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Abstract

Two-point nonlocal problem for the first order differential evolution equation with an operator co-
efficient in a Banach space X is considered. An exponentially convergent algorithm is proposed and
justified in assumption that the operator coefficient is strongly positive and some existence and unique-
ness conditions are fulfilled. This algorithm leads to a system of linear equations that can be solved
by fixed-point iteration. The algorithm provides exponentially convergence in time that in combination
with fast algorithms on spatial variables can be efficient treating such problems. The efficiency of the
proposed algorithms is demonstrated by numerical examples.
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1 Introduction

The m-point initial (nonlocal) problem for a differential equation with the nonlocal condition u(t0) +
g(t1; . . . ; tp;u) = u0 and a given function g on a given point set P = {0 = t0 < t1 < · · · < tp} , is
one of the important topics in the study of differential equations. Interest in such problems originates
mainly from some physical problems with a control of the solution at P . For example, when the function
g(t1; . . . ; tp;u) is linear, we will have the periodic problem u(t0) = u(t1). Problems with nonlocal conditions
arise in the theory of physics of plasma [19], nuclear physics [14], mathematical chemistry [15], waveguides
[12] etc. Two-point problem is also useful for considering the finale value problem [22].

Differential equations with operator coefficients in some Hilbert or Banach space can be considered as
meta-models for systems of partial or ordinary differential equations and are suitable for investigations using
tools of the functional analysis (see e.g. [4, 13]). Nonlocal problems can also be considered within this
framework [2, 3].

Discretization methods for differential equations in Banach and Hilbert spaces were intensively studied
in the last decade (see e.g. [5, 7, 8, 9, 16, 17, 20, 21, 26, 27] and the references therein). Methods from
[7, 8, 9, 16, 17, 21, 26, 27] possess an exponential convergence rate, i.e. the error estimate in an appropriate
norm is of the type O(e−N

α

), α > 0 with respect to a discretization parameter N →∞. For a given tolerance
ε such discretization provides optimal or nearly optimal computational complexity [7].

In the present paper we consider the problem

du(t)

dt
+A1(t)u(t) = f1(t),

u(0) + αu(1) = ϕ,
(1.1)

where A1(t) is a densely defined closed (unbounded) operator with the domain D(A1) independent of t in
a Banach space X, ϕ is given vector and f1(t) is given vector-valued function, α ∈ R. We suppose that the
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operator A1(t) is strongly positive; i.e. there exists a positive constant MR independent of t such that on
the rays and outside a sector Σθ = {z ∈ C : 0 ≤ arg(z) ≤ θ, θ ∈ (0, π/2)} the following resolvent estimate
holds:

‖(zI −A1(t))−1‖ ≤ MR

1 + |z|
. (1.2)

This assumption implies that there exists a positive constant cκ such that ( see [6], p.103)

‖Aκ1 (t)e−sA1(t)‖ ≤ cκs−κ, s > 0, κ ≥ 0. (1.3)

Our further assumption is that there exists a real positive ω such that

‖e−sA1(t)‖ ≤ e−ωs ∀s, t ∈ [0, 1] (1.4)

(see [18], Corollary 3.8, p.12, for corresponding assumptions on A1(t)). Let us also assume that the following
conditions hold true

‖[A1(t)−A1(s)]A−γ1 (t)‖ ≤ L1,γ |t− s| ∀t, s, 0 ≤ γ < 1, (1.5)

‖Aγ1(t)A−γ1 (s)− I‖ ≤ Lγ |t− s| ∀t, s ∈ [0, 1]. (1.6)

We suppose also that
f1(t) ∈ C(0, 1;X). (1.7)

The aim of this paper is to construct an exponentially convergent approximation to the problem (1.1)
for a differential equation with two-points nonlocal condition in abstract setting. The paper is organized as
follows. In Section 2 we discuss the existence and uniqueness of the solution as well as its representation
through input data. A numerical algorithm is presented in section 3. The main result of this section is
theorem 3.3 about the convergence rate of the proposed discretization. The next section 4 we represent some
numerical example which confirm theoretical results from the previous sections.

2 Existence and uniqueness of the solution

It is well known, that for α = 0 the problem (1.1) has a unique solution under the assumptions (1.2)-(1.7)
(se e.g. [18, 13]). This solution can be write down as follows:

u(t) = U(t, 0)u(0) +

∫ t

0

U(t, s)f1(s)ds = U(t, 0)ϕ+

∫ t

0

U(t, s)f1(s)ds, (2.1)

where U(t, s) is an evolution operator that corresponds to (1.1) for α = 0.
Let us study conditions when there is unique solution for the two-points problem (1.1). We have from

(2.1)

u(1) = U(1, 0)u(0) +

∫ 1

0

U(1, s)f1(s)ds.

