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Abstract: This paper deals with studying the asymptotical properties of multilayer neural networks models used for the 

adaptive identification of wide class of nonlinearly parameterized systems in stochastic environment. To adjust the neural 

network’s weights, the standard online gradient type learning algorithms are employed. The learning set is assumed to be infinite 

but bounded. The Lyapunov-like tool is utilized to analyze the ultimate behaviour of learning processes in the presence of 

stochastic input variables. New sufficient conditions guaranteeing the global convergence of these algorithms in the stochastic 

frameworks are derived. The main their feature is that they need no a penalty term to achieve the boundedness of weight 

sequence. To demonstrate asymptotic behaviour of the learning algorithms and support the theoretical studies, some simulation 

examples are also given. 
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1. Introduction 

Over the past decades, interest has been increasing toward 

the use of multilayer neural networks as models for the 

adaptive identification of nonlinearly parameterized dynamic 

systems [1–4]. This has been motivated by the theoretical 

works of several researches including, in particular, Cybenko 

and Funahashi [5, 6] who proved that, even with one hidden 

layer, neural network can uniformly approximate any 

continuous mapping over a compact domain, provided that the 

network has sufficient number of neurons with corresponding 

weights. 

Several learning methods for updating the weights of neural 

networks have been advanced in literature. Most of these 

methods rely on the gradient concept [4, 7]. Although this 

concept has been successfully used in many empirical studies, 

there are very few fundamental results dealing with the 

convergence of gradient algorithms for learning neural 

networks. One of these results is based on utilizing the 

Lyapunov stability theory [2, 8]. 

The asymptotic behaviour of online adaptive gradient 

algorithms for the network learning has been studied by many 

authors. In particular, White [9] investigated the convergence 

of the learning process for the so-called feedforward network 

models with single hidden layer by using the stochastic 

approximation theory. The convergence results have been 

derived in [10–16] among many others provided that input 

signals have a probabilistic nature. In their stochastic 

approach, the learning rate goes to zero as the learning process 

tends to infinity. Unfortunately, this gives that the learning 

goes faster in the beginning and slows down in the late stage. 

The convergence analysis of learning algorithm with 

deterministic (non-stochastic) nature has been given in 

[17–22]. In contrast to the stochastic approach, several of 

these results allow to employ a constant learning rate [19, 23]. 

However, they assume that learning set must be finite whereas 

in online identification schemes, this set is theoretically 

infinite. To the best of author’s knowledge, there are no 

general results in literature concerning the global convergence 

properties of training procedures with a fixed learning rate 

applicable to the case of infinite learning set. 

The distinguishing feature of multi-layer neural networks is 

that they describe some nonlinearly parameterized models 
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needed to be identified. This leads to difficulties in deriving 

their convergence properties for a general case. 

To avoid this difficulties in non-stochastic case, the 

assumption that similar nonlinear functions need to be convex 

(concave) is introduced in [24]. However, such an assumption 

is not appropriate for neural network’s description of 

nonlinearity. 

A popular approach to analyze the asymptotic behaviour of 

online gradient algorithms in stochastic case is based on 

Martingale convergence theory [25]. This approach has been 

exploited in [26, 27] to derive some local convergence in 

stochastic framework for standard online gradient algorithms 

with the constant learning rate. 

This paper is an extension of [26, 27]. The main efforts is 

focused on establishing sufficient conditions under which the 

global convergence of gradient algorithm for learning neural 

networks models in the stochastic environments is ensured. 

The key idea in deriving these convergence results is based on 

the use of the Lyapunov methodology [28]. 

