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The mathematical model of a speckle suppression method based on two Barker code-type 

diffractive optical elements moving in orthogonal directions is developed. The analytic 

formulae for speckle suppression efficiency are obtained. The model indicates that the one 

pair of DOE can be used for laser beams of different colors. It is proved that the output 

numerical aperture of the objective lens equal to NA = T/λ  provides the maximum speckle 

suppression effect. The speckle contrast is not dependent on a distance of the viewer to the 

screen until the distance decreases below the distance where the spatial resolution of the 

eye on the screen is less than the length of the image of the DOE structure period on the 

screen. The analysis of the simulated results demonstrates that the method can decrease the 

speckle contrast to less than 5%, which is below human eye sensitivity, with an optical 

efficiency greater than 90%. 

          OCIS codes: 110.6150, 110,1650. 
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1. Introduction  

The use of lasers in projectors and displays provides significant advantages; namely, it allows to 

obtain high-color saturated images, high optical efficiency and small size. The high optical 

efficiency and small size are especially important for mobile devices. The engineering 

advantages and peculiarities of laser projectors are summarized in [1]. However, speckle 

phenomena arising from the coherence of laser light [2,3] severely degrades the image quality 

and has inhibited the widespread application of lasers in image systems [1, 4]. The subjective 

speckle (the speckle created in image systems) are granular light intensity modulation in the 

image due to the interference effect when coherent light is used for illumination [2,3]. The 

speckle contrast ( C ) is used to measure the depth of light intensity modulation caused by 

speckles. It is defined as the ratio of the standard deviation to the mean of the speckle intensity 

and is given by the following expression  [2, 3]:  
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where Iσ , >< I  and >< 2I   are standard deviation, the mean value and the second moment of 

light intensity on the screen. Often, it is more convenient to use the speckle suppression 

coefficient spk  instead of speckle contrast: 

Cksp /1= .      (2) 

Because subjective speckle arise directly in the image system and have a spatial correlation 

length approximately equal to the spatial resolution of the optical system, it is not practically 

possible to use special filters for speckle suppression. Therefore, speckle suppression methods 

are mainly based on speckle pattern averaging. Speckle averaging can be accomplished by using 

the wavelength, angle or polarization diversity of a laser beam [3].  All of these three factors are 
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independent and therefore, the speckle suppression coefficient can be represented as the product 

of three coefficients [3]: 

pol
spspspsp kkkk θλ= ,     (3) 

where λ
spk  is the coefficient of speckle contrast suppression due to wavelength diversity, θ

spk   is 

that due to angle diversity and pol
spk  is that due to polarization diversity ( 2<pol

spk ). 

The efficiency of wavelength diversity method can be estimated by the formula [3]: 

( ) λλπλ /2/~ 5.0∆hksp ,      (4) 

where λ  is laser wavelength, λ∆  is the laser’s spectral bandwidth and h  is the average surface-

profile height variation of the screen.  Theoretical estimation has shown that for full speckle 

suppression for a screen with a roughness height of approximately 50 µm, the spectral bandwidth 

should be at least nm50>∆λ . The time coherence of the laser beam can be reduced by using 

several lasers [5-7] or by using a broadband laser [8]. For speckle averaging using several lasers 

with equal light intensity and with wavelength differences sufficient to create different speckle 

patterns (the best case for speckle suppression), the speckle contrast can be decreased at most to 

a level of [2] 

N
C

C 0= ,      (5) 

where C is the final speckle contrast,  C0 is the speckle contrast in the case of using one laser 

(~0.6), and N is the number of lasers. It is clear from Eq. (5) that over 100 lasers, with a total 

spectral bandwidth approximately equal to 10%, are required to suppress speckle noise below the 

sensitivity of the human eye. However, using many lasers for illumination is usually unaccep-

table due to the complexity and significant increase of the size of the projector. The application 
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of a broadband laser for illumination results in low optical efficiency and small speckle 

suppression due to the low efficiency and small spectral bandwidth of broadband lasers [9].  

The most effective speckle suppression can be obtained by using angle diversity. The 

angle diversity can be obtained in several ways: 1) by the vibration of a screen, 2) by vibrating 

diffractive optical elements (DOE) inside the optical system, 3) by beam scanning along the 

illu mination surface, and 4) by de-correlation of the illumination beams incident from different 

angles simultaneously.  