Substituting this expression into the nonlocal condition we obtain

u(0) = [I + αU(1, 0)]
−1

[
ϕ− α

∫ 1

0

U(1, s)f1(s)ds

]
,

and for u(t) we have

u(t) = U(t, 0) [I + αU(1, 0)]
−1

[
ϕ− α

∫ 1

0

U(1, s)f1(s)ds

]
+

∫ t

0

U(t, s)f1(s)ds. (2.2)

It is necessary to establish conditions on α for the existence of u(t). In fact, we have to explore when

exists [I + αU(1, 0)]
−1
. So, we obtain using estimate for U(t, s) (see e.g. [18, 13]).∥∥∥[I + αU(1, 0)]

−1
∥∥∥ ≤ [1− |α| ‖U(1, 0)‖]−1 ≤ [1− |α|M ]

−1 ≤ C,

for small enough α (α < M−1).
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3 Numerical algorithm

We use the approach developed in [10] and [25] to construct numerical method for solving problem (1.1).
First of all we change variable in (1.1) by t→ 1+t

2 and for v(t) = u
(

1+t
2

)
we have

dv(t)

dt
+A(t)v(t) = f(t),

v(−1) + αv(1) = ϕ,
(3.1)

where A(t) = 1
2A1

(
1+t

2

)
, f(t) = 1

2f1

(
1+t

2

)
,

We choose a mesh ωn = {tk, k = 0, ..., n} of n + 1 various points on [−1, 1] that are Chebyshev-Gauss-
Lobatto nodes tk = cos

(
n−k
n π

)
, and set τk = tk − tk−1. Let

A(t) =Ak = A(tk), t ∈ (tk−1, tk], k = 1, n,

A0 = A(−1).
(3.2)

Let us rewrite the problem (3.1) in the equivalent form

dv

dt
+A(t)v = [A(t)−A(t)]v(t) + f(t), t ∈ (−1, 1)

v(−1) = ϕ− αv(1).
(3.3)

Note, that now all operators on the left side of these equations are constant on each subinterval and
piece-wise constant on the whole interval [−1, 1].

On each subinterval we can write down the equivalent to (3.3) integral equation

v(t) =e−Ak(t−tk−1)v(tk−1) +

∫ t

tk−1

e−Ak(t−s) [Ak −A(t)] v(s)ds+

∫ t

tk−1

e−Ak(t−s)f(s)ds,

t ∈ [tk−1, tk], k = 2, n,

(3.4)

v(t) = e−A1(t+1) [ϕ− αv(1)] +

∫ t

−1

e−A1(t−s) [A1 −A(t)] v(s)ds+

∫ t

−1

e−A1(t−s)f(s)ds, t ∈ [−1, t1]. (3.5)

Let

Pn(t; v) = Pnv =

n∑
j=0

v(tj)Lj,n(t), (3.6)

be the interpolation polynomial for v(t) on the mesh ωn, x = (x0, ..., xn), xi ∈ X given vector and

Pn(t; y) = Pnx =

n∑
j=0

xjLj,n(t) (3.7)

the polynomial that interpolates x, where

Lj,n(s) =
T ′n(s)(1− s2)

d
ds [(1− s2)T ′n(s)]s=sj (s− sj)

, j = 0, ..., n

are the Lagrange fundamental polynomials. Substituting Pn(s;x) for v(s), xk for v(tk) and then setting
t = tk in (3.4) we arrive at the following system of linear equations with respect to the unknown xk :

x0 + αxn = ϕ,

xk = e−Akτkxk−1 +

n∑
j=0

αkjxj + φk, k = 1, n,
(3.8)
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which represents our algorithm. Here we use the notations

αkj =

∫ tk

tk−1

e−Ak(tk−s)[Ak −A(s)]Lj,n(s)ds,

φk =

∫ tk

tk−1

e−Ak(tk−s)f(s)ds, k = 1, n, j = 0, n,

(3.9)

and suppose that we have an algorithm to compute these coefficients.
For the error z = (z1, ..., zn), with zk = v(tk)− xk we have the relations

z0 + αzn = 0,

zk = e−Akτkzk−1 +

n∑
j=0

αkjzj + ψk, k = 1, n,
(3.10)

where

ψk =

∫ tk

tk−1

e−Ak(tk−s)[Ak −A(s)][v(s)− Pn(s; v)]ds, k = 1, n, (3.11)

In order to represent algorithm (3.8) in a block-matrix form we introduce the matrix