2. The Description of System 

Let 

( ) ( ( ))y n F x n=                 (1) 

be the nonlinear equation in the compact form describing a 

complex system to be identified. In this equation, ( ) IRy n ∈  

and ( ) IR Nx n ∈  are the scalar output and the so-called state 

vector, respectively, available for the measurement at each nth 

time instant ( 1, 2, ),n = …  and : IR IRNF →  represents 

some unknown nonlinear mapping. (Note that ( )x n  may 

include the current inputs of this system and possibly its past 

inputs and also outputs; see [7, subsect. 5.15].) Without loss of 

generality, one supposes that the nonlinearity 

( )y F x=                   (2) 

is the continuous and smooth function on a bounded but 

infinite set IR NX ⊂  (diam ).X < ∞  

To approximate (2) by a suitable nonlinearly parameterized 

function, the two-layer neural network model containing M  

( 1)M ≥  neurons in its hidden layer is employed. The inputs 

to the each jth neuron of this layer at the time instant n  are 

the components of ( ).x n  Its output signal at the nth time 

instant is specified as 

(1) (1) (1)

1

( ) ( ) ,
N

j j ij i

i

y n b w x nσ
=

 = + 
 

∑  1, , ,j M= …     (3) 

where ( )
i

x n  denotes the ith component of ( ),x n  and (1)

ijw  

and (1)

jb  are the weight coefficients and the bias of this jth 

neuron, respectively. ( )σ ⋅  denotes the so-called activation 

function defined usually as the sigmoid functions 

1
( )

1 exp( )
s

s
σ =

+ −
                (4) 

or 

( ) tanh ( ).s sσ =                  (5) 

There is only one neuron in the output (second) layer, 

whose inputs are the outputs of the hidden layer’s neurons. 

The output signal of second layer, (2) ( ),y n  at the time instant 

n  is determined by 

(2) (2) (1) (2)

1

( ) ( ) ,
M

j j

j

y n w y n b
=

= +∑           (6) 

where (2) (2)

1 , , Mw w…  are the weights of this neuron and 
(2)

b  is 

its bias. 

Since ( )sσ ⋅  defined by (4) and (5) are nonlinear, it follows 

from (3), (6) that (2) ( )y n  is the nonlinear function depending 

on ( 1)x n −  and also on the ( ( 2) 1)M N + + -dimensional 

parameter vector 

(1) (1) (1) (1) (1) (1)

11 1 1 1

(2) (2) (2)

1

[ , , , , , , , ,

, , , ] .

N M NM M

T

M

w w w b w w b

w w b

= … … … ⋮

…
       (7) 

To emphasize this fact, define the output signal of the neural 

network in the form 

(2) ( ) NN( ( ), )y n x n w=             (8) 

using the notation ( 2) 1NN : IR IR IR.N M N + +× →  Taking into 

account that the neural network plays the role of a model of (1), 

rewrite (8) as follows: 

mod
( ) NN( ( ), ).y n x n w=           (9) 

Now, define the variable 

( ) NN( , )e F x x w= −             (10) 

representing the discrepancy between the nonlinearity (2) and 

its neural network’s model for a fixed .w  Due to (1), it yields 

the current model error 

( ) ( ) NN( ( ), )e n y n x n w= −          (11) 

which can be measured at the nth time instant. Further, 

introduce the usual quadratic loss function 

2( , ) [ ( ) NN( , )] .Q x w F x x w= −        (12) 

To do an adaptation of the neural network model to the 

uncertain system (1), the standard online gradient learning 

algorithm 

( ) ( 1) ( ) ( ( ), ( 1))
w

w n w n n Q x n w nη= − − ∇ −    (13) 

taken, for example, from [4, 7] is utilized. In this algorithm, 
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( ( ), ( 1))
w
Q x n w n∇ −  denotes the gradient of ( , )Q x w  with 

respect to w  at ( 1)w w n= −  for given ( ),x x n=  and ( )nη  

is the learning rate (step size) of (13). Thus, (3), (6), (8) and 

(13) together with (9) and (12) describe the learning system 

necessary for the adaptive identification of (1). For better 

understanding its performance, the structure of this system is 

depicted in Fig. 1. 

)(nx )(ny

)(nw

)(ne

)(mod ny

 

Figure 1. Configuration of online learning system. 