The rapid movement or vibration of a screen [10] is not an optimal and acceptable 

solution for almost all technical applications.  

It is possible to achieve large speckle suppression by moving or vibrating a random 

diffuser inside optical systems [11-13]. Full speckle suppression can be obtained by a rapidly 

vibrating diffuser [13]. However, the use of a random diffuser requires high-frequency and large-

amplitude of DOE vibration, and the method has high optical losses.  

The original method of speckle suppression was proposed by Trisnadi [14, 15]. Trisnadi 

proposed using a periodic DOE with a specially structure instead of a random diffuser. More 

specifically, Trisnadi proposed the use of a DOE with phase modulation of the laser beam 

wavefront based on the Hadamard matrix algorithm. It was proved that method allows obtaining 

high optical efficiency and high level of speckle suppression. However, the method requires very 

accurate, fast and complex DOE movement, which is very difficult to realize in technical 

devices. A prior study [16] reports on a modification of the Trisnadi method in which the 2D 

structure of the DOE is changed to a pair of 1D DOE structures that together realized the 

Hadamard matrix modulation method. The improvement can be useful for speckle suppression 

only in the case of being able to switch a DOE structure by voltage, for example, by using a 
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DOE based on liquid crystal meshes. However, for efficient speckle suppression, the frequency 

of switching of liquid crystal panel meshes should be greater than 15000 Hz, which is far above 

the maximum switching frequency of modern liquid crystal elements (approximately 1000 Hz).    

It is possible to obtain high speckle suppression by laser beam scanning along the screen 

by a vibrating mirror in the Fourier plane of the objective lens. The value of the numerical 

aperture of the objective lens is the parameter that determines the effect of speckle suppression in 

this method [3, 17]. The method can be used in 1D laser projectors [18-20] and in laser pointer 

projectors [21-22]. However, because a laser pointer projector cannot use a large mirror due to 

the requirement of very rapid mirror vibration, the method is effective only for 1D scanning laser 

projectors. A simple and effective (with small optical losses) method of homogeneous filling of 

the aperture of the objective lens by laser illumination is proposed in [17, 23]. The Barker code-

type DOE is used to generate a wide spatial frequency band and to increase the beam width to a 

diameter of the input numerical aperture of objective lens independent of the initial width of the 

laser beam. In [24,25], a generalization of this method was proposed. However in the  method,  

only an aperture along the beam scanning direction can be used for speckle suppression. 

Significant optical system complication is required for the use of an aperture in the orthogonal 

direction for speckle suppression [26]. A speckle contrast in the range of 14-18% was obtained 

using this method [23].  

In recent years, several novel methods of speckle suppression have been developed based 

on a light pipe tube [27, 28]. The effect of speckle suppression (using the angle diversit y of the 

illumination system) in this method is obtained by vibration or rotation of the pipe tube. The 

method requires the movement of a large diameter (several centimeters) and long (at least several 

diameters) light pipe tube. 
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Several groups have reported on the use of a multimode fiber to reduce speckle contrast 

in laser projectors [29–32]. The theory behind this method was developed by Goodman [33]. The 

length of fiber should be long enough to achieve de-correlation of practically all fiber modes. It 

is possible to achieve a speckle contrast of 0.01 at the distant end of the fiber ends when the fiber 

is several meters long [33]. The greatest advantage of this method is that it does not require 

mechanical movement. However, the correlation length of incident laser beam on screen 

increases by a factor equal to the magnification of the optical system [34]. Therefore, to preserve 

the same speckle contrast on the screen as that at the distant fiber end, the method requires the 

number of multimode fibers  be approximately equal to the square of the magnification of the 

projector objective lens (approximately equal to the number of pixels on the screen > 300000). 

Despite significant efforts to develop a simple method and a compact system for 

decreasing speckle noise to an acceptable for the human eye level, this problem has not been 

solved until now. Below, we describe the theory of an efficient and simple speckle suppression 

method based on two moving Barker code DOEs, which decreases speckle contrast below human 

eye sensitivity (with optical losses less than 10%).       