S =


I 0 0 · · · 0 ασ0

−σ1 I 0 · · · 0 0
0 −σ2 I · · · 0 0
· · · · · · · ·
0 0 0 · · · −σn I

 , (3.12)

where σ0 = Aγ0A
−γ
n , σk = e−AkτkAγkA

−γ
k−1, k = 1, n, the matrix B = {α̃k,j}nk,j=0 with α̃k,j = Aγkαk,jA

−γ
j ,

k = 1, n, j = 0, n, and α̃0,j = 0, j = 0, n, the vectors

x̃ =


Aγ0x0

Aγ1x1

·
·

Aγnxn

 , φ =


Aγ0ϕ
Aγ1φ1

·
·

Aγnφn

 , z̃ =


Aγ0z0

Aγ1z1

·
·

Aγnzn

 , ψ =


0

Aγ1ψ1

·
·

Aγnψn

 . (3.13)

It is easy to check that for the (left) inverse

S−1 = δ (R1 −R2) , (3.14)

where
δ = (I + ασ0σ1 . . . σn)

−1
,

R1 =


I 0 · · · 0 0
σ1 I · · · 0 0
σ2σ1 σ2 · · · 0 0
· · · · · · ·

σn · · ·σ1 σn · · ·σ2 · · · σn I

 ,

R2 = αs0


0 σn . . . σ2 σn . . . σ3 · · · σn I
0 0 σ1σn . . . σ3 · · · σ1σn σ1

· · · · · · · ·
0 0 0 · · · 0 σn−1 . . . σ1

0 0 0 · · · 0 0

 .

Remark 3.1 Using results of [11, 7, 8] one can get a parallel and sparse approximations with an exponential
convergence rate of the operator exponentials contained in S−1 and as a consequence a parallel and sparse
approximation of S−1.
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We multiply the equations in (3.8) and the equation in (3.10) by Aγk , k = 0, n and obtain

Aγ0x0 + αAγ0xn = Aγ0ϕ,

Aγkxk = e−AkτkAγkxk−1 +

n∑
j=0

α̃kjA
γ
j xj +Aγkφk, k = 1, n,

(3.15)

Aγ0z0 + αAγ0zn = 0,

Aγkzk = e−AkτkAγkzk−1 +

n∑
j=0

α̃kjA
γ
j zj +Aγkψk, k = 1, n,

(3.16)

Then the systems (3.15), (3.16) can be written down in the matrix form using notations (3.12), (3.13) as

Sx̃ = Bx̃+ φ,

Sz̃ = Bz̃ + ψ.
(3.17)

Next, for a vector v = (v1, v2, ..., vn)T and a block operator matrix A = {aij}ni,j=1 we introduce a vector
norm

|‖v‖| ≡ |‖v‖|1 = max
1≤k≤n

‖vk‖,

and the consistent matrix norm

|‖A‖| ≡ |‖A‖|1 = max
1≤i≤n

n∑
j=1

‖ai,j‖.

Due to (1.6) we have |‖AγkA
−γ
k−1‖| = |‖A

γ
kA
−γ
k−1− I + I|‖ ≤ 1 +Lγτk, ‖σ0‖ = ‖Aγ0A−γn ‖ ≤ 1 +LγT. In our

case T = 2. So, we have the following, using these estimates

‖σk‖ = ‖e−AkτkAγkA
−γ
k−1‖ ≤ e−ωτk‖AγkA

−γ
k−1‖ ≤ e−ωτk (1 + Lγτk) ,

‖δ‖ = ‖ (I + ασ0σ1 . . . σn)
−1 ‖ ≤ (1− |α| ‖σ0‖ ‖σ1‖ ‖σ2‖ . . . ‖σn‖)−1

≤
(
1− |α| (1 + 2Lγ) e−ωτ1 (1 + Lγτ1) e−ωτ2 (1 + Lγτ2) . . . e−ωτn (1 + Lγτn)

)−1

≤
(

1− |α| (1 + 2Lγ) e−2ω

(
1 +

2Lγ
n

)n)−1

≤
(
1− |α| (1 + 2Lγ) e−2ωe2Lγ

)−1 ≤ c,

for α small enough.
In order to estimate the norm of matrix S we have to estimate the norms of matrices R1, R2. In [10] it

was proved that for matrix similar to R1 the estimate |‖R1‖| ≤ cn holds true. Let us estimate the norm of
matrix R2.

|‖R2‖| ≤ (1 + 2c)
(
1 + e−ωτ (1 + cτ) + · · ·+ [e−ωτ (1 + cτ)]n−1

)
≤ (1 + 2c)

(
1 + (1 + cτ) + · · ·+ (1 + cτ)n−1 ≤ (1 + cτ)n − 1

cτ

)
≤ (1 + 2c)

e2c

cτ
≤ cn.