3. Problem Formulation 

Let { ( )}x n  be a sequence of vectors appearing randomly 

in accordance with some probability density function ( )p x  

such that 

( ) 1.
X

p x dx =∫
 

Furthermore, ( )p x  has the following properties: 

{ ( ) }: ( ) 0
X

P x n X p x dx
′

′∈ = >∫
 

for any subset X X′ ⊂  whose dimension is ,N  and 

{ ( ) }: ( ) 0
X

P x n X p x dx
′′

′′∈ = =∫
 

if dim ,X N′′ <  where {}P ⋅  denotes the probability of 

corresponding random event. 

Additionally, it is assumed that ( )p x  represents a 

continuous function which may become zero only at some 

isolated points on .X  

Now, introduce the performance index 

( ) { ( , )}J w E Q x w=               (14) 

which evaluates the quality of learning process with ( , )Q x w  

given in (12). In this expression, 

2{ ( , )} : [ ( ) NN( , )] ( )
X

E Q x w F x x w p x dx= −∫
 

denotes the expectation of ( , )Q x w  with respect to the 

random s.x  

The aim of this paper consists in studying the asymptotic 

properties of the learning procedure (13). More certainty, the 

following problem is stated. It is required to derive the 

conditions under which { ( )}w n  caused by this recursive 

algorithm will converge in the sense that 

( ( )) inf ( )
w

J w n J w→  as n → ∞              (15) 

with probability 1 (almost sure), where ( ( ))J w n  is 

determined by (14) for ( ).w w n=  

4. Preliminaries 

Let w
∗
 be a vector minimizing ( ),J w  i.e., 

arg inf ( ).
w

w J w
∗ =                 (16) 

Consider, first, the case when ( )F x  can exactly be 

approximated by a neural network representation for all 

x X∈  implying 

( ) NN( , ).F x x w∗≡                 (17) 

In this case called in [4, p. 304] as the ideal case, one has 

( ) 0J w∗ =  (by virtue of (12), (14)). 

It turned out that, at least, in the ideal case, the set ,W
∗

 

containing these sw
∗

 becomes not one-point [26, 27]. To 

show it, put 1,N =  1.M =  Due to (7), this implies 
4

IR .w
∗ ∈  Let 

1 2 3 4[ , , , ]Tw w w w w∗ ∗ ∗ ∗ ∗=  be a vector satisfying 

(17). Then, (3) and (6) together with (4) give that another 

1 2 3 3 4[ , , , ]Tw w w w w w∗ ∗ ∗ ∗ ∗ ∗= − − − +  will also satisfy (17). 

Introduce the scalar variable 2|| ||w w∗ −  representing the 

square of Euclidean distance between w  and a ,w
∗

 and 

define 

2( ) inf || || .
w W

V w w w
∗ ∗

∗

∈
= −           (18) 

Denote : ( ( )).nV V w n=  Since 0nV ≥  (due to (18)), it is 

clear that if 

1n nV V −≤                   (19) 

then the sequence 0{ }: ,..., ,...n nV V V=  has always a limit, ,V∞  

as n  tends to infinity, i.e., 

lim ,n
n

V V∞
→∞

=               (20) 

where V∞  is a random value (in general), meaning that the 

algorithm (13) converges. On the other hand, the fact that 

{ }nV  is monotonically non-increasing sequence is not 

necessary to achieve (20) in principle. 

Note that the existence of the limit (20) does not imply that 
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0V∞ =  even when the condition (17) is satisfied. Hence, 

( )
n

w n w∞→∞→             (21) 

with w w∗
∞ =  is not guaranteed without additional 

assumptions on { ( )}.x n  Moreover, the limit (20) may not 

exist if { ( )}x n  is an arbitrary non-stochastic sequence 

leading to the violation of (19) [26]. Nevertheless, if the 

asymptotic property (21) takes place, then { ( )}w n  converges 

to some lim inf
n

w W∞ ∈  in sense of (21) where 

1

lim inf :n k
n k n

W W
∞ ∞

= =
= ∪ ∩           (22) 

denotes the so-called limit set introduced in [27, sect. 1.3] in 

which 

: { : ( ) NN( ( 1), ) 0}.
n

W w y n x n w= − − =  

Comment 1. Note that the limit set, lim inf ,
n

W  given by 

(22) represents a nonlinear manifold on ( 2) 1IRM N + +  whose 

dimension satisfies 0 dim lim inf ( 2).
n

W M N≤ ≤ +  

It can be understood that the algorithm (13) “attempts” to 

solve the infinite set of the equations 

( ) NN( ( 1), ) 0,y n x n w− − =  1, 2,n = …      (23) 

with respect to unknown ( 2) 1
IR .