 2. Optical scheme 

The optical scheme of a laser projector with a new speckle suppression mechanism is shown in 

Fig. 1. In the speckle suppression part, a laser beam passes through two diffractive optical 

elements situated close to each other (distance between them is significantly smaller than the 

objective lens focal length). The DOE should be placed in the illumination part or in the object 

plane or in the plane of the intermediate image plane of the optical system. Each DOE structure 

is a 1D Barker code-type DOE, as shown in Fig. 2. The Barker code is a sequence of N numbers 

of iB  taking values of 1 or -1, which produces the narrowest autocorrelation peaks [35]. The 
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Barker code-type DOE is a 1D periodic two level structure (see Fig. 2), where the difference in 

height provides a phase shift on half of wavelength; as a result, the transmitted electromagnetic 

field  at the back surface of the DOE is modulated by a periodic Barker code sequence. The DOE 

period on the screen (in the image plane) is equal to NTT =0 , where T is the DOE pitch length, 

N is the Barker-code length and D is the width of the main maximum of the point-spread 

function of the human eye on a screen. One DOE structure is stretched along the x axis, and it 

diffracts light along the X direction. Another DOE has its structure stretched along the y axis, and 

it diffracts light along Y direction. Each of these structures is moving in the image plane  along its 

diffraction plane.  The objective lens projects light onto a screen. The optical modulator modula-

tes the intensity of the light to create an image on the screen. However, because we are only 

interested in investigating the electric - field modulation caused by speckle, it is assumed that the 

screen is homogeneously illuminated.  

The complete optical system (projector and viewer) has three numerical apertures. The 

first aperture is the input numerical aperture , 11 sin θ=NA , of the objective lens of the projector. 

The input numerical aperture serves as a low-pass filter of spatial frequency and therefore 

distorts the image and decreases the optical efficiency. The second is the output numerical 

aperture, θsin=NA , of the objective lens which determines the maximum possible resolution of 

the projected image on the screen. The third aperture is the input numerical aperture, 

33 sin θ=NA , of the eye, which determines the resolution of the eye on the screen.  

The optical system of the projector is assumed to have no aberrations. In spite of an 

aberration- free optical system, the phase modulation of the light on the screen will be disturbed 

due to spatial frequency truncation by a numerical aperture of objective lens, NA1<1. The actual 

pitch of the DOE has a width of T1. A ratio ( )11 // TNAk p λ=  determines the accuracy of the 
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phase reproduction on the screen. Because T/T1=NA1/NA, we can rewrite the ratio as 

TNAk p //λ= , and the last ratio determination will be used to characterize the optical system 

limitation on the spatial frequency band. The ratio of the one period of the DOE structure at 

image on screen NTT =0 to the eye (photo camera) resolution on the screen (by Rayleigh), 

30 2/2/ NADD λ== , is another important parameter that determines the speckle suppression 

efficiency and will be used below in the analysis of the method. 

3. Mathematical model  

First, we assumed that we have an ideal optical system (aberration free) with a large input 

numerical aperture, 1// 11 >>= TNAk p λ ; therefore, we can exactly reproduce the Barker code 

wavefront phase modulation onto a screen (with a magnification).  Below, we also assumed that 

the Barker code length N and period of both DOEs (vertical and horizontal) are equal to each 

other; however, the obtained results can be easily generalized for cases with different Barker 

code lengths and periods. 

When using one moving Barker code-type DOE, we will obtain approximately the same 

effect as that  obtained in a 1D laser projector with a Barker code DOE [17, 24].We also assumed 

that the aperture of the objective lens of a viewer (human eye or photo camera) is square (instead 

of circular) to simplify the analyses of the 2D case. Changing the shape of the aperture from 

circular to square should not significantly influence speckle suppression; however, it permits a 

simple analytical expression for the speckle suppression efficiency. It is easy to generalize the 

algorithm for a circular aperture by changing the point-spread function of the objective lens; 

however, in this case, a large amount of calculatio ns are required to determine the speckle 

parameters.  
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All the results are obtained in the Fresnel scalar approximation using the thin-lens model 

for the objective lens. Because the output numerical aperture used in the projection system is 

small (NA<<1), the Fresnel scalar approximation is accurate.  

The electric- field dis tribution at the screen can be written as follows: 

( ) ( ) )()(,, 210 tVyHtVxHyxEyxEscr −−= ,                            (6) 

where ( )yxE ,0 is the electric- field amplitude distribution at the screen for the optical scheme 

without a DOE, H(x) is one DOE modulation function scaled due to the magnification of the 

objective lens of the projector, and 21  ,VV  are the DOE image scanning velocities on the screen. 

