition of the main maxima for a diffraction grating. 
14. Give a definition of the angular dispersion. 
15. Give a definition of the spectral resolution. 
16. What is the Rayleigh criterion for the observation of two close spectral 

lines? 
17. What is the resolution of the diffraction grating? 

 
 

Test Questions ? 
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Problem 1. A beam of light from a discharge tube falls normally 
onto a diffraction grating. What should the constant of the diffraction 
grating be for the maxima of the two lines λ1 = 6563 Å and λ2 = 4102 Å 
to coincide in the direction φ = 41°? 

Data: 
λ1 = 6563⋅10–10 m 
λ2 = 4102⋅10–10 m 
φ = 41° 

d = ? 

Solution 
In our case dsinφ = k1λ1 = k2λ2. Hence 

1 1

2 2

6563 1.6
4102

k
k

λ= = =
λ

. Since k1 and k2 must be 

integer, obviously, the values k1 = 5 and k2 = 8 
satisfy the above-mentioned condition. So 

10
61 1 5 6563 10 5 10

sin 0.656
kd

−
−λ ⋅ ⋅= = = ⋅

ϕ
m. 

 

 
 

1. Find the number of Fresnel zones m, which fill a hole of the radius 
r for a point that is remote at the distance b from the hole center, if the 
incident wave is flat. (m = r2/bλ) 

2. A beam of light falls normally on the diffraction grating. The light 
wavelength of 589 nm forms diffraction angle of the first order 17° in 
the spectrum. Some other line forms the angle 24° in the spectrum of the 
second order Find the wavelength of the second line and the number of 
grooves per unit length of the diffraction grating. (4010 nm, 500 mm–1)  

3. Find the largest order of spectrum for the yellow sodium line  
(λ = 589 nm), if the diffraction grating constant is 2μm. (3) 

4. What is the least diffraction grating constant if two potassium lines in 
the first order spectrum (λ1 = 404.4 nm and λ2 = 404.7 nm) are distinguisha-
ble? The diffraction grating width: 3 cm, 6 cm (22 microns; 44 microns). 

5. Find the number of grooves per unit length of a diffraction grating 
if the mercury green line (λ = 546.1 nm) in the first order spectrum is 
observed at the angle of 19°. (600 mm–1) 

6. What is a diffraction grating constant if the maxima for λ1 = 656.3 nm 
and λ2 = 410.2 nm coincide at the angle of 41°? (5μm) 

7. The minimum angular dispersion of a diffraction grating is 
1.266·10–3 rad/nm. Find the angular distance Δφ between the diffraction 
grating spectrum lines with λ1 = 480 nm and λ2 = 680 nm. (Δφ = 22°) 

     Sample Problems 

Problems 