M N
w

+ +∈  In fact, this 

algorithm may give the solution w w∞=  of the remainder of 

(23), which is determined as the limit set (22) but not as .W
∗  

It was observed that the condition (19) meaning that { }
n

V  

is the monotonically non-increasing sequence, may not be 

satisfied if the neural network model contains the hidden layer 

neither for non-stochastic nor for stochastic { ( )}s.x n  

In [26, 27], it has been established that if initial (0)w  is 

chosen at an ε -neighbourhood, 
( ) ( )( ) : { : || || },i iU w w w wε ε∗ ∗= − <  of some ( )i

w W
∗ ∗∈  giving 

( ) 2

0 || (0) ||iV w w∗= −  (according to (18)), then { }
n

V  behaves 

as the so-called positive supermartingale [25, 29] if { ( )}x n  is 

a stochastic sequence. This implies that the conditional 

expectation satisfies 

1 0 1
{ | , , } .

n n n
E V V V V− −≤…           (24) 

Notice that (24) represents a stochastic counterpart of (19).) 

By virtue of the well-known Doob’s theorem [25], the 

property (24) yields 

lim
n

n

V V∞
→∞

=  a.s.               (25) 

similar to (20) for non-stochastic case. However, if (0)w  lies 

far enough from ,W
∗  then the condition (24) may not be 

satisfied. In this case, instead of (24), other condition 

1 0
{ | , , } ,

n n n n
E V V V V χ− ≤ +…  0

n
χ ≥        (26) 

which is more strong may take place. 

The asymptotic behaviour of the gradient algorithm (13) for 

an arbitrary 
(0)w

 is now derived in the following theorem. 

Theorem 1. Let (17) hold and 

0

{ 0}n

n

P χ
∞

=

> < ∞∑  a.s.            (27) 

Then { }
n

V  will converge with probability 1 (a.s.) for any 

(0)w provided that the condition (26) is satisfied. 

Proof. Using the classical Borel-Cantelli lemma [25, Sect. 

15.3], from (27) it can conclude that there exists a finite 

number n
∗ < ∞  such that χn = 0 for all n ≥ n*. Since {χn} is 

nonnegative, this gives 

0

n

n

χ
∞

=

< ∞∑  a.s.                (28) 

meaning that the all conditions of the modified positive 

supermartingale result established in Corollary D.5.1 of [29, 

p.501] are satisfied. By this result, the validity of (25) follows.  

Comment 2. Of course, the convergence conditions (27) 

given in Theorem 1 (or (28)) make only the mathematical 

sense because they cannot beforehand be verified. 

Nevertheless, this conditions are somewhat useful for 

understanding the asymptotic behaviour of the learning 

algorithm (13) in the stochastic environment. 

At first sight, it seems that the variable V(w) given by (18) 

might be exploited as a Lyapunov function for analyzing the 

asymptotic behaviour of (13) in a stochastic framework. In 

fact, by the definition, V(w) has the property 

( ) 0 if and ( ) 0 ifV w w W V w w W∗ ∗= ∈ > ∉       ((29) 

Meanwhile, the partial derivatives of V(w) with respect to 

the components of W  are not continued at all 
( 2) 1

IR .
M N

w
+ +∈ To demonstrate this feature, let 

(1) (2){ , }.W w w∗ ∗ ∗=  Then ( )V w  becomes 

(1) (2)( ) min{ ( ), ( )}V w V w V w= , 

where 
( ) ( ) 2( ) || ||i iV w w w∗= −  ( 1, 2).i =  In this case, the 

components of the gradient ∇V(w) which represent these 

partial derivatives are discontinuous at ws belonging to the 

boundary between the domains 
(1) (1) (2){ : }W w V V= <  and 

(2) (2) (1){ : }W w V V= <  (see Fig. 2). Thereby, the requirement 

|| ( ) ( ) || || ||V w w L w w′ ′ ′ ′′∇ − ∇ ≤ −         (30) 

with the Lipschitz constant 0L >  advanced in [28] is not 

satisfied for any ,w′ w′′  from ( 2) 1
IR .