In the Fresnel approximation [36, 23], the complex amplitude of the field on the retina of a 

viewer can be written as follows: 
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where x and y and ξ  and η  are the coordinates at the screen and the retina, respectively, t is the 

time, t∆  is one time resolution of the human eye, ∆  is the crystalline lens diameter, λ  is the 

wavelength, λπ /2=k  is the wavenumber, ( ) ( ) xxxc /sinsin = , and ( )yxr ,  is the random screen 

complex field amp litude reflection coefficient defined by the screen micro-roughness. Below, we 

will ignore the phase factor ( )( )ayxik 2/exp 22 +−  in Eq. (7) because any photo-sensor (as well 

as the human retina nerves) is sensitive only to the optical intensity.  

It is assumed that the first DOE structure is shifted by one of its period during one 

resolution time of the eye, 0t∆ ( along the x axis).  The second DOE velocity, 2V , is assumed to 

be larger than V1  by a factor of MN, where M is a nonzero integer number. Hence, the second 
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DOE is shifted by the length of MN periods of DOE structure during time interval of 0t∆ 0t∆ ( 

along the y axis). The image recreated in the human eye can be calcula ted as the squared 

modulus of the field amplitude (Eq. (7)) integrated over the time interval 0t∆ : 
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where I(x,y) is the human eye image related to the screen coordinates ξ
b
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The screen has a rough surface with a roughness height considerably greater than the wavelength 

of the light. Therefore, we can write ( ) ( )21212211 ),(*),( yyxxRyxryxr −−= δδ , where the 

brackets  denote screen averaging and R  is the mean intensity reflection coefficient. Then, the 

expression for the mean value of the light intensity can be written as follows:   
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The mean of the square of the light intensity can be written as follows: 
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Using Eq. (12), we can rewrite Eq. (11) as follows: 
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Substitution of Eq.(13, 14) into Eq. (1) yields the following formula for speckle contrast:  
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Because the two DOEs are periodic structures, the autocorrelation function (9) can be 

written as a sum of N integrals as follows:  
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It is easy to show that the sum in Eq. (16) does not depend on x and therefore can be written as 

follows: 
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where ( )120 xxA −  is the discrete autocorrelation function of the periodic Barker code sequence 

(autocorrelation function of the discrete Barker code sequence). Using Eq. (17), we can rewrite 

formula (16) as  
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where ( ) ( ) ( )∫ ++=− ∗
NT

duxuHxuHxxA
0

2112  is the autocorrelation function of the periodic 

Barker code function. By substituting Eq. (18) into Eq. (15), the formula for speckle contrast can 

be rewritten as follows : 
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
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=
ππ

ππππ

  (19) 

By changing the variable 11 xu = ,  122 xxu −= , 11 yv = , 122 yyv −= , Eq. (16) can be rewritten 
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as follows: 
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and finally, we obtain: 
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2

0
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In Eq. (21) a factor 2/1  is added to take into account depolarization properties of the screen. 

4. Simulation results in the approximation of an ideal optical system 

and an ideal Barker code-type DOE  

The graph of the normalized autocorrelation functions ( )xA /A(0) and ( ) ( )0/ 00 AxA  (not scaled) 

and function ( )xQ are shown in Fig. 3. Both ( )xA  and ( )xA0  autocorrelation functions have 

periodic high and narrow (width of T) peaks that have triangle and rectangular shapes, 

respectively. The normalized autocorrelation functions have peak values of 1, and outside the 

peaks areas, these functions have an absolute value equal to or smaller than 1/N. For a large N, 

the Q function is nearly constant inside the narrow peaks of the autocorrelation functions, and it 
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is possible to simplify the formulae for speckle contrast. Formula for 2
xC  can be written as:  
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and for 2
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For a large N, it is possible to reject terms 1σ and 2σ  in Eq. (23) (with a minor loss in accuracy in 

the calculation of order 
2

1
N

): 

( )∑
∞

−∞=

≈
i

x DiNTQ
D
T

C /
42       (24) 

( )∑
∞

−∞=

≈
i

y DiNTQ
D
T

C /
3
42       (25) 

The half width of the Q function is approximately equal to 0.5 (see Fig.4 ). Therefore, when one 

period of the DOE is larger than D/2=D0, only one maximum of the corre lation function is inside 

a central peak of the Q function, and with good accuracy, only one term with an index i=0 can be 

left in the sums (24, 25) for the calculation of 2
xC and 2

yC :  

( )
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2

3
2

0
4

N
Q

D
T

Cx =≈       (26) 



 15 

( )
0
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4

0
3
8

N
Q

D
T

C y ==       (27) 

where TDN /00 =  is the number of DOE pitches inside one eye resolution.  