Using these estimates we obtain that
|‖S−1‖| ≤ cn. (3.18)

It was proved an estimate for the matrix B in [10]:

|‖B‖| ≤ cnγ−2 ln(n). (3.19)

So we can formulate the following assertion

Lemma 3.2 Let the assumptions (1.2)-(1.6) are fulfilled then the estimates (3.18), (3.19) hold true.
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Using (3.17) we have

x̃ =
[
E − S−1B

]−1
S−1φ,

z̃ =
[
E − S−1B

]−1
S−1ψ,

(3.20)

where E is a diagonal matrix with unit operators I on diagonal. Using lemma 3.2 we obtain that

|‖S−1B‖| ≤ cnγ−1 ln(n)→ 0, n→∞. (3.21)

It means that for n large enough there exists the matrix
[
E − S−1B

]−1
and∣∣∣∥∥∥[E − S−1B

]−1
∥∥∥∣∣∣ ≤ c.

Consequently we obtain the following stability estimates from (3.20) using lemma 3.2:

|‖x̃‖| ≤ cn|‖φ‖|,
|‖z̃‖| ≤ cn|‖ψ‖|.

(3.22)

Let Πn be the set of all polynomials in t with vector coefficients of degree less or equal then n. In complete
analogy with [1, 23, 24] the following Lebesgue inequality for vector-valued functions can be proved

‖u(t)− Pn(t;u)‖C[−1,1] ≡ max
t∈[−1,1]

‖u(t)− Pn(t;u)‖ ≤ (1 + Λn)En(u), (3.23)

with the error of the best approximation of u by polynomials of degree not greater then n

En(u) = inf
p∈Πn

max
t∈[−1,1]

‖u(t)− p(t)‖. (3.24)

Now, we can go over to the main result of this section.

Theorem 3.3 Let the assumptions of Lemma 3.2 with γ < 1 hold, then there exists a positive constant c
such that

1. For n large enough it holds
|‖z̃‖| ≤ cnγ−1 · lnn · En(Aγ0v), (3.25)

where v is the solution of (3.1);

2. The first equation in (3.17) can be written in the form

x̃ = S−1Bx̃+ S−1φ, (3.26)

and can be solved by the fixed point iteration

x̃(k+1) = S−1Bx̃(k) + S−1φ, k = 0, 1, ...; x̃(0) − arbitrary, (3.27)

with the convergence rate of an geometrical progression with the denominator q ≤ cnγ−1 ln(n) < 1 for
n large enough.

Proof. For z̃ we have the second estimate in (3.22). The norm of the first summand on the right hand side
of this inequality can be estimated in the following way

|‖ψ‖| = max
1≤k≤n

∥∥∥∥∥
∫ tk

tk−1

{
Aγke−Ak(tk−s)[Ak −A(s)]A−γk (AγkA

−γ
0 )(Aγ0v(s)− Pn(s;Aγ0v))

}
ds

∥∥∥∥∥
≤ c max

1≤k≤n

∫ tk

tk−1

|tk − s|−γ |tk − s| ‖Aγ0v(s)− Pn(s;Aγ0v)‖ds

≤ cτ2−γ
max ‖A

γ
0u(s)− Pn(·;Aγ0v)‖C[−1,1] ≤ cτ

2−γ
max(1 + Λn)En(Aγ0v).

So, we obtain
|‖ψ‖| ≤ cnγ−2 · lnn · En(Aγ0u), (3.28)

Now, the first assertion of the theorem follows from (3.22), (3.28). The second one follows from (3.17)
and (3.21).
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4 Examples

Let us consider the following problem

∂u(x, t)

∂t
− ∂2u(x, t)

∂x2
+ q(x, t)u(x, t) = f(x, t),

u(0, t) = u(1, t) = 0,

u(x,−1) + αu(x, 1) = ϕ(x),

(4.1)

with f(x, t) = e−π
2(1+t) sin(πx)(1 + t), α = 0.5, ϕ(x) =

(
1 + 0.5e−2π2

)
sin(πx), q(x, t) = 1 + t. Then, the

solution of this problem is u(x, t) = e−π
2(1+t) sin(πx).

The problem (4.1) can be write down in the form (3.1) where the operator A(t) is defined by

D(A(t)) = D(A) = {v ∈ H2(0, 1) : v(0) = 0, v(1) = 0},

A(t)v = −∂
2v

∂x2
+ (1 + t)v.

(4.2)

Coefficients of the system (3.15) were calculated by using the Fourier series expansion. The results of
calculation are presented in tables confirm our theory above.

Point t ε
-1 0.00005276

-0.70710678 0.00097645
0 0.00063440

0.70710678 0.00029592
1 0.00010552

Table 4.1: The error in the case n = 4, x = 0.5

Point t ε
-1 8.12568908Ee-7

-0.86602540 0.00010146
-0.5 0.00030932

0 0.00022136
0.5 0.00013419

0.86602540 0.00007182
1 0.00000162

Table 4.2: The error in the case n = 6, x = 0.5

Acknowledgment. The authors would like to acknowledge the support provided by the Deutsche
Forschungsgemeinschaft (DFG).
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