M N + +  Thus, ( )V w  

having the form (18) is indeed not admissible to study the 

global convergence properties of (13) based on results of [28]. 
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)()( )2()1( wVwV <
)()1( wV∇−

)1(∗w

)2(∗w

)()2( wV∇−

)()( )2()1( wVwV =

)( )1(∗
ε wU

)( )2(∗
ε wU

)()( )2()1( wVwV >

w

 

Figure 2. I llustration of the two-layers networks properties with M=1, N=1. 

5. Observations 

To demonstrate some asymptotic properties of (13) pointed 

out in the section above, several simulation experiments with 

the scalar nonlinear system (1) having the nonlinearity 

3.75 0.05exp( 7.15 )
( )

1 0.19exp( 7.15 )

x
F x

x

+ −=
+ −

 

were conducted. It can be shown that this nonlinearity can 

explicitly be approximated by the two-layer neural network 

model described by (3), (4), (6) and (8) with (1)
w

∗  and (2)
w

∗  

given as: (1) [7.15, 1.65, 3.45, 0.3]Tw∗ =  and 

(2) [ 7.15, 1.65, 3.45, 3.75] .Tw∗ = − − −  

In all of the experiments, η was taken as η=0.01. 

Fig. 3 illustrated the results of the first simulation example, 

where { ( )}x n  was chosen as a non-stochastic sequence. It 

can be observed that in this example 
n

V  defined by (18) with 

( )w w n=  no limit implying that the learning algorithm (13) 

is not converge. 

 

 

 

Figure 3. Behaviour of gradient learning algorithm (13) in Example 1. 

In other experiments, { ( )}x n  was generated as sequence 

of independent identically distributed (i.i.d.) pseudo random 

numbers on [ 1.0, 1.0]X = −  (the stochastic cases). Namely, 

in the second example, the initial (0)w  was taken closely to 

(1).w∗
 In this case, the first difference 1n n n

V V V −∆ = −  of n
V  

defined by (18) changed its sign (see Fig. 4). Nevertheless, n
V  

tends to zero and ( ) 0e n → as n increases as shown in Fig. 4. 

This observation supports the convergence property of (13) 

showing that { }
n

V  is here the supermartingale. 

Simulation results of third and fourth experiments are 

presented in Fig. 5 left and right, respectively. The initial 

estimated (0)w  in both examples was chosen so that the 

distance between (0)w  and W
∗  was large enough, and the 

condition 
(1) (2)( (0)) ( (0))V w V w<  was satisfied. It was 

observed that at an initial stage of the learning process, 
(1){ }nV  

was increasing and 
(1) (2)

n nV V>  for several 1, 2, ,n = … as 

shown in Fig. 5, left. Further, 
(1){ }nV  became decreasing. 

Such a behaviour of these sequence leaded to appearing the 

feature that 
(1) (2)

n nV V<  for all sufficiently large .n  

In the fourth example, the initial w(0) was chosen to be 
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close to that in the third example. One can observe that in this 

case, 
(1)

n nV V≡  (see Fig. 5, right). 

It turned out that in third and fourth simulation examples, 

the condition (24) is not satisfied whereas the learning 

algorithm (13) remains indeed convergent. In these examples, 

instead of (24), the condition (26) takes place. This fact is 

demonstrated in Fig. 6. 

 

 

 

 

Figure 4. Behaviour of gradient learning algorithm (13) in Example 2. 

6. Main Results 

The global stochastic convergence analysis of the gradient 

learning algorithm (13) is based on employing the 

fundamental convergence conditions established in the Key 

Technical Lemma which is the slightly reformulated Theorem 

3 of [28]. 