Fig. 5 shows the simulation results of the speckle contrast calculated using three different 

approximations. The analysis of the numerical results obtained by the exact formula (20) has 

shown that for a large D0 (D0/NT>1), the speckle contrast is independent of D0 and it is close to 

( )3/1 NC = . As D0 decreases to values below the DOE structure period on screen, the speckle 

contrast rapidly increases and approaches the level of an optical system without a DOE 

2/1=C  when the DOE pitch width T exceeds D. Because the resolution of the eye at the 

screen is proportional to the distance to the screen, Fig. 5 also exhibits a dependence of speckle 

suppression on the distance to the screen (upper axis on Fig. 5) of viewer. The speckle contrast is 

nearly independent on S until it decreases below the distance S0 at which D0=NT. Because of the 

rapid increase in the speckle level when the distance to the screen is lower than S0, this area 

should be avoided by viewers.      

The comparison of the numerical results of the speckle contrast obtained by accurate 

calculation (Eq. 21) and by narrow peak approximation (Eq. (23, 25)) indicate (see Fig. 5) that 

the latter approximation is quite accurate, with an error of several percent, which is an error level 

that is sufficient for engineering applications. Therefore, the simplified Eq. (24, 25) can be 

successfully used in engineering calculations. The simple approximation that takes into account 

only one of the autocorrelation peaks (see Fig. 6), given by Eq. (26, 27), is correct only for small 

D (D<T0) when only one of the peaks of the autocorrelation function is inside the central Q(x) 

maximum. 
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5. Simulation of the optical system with an arbitrary numerical 

aperture and a Barker code DOE without an exact phase shift  

In an actual optical system, an objective lens has a finite numerical aperture, which 

truncates high spatial frequencies and therefore cause image blurring. In addition, because the 

same  pair of DOEs is used for laser beams of different colors in our optical scheme (see Fig. 1), 

the phase shift of the wavefront of some of these beams after transmission through the DOE 

would not be exactly equal to π  (for red and blue beams, for example).  However, all of the 

numerical results described above were obtained under the assumption of an exact phase shift of 

π by the DOE and of an ideal optical system. In this assumption, we demonstrated that the 

autocorrelation function of the illuminated laser beam can be represented as a product of two 

factors (Eq. 21). Independence of the sum in Eq. (16) on the variable x is a basis for the 

representation of the speckle contrast as a product of two factors, Cx*Cy. It is clear that the 

independence of the autocorrelation function 0A on x will also be valid in the case of any phase 

shift (any sequence of two complex numbers but not just in a sequence of 1 and -1) for the ideal 

optical system; therefore, it will be valid for any color of beam (the proof will be published 

elsewhere). It is not difficult to show that autocorrelation function 0A  of the optical system with a 

finite numerical aperture NA1, due to the linearity and uniformity of the optical transfer function 

will not depend on x (the proof will be published elsewhere). Therefore, the sum in Eq. (16) 

would also not depend on x for the case of objective lens with finite numerical aperture and for  

DOEs without an exact π phase shift. Therefore, it is still correct to use Eq. (20- 22) for the 

speckle contrast calculation. However, A0(x) and A(x)  in these formulae should be calculated by 

taking into account the real phase shift and image blurring due to the truncation of high spatial 

frequencies.  
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Because speckle contrast is a product of two factors related to two different DOEs 

moving in two orthogonal directions, we analyzed each factor separately. Sometimes it is more 

convenient in the analysis of the method to use speckle suppression coefficients instead of 

speckle contrast, which are determined as follows: 

Ck sp /1= ;  x
x
sp Ck /1= ;   y

y
sp Ck /1= .      (28) 

Because nearly all projectors have large magnification, the distance from objective lens 

of projector to the screen is significantly longer than a focal length and the object plane is close 

to the focal plane. Therefore, the objective lens is represented in the mathematical model as a 

low-pass filter of spatial frequency with a cutoff frequency of 1

2
NAk cutoff λ

π
= . The field on the 

screen is calculated using a direct and inverse Fourier transform (with truncated high spatial 

frequencies for image calculation) with image rescaling in accordance to the system 

magnification. The autocorrelation functions A0(x) and A(x) are calculated using direct numerical 

integration. All of the calculations below were performed for the optimal ratio of D to T0 equal to 

D/T0 = 2 and for a depth of the DOE relief that provides a phase shift of the wavefront of π  for a 

wavelength mgr µλ 532.0= . Because the diffraction angle has a linear dependence on λ and the 

effect of speckle suppression is based on diffraction phenomena, the optical system will truncate 

different high spatial frequency ranges for laser beams with different wavelengths, and that 

difference is taken into account in our mathematical model.    

Fig. 6 shows the dependence of the speckle suppression coefficient y
spk  on the laser beam 

wavelength for different output numerical apertures NA of the objective lens. For a small 

numerical aperture, the objective lens truncates all spatial frequencies of the diffracted beam, 

with the exception of a small area near zero. Therefore the beam at screen has flat wavefront and 
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the speckle contrast is close to the speckle contrast of a screen homogeneously illuminated by a 

plane wave (equal to 1) and does not change with the wavelength. For a large NA, e.g., 

NA/(λgr/T) = 3, the maximum speckle suppression is at mµλ 532,0= , where the wavefront along 

the y axis on screen corresponds to a periodic Barker code sequence and the amplitude of 

electromagnetic field has a narrow autocorrelation function. Speckle suppression is significantly 

smaller for red and blue beams where waterfront of beam has different from Barker code shape.  

Fig. 7 shows the autocorrelation function of the field on the screen when using a Barker code-

type DOE of length N=13. Beams of different colors exhibit autocorrelation peaks of the same 

width. However, the level of the autocorrelation function outside of the peaks increases when 

wavelength shifts from the optimal value (the value which provides a wavefront shift of π). It 

can be shown that for a large numerical aperture (NA/(λgr/T)>>1), the shift in the wavelength 

from optimal value of mµλ 532,0=  does not change the width of the normalized autocorrelation 

function ( )0/AAf  but increases the level of the plateau outside the peaks, which can be calculated 

as follows: 

( ) ( ) ( )( ) 







−+=

λ
πλ
2

sin0/10/0/ 2
00

gr
fff AAAAAA       (29) 

The decrease of the modulation depth of the autocorrelation function A(x) (increased 

plateau level) with a shift of the wavelength from the optimal value results in a speckle 

suppression coefficient decrease (see Fig. 6).  

Fig. 8 shows the dependence of the speckle suppression coefficient y
spk on the numerical 

aperture for red, green and blue laser beams. The same pair of DOEs that provide a shift in the 

wavefront of π  for a green beam are used for all the laser beams. The speckle suppression 

coefficient y
spk  monotonously increases with an increase of the numerical aperture and has 
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plateaus for the large numerical apertures (NA/λ/T>1) for all three beams. A value of the 

numerical aperture greater than NA=λgr/T is excessive for an optical system because nearly all 

the light is diffracted inside that angle (see Fig. 9), and a further increase has no significant 

influence on the speckle suppression. A decrease in the numerical aperture of the objective lens 

results in an increase in the width and a smoothing of the shape of the peaks of the 

autocorrelation function (see Fig. 10). The increase in the width of peaks of the autocorrelation 

function leads to a decrease in the speckle suppression.   