Key Technical Lemma. Let V(w) be a function satisfying 

(29) and (30). Define the scalar variable 

( ) ( ) { ( , )}T

w wH w V w E Q x w= ∇ ∇            (31) 

and denote 

( ) : ( ( )) { ( , ( ))}T

n w wH w V w n E Q x w n= ∇ ∇ . 

Suppose: 

(i) ( ) ( ( 1)),
n n

H w V w nθ≥ −  0,
n

θ >  

(ii) 2{|| ( , ( )) || } ( ( )),w nE Q x w n V w nτ∇ ≤
 

0.
n

τ ≥  

Introduce the additional variable 

( )( ( ) 2).
n n n

n L nν η θ η τ= −           (32) 

Then the algorithm (13) yields lim 0n nV→∞ =  a.s. 

provided that { (0)}E w < ∞  and 

0 1,
n

ν≤ ≤                 (33) 

0

,n

n

v
∞

=

= ∞∑                 (34) 

i.e., the limit (25) will be achieved for 0.V∞ =  
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Figure 5. Behaviour of gradient learning algorithm (13) in Examples 3 (left) and 4 (right). 

Related results followed from the Theorem 3′ of (28) are: 

Corollary. Under the conditions of the Key Technical 

Lemma, if const
n

θ θ≡ =  and const,
n

τ τ≡ =  and 

( ) const,nη η≡ =  then 0n n
V → ∞→  a.s. provided that 

0 2( ) / (0 )Lη θ ε τ ε θ< ≤ − < <          (35) 

is satisfied. 

Now, one is able to present the first convergence result 

summarized in the theorem below. 

Theorem 2. Suppose the assumption (17) holds. Then the 

gradient algorithm (13) with a constant learning rate, 

( ) ,nη η≡  will converge with probability 1 (in the sense that 

0n n
V →∞→  a.s.) and 

lim ( ) 0
n

e n→∞ =  a.s.               (36) 

for any initial (0)w  chosen randomly so that 

{ ( , (0))}E Q x w < ∞  if the conditions (35) with θ  and τ  

specified by 

2|| { ( , )} ||
: inf ,

{ ( , )}

w

w W

E Q x w

E Q x w
θ

∗∉

∇
=           (37) 

2{|| ( , ) || }
: sup

{ ( , )}

w

w W

E Q x w

E Q x w
τ

∗∉

∇
=             (38) 

are satisfied. 

Proof. Set 

( ) { ( , )}.V w E Q x w=            (39) 

Then condition (29) and (30) can be shown to be valid. This 

indicates that ( )V w  of the form (39) may be taken as the 

Lyapunov function. By virtue of (31) such a choice of ( )V w  

gives 
2( ) || { ( , )} || .wH w E Q x w= ∇  Putting nθ θ≡  and 

nτ τ≡  with andθ τ  determined by (37) and (38), 

respectively, one can conclude that the conditions (i), (ii) of 

the Key Technical Lemma are satisfied. Applying its 

Corollary it proves that lim 0n nV→∞ = with probability 1. 

Due to the definition (39) of ( )V w  together with the 

assumption (17), result (36) follows. 
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Figure 6. Variables ,∆ nV  1{ | } −⋅ −n nE V V  and nχ  in Example 3. 

Now, consider general case, where ( )F x  cannot exactly 

be approximated by NN( , )x w  (as in (17)). Obviously, in this 

case, inf ( , ) 0,
w

Q x w
∗ ≡/  and the choice of a constant learning 

rate, ( ) ,nη η=  is not appropriate [4]. 

The convergence results are here established in the follow 

theorem. 

Theorem 3. Subject to the conditions 

0

(a) ( ) ,
n

nη
∞

=

= ∞∑  
2

0

(b) ( ) ,
n

nη
∞

=

< ∞∑      (40) 

the gradient algorithm (13) yields 

lim { ( , ( ))} inf { ( , ))}
n w

E Q x w n E Q x w
→∞

=  a.s. 

provided that 0θ >  with θ  determined by (37). 

Proof. Setting 

{ ( , ( ))} inf { ( , )}n
w

V E Q x w n E Q x w= −  

it can show that the requirements (29) and (30) will be 

satisfied: ( ) 0,V w∗ =  and ( ) 0V w >  for .w w
∗≠  Since 

2{|| ( , ) ||} 0wE Q x w∇ >  for ,w w
∗=  it follows that condition 

(ii) of the Key Technical Lemma assumes nτ → ∞  as 

( ) .w n w∗→  

Suppose (ii) is not satisfied. Then, there is a finite τ  such 

that 

2{|| ( , ) ||} ( ( ))w nE Q x w V w nτ∇ ≤  

With 

.nτ τ≤ < ∞                    (41) 

Since τn is assumed to be finite, there exists a finite 0
n  

such that requirement (33) will be satisfied for all sufficiently 

large 0
n n≥  provided that (i) takes place with 0nθ θ≥ >  

and 0
{ ( )}E w n < ∞  and the condition (b) of (40) is satisfied 

(due to the fact that (b) means ( ) 0nη →  as ).n → ∞  

Further, if the assumption nτ τ≤ < ∞  holds then the series 

0

n n

n n

η θ
∞

=
∑  with 0nθ θ≥ >  

diverges whereas the series 

0

( ) / 2n

n n

L nη τ
∞

=

−∑  

converges (because of the validity of (a)). This gives that (34) 

takes also place. 

Since 0,θ >  all the conditions of Key Technical Lemma 

are satisfied for 0
.n n≥  By this Lemma, lim 0n nV→∞ =  a.s. 

Therefore, n n
τ →∞→ ∞  with probability 1. But this 

contradicts the assumption that nτ τ≤ < ∞ (see (41)). Hence, 

this assumption is false. This fact proves the validity of result 

given in theorem. 

Remark. Setting 
2: || { ( , ( ))} || { ( , ( ))}n w E Q x w n E Q x w nθ = ∇ , 

2: {|| ( , ( )) || } { ( , ( ))}n wE Q x w n E Q x w nτ = ∇  

it can be concluded that, under the condition of the Theorem 3, 

the following features are observed: 0,nθ θ> >  nτ τ< < ∞  
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for all .n  

Fig. 7 in which { ( , ( ))}E Q x w n  equal to n
V  demonstrates 

these features. 

 

 

 

Figure 7. Variables ,nθ nτ  and { ( , ( ))}E Q x w n  in Example 3. 

As it is seen, { }
n

θ  is bounded away from zero whereas 

{ }
n

τ  is upper bounded. It gives { ( , ( ))} 0
n

E Q x w n →∞→  as 

shown in Fig. 7 below. 

Comment 3. The conditions established in the theorem 2 

and 3 are sufficient to guarantee the global convergence of (13) 

(for any (0))w  with probability 1 both in ideal and non-ideal 

cases. Under these conditions, the requirement (15) in which 

( ( )) { ( , ( ))}J w n E Q x w n≡  

will obviously be satisfied (final result). Again, the essential 

feature of this result in the fact that these convergence 

properties can be achieved without adding penalty term to 

( , ( )),Q x w n  as in [16]. 

Of course, the calculation of θ  and τ  for choosing the 

suitable constant learning rate, ,η  according to (37), (38) 

seems to be hard. Meanwhile, η may be replaced by the 

time-varying η(n) satisfying the requirements (35) if 

necessary. Note that they are usual in the stochastic learning 

theory [7]. 

7. Conclusion 

The main contribution of this paper consisted in theoretical 

and experimental studying the asymptotical properties of 

standard online gradient algorithms applicable to the learning 

neural networks in the stochastic framework. Namely, new 

sufficient conditions for the global convergence of these 

algorithms have been established. It was shown that adding a 

penalty term to the current error function is indeed not 

necessary to guarantee their convergence properties. Further 

analysis will provide a study of the asymptotic behaviour of 

online gradient learning algorithms in the presence of noise 

whose importance was pointed out in [4]. 
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