The speckle suppression coefficient x
spk  exhibits a more complex dependence on the 

numerical aperture of objective lens (see Fig.11). The speckle suppression coefficient x
spk  

initially rapidly increases and reaches the first high maximum at NA/λ/T=1. Subsequently, the 

value of the coefficient oscillates with decreasing amplitude, and all peaks are lower than first 

peak. Fig. 12 shows the autocorrelation function of A0(x) for numerical apertures corresponding 

to the first and second maxima of the speckle suppression coefficient x
spk . The two 

autocorrelation functions have the same peak widths and the same levels in the area outside of 

the peaks. The autocorrelation function in second maximum is closer to the autocorrelation 

function of the ideal optical system shown in Fig. 3 c. The autocorrelation function A0(x) in the 

first maximum of the speckle suppression coefficient has significantly higher peaks (highe r depth 

of modulation) that lead to an increase of the speckle suppression coefficient. The 

autocorrelation function A0(x) changes with the shift from the optimal wavelength in a manner 

similar to the function A (x). With a shift of wavelength from the optimal value (green laser 

wavelength with a phase shift of π), the width of the peaks is preserved and the level of the 

plateau around the peaks increases (Fig. 13), thereby decreasing the speckle suppression 

coefficient. From the numerical results presented in Fig. 11, it follows that there is an optimal 
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numerical aperture for the speckle suppression coefficient. An increase or decrease in the 

numerical aperture from the optimal value leads to a decrease in the speckle suppression 

coefficient x
spk . 

6. Conclusion  

The method and mathematical model of the speckle suppression mechanism based on two Barker 

code-type DOEs enables a speckle-free image to be produced by laser projectors. The simple 

formulae for the speckle contrast calculation were determined. Speckle suppression was 

determined to be represented as a product of two factors, each of which depends on its own DOE 

parameters. High speckle suppression can be obtained using the same pair of DOEs for laser 

beams of different color. The optimal numerical aperture of the objective lens is equal to 

NA= T/λ , which provides the maximum speckle suppression.  

The analysis demonstrated that the method permits to decrease the speckle contrast below 

the human eye sensitivity with an optical efficiency larger than 90%. The speckle contrast in the 

method is not dependent on the distance of the viewer to the screen until the distance decreases 

below the distance where the resolution of the eye on the screen is less than the DOE structure 

image on the screen. 

A square aperture was used to simulate the eye in the mathematical model to simplify the 

obtained formulae. The model can be easily generalized to the actual case of a circular aperture 

for the eye. Additional analysis is required for accurate method optimization to take into account 

the actual shape of the aperture (circular shape).  
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Figure captions 
 

• Fig.1. Optical scheme of the laser projector with two Barker code-type DOEs. 

• Fig. 2. Cross-section of the Barkercode-type DOE and the corresponding Barker code 

sequences. 

• Fig. 3. Barker code-type DOE of length 7 - (a) and the autocorrelation function )(xA  - (b) 

and )(0 xA - (c) for different values of N (not scaled).  

• Fig. 4. Q(x). 

• Fig. 5. Dependence of the speckle contrast (simulation results) on the ratio of the eye’s 

(photo camera) lateral resolution (on the distance of the eye to the screen – upper axis) to the 

DOE period calculated with different formulae: solid line – exact formula. a) N = 7 and      b) 

N = 13; S0 is the distance where D0 = NT. 

• Fig. 6. Dependence of the speckle suppression coefficient y
spk and the optical efficiency on 

the wavelength for different numerical apertures, NA1, of the objective lens of the projector. 

• Fig.7. Dependence of the autocorrelation function A(y) of the screen (along the y direction) 

on the wavelength (simulation results): NA/(λ/T )= 5; N = 13. 

• Fig.8. Dependence of the speckle suppression coefficient y
spk  on NA  (N = 13) for blue, red 

and green laser beams. 

• Fig. 9. Dependence of the optical efficiency of the speckle suppression method on the NA 

(N=13). 

• Fig. 10. Dependence of the autocorrelation function A(y) on the NA :  λ = 0.53 µm; N = 13. 
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• Fig. 11. Dependence of the speckle suppression coefficient x
spk  on the numerical aperture of 

the objective lens for laser beam of different colors. 

• Fig. 12. Dependence of A0 on NA for λ = λgr= 0.53 µm. 

• Fig. 13. A0(x) for different NA : λbl = 0.40 µm; N = 13. 
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Fig. 3.  
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Fig. 6.  

 

0.40 0.45 0.50 0.55 0.60 λ(µm) 
1.025 

1.030 

1.035 

1.040 
2.5 

3.0 

3.5 

y
spk  

  NA/λgr/T=0.05 
  0.6 
  3 



 33 

 

 

 
 

Fig.7. 
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Fig.8. 
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Fig. 9. 
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Fig. 11. 
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Fig. 12. 
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Fig. 13.  
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