Please use this identifier to cite or link to this item: http://er.nau.edu.ua:8080/handle/NAU/37633
Title: Дослідження впливу пероксиду водню на перетворення вуглеводнів в кавітаційному реакторі
Authors: Целіщев, Олексій Борисович
Лорія, Марина Геннадіївна
Бойченко, Сергій Валерійович
Єлісєєв, Петро Йосипович
Матвєєва, Ірина Валеріївна
Keywords: Моторне паливо
Кавітаційний реактор
Вуглеводні
Метанол
Октанове число
Інформаційно-логічна схема
Ступінь конверсії
Issue Date: 2018
Publisher: Ukrainian State University of Chemical Technology
Series/Report no.: Voprosy khimii i khimicheskoi tekhnologii;
Abstract: The subject of research was the process of direct cavitation conversion of gasoline hydrocarbons into the components of motor fuels in the mixture with aqueous solution of hydrogen peroxide. The effect of process parameters on the degree of conversion of alkanes into methanol has been determined. The analysis of technological process of direct cavitation conversion of gasoline hydrocarbons into motor fuel components as a control object was performed. The output, regulating and perturbation parameters of the process have been established. The process of direct cavitation conversion of hydrocarbons into the components of motor fuels, for example into methanol and toluene, was investigated using aqueous solution of hydrogen peroxide. The developed technology allows increasing the octane number of gasoline. It was established that the processes of paraffin isomerization and toluene formation occur in the course of cavitation treatment of gasoline without hydrogen peroxide which allows increasing the octane number of gasoline by ~4 units. However, the octane number increases by ~10–12 units when the cavitation treatment of gasoline is carried out with the solution of hydrogen peroxide. The optimal parameters of the cavitation treatment of gasoline were determined which ensure an increase in the octane number. The parameters were determined, beyond which methanol and toluene are not discovered in the products of the cavitation treatment. The reason is the lack of the conditions for the cavitation and, consequently, for the formation of proper radicals. The process installation of the cavitation treatment of hydrocarbons into methanol is characterized by relatively high efficiency, a small number of devices, and low energy, material and metal consumption; the process parameters are completely accessible in industry.
Description: 1. Bojchenko, S.V., Laneckij, V.G., Chernyak, L.M., Radomska, M.M., Kondakova, O.G. Kompaunduvannya benzinu A–92 z etylovym spyrtom kavitatsiinym metodom [Blending of A–92 gasoline with ethyl alcohol by cavitation method] (2016) Naukoyemni Tekhnologiyi, 32 (4), pp. 420-424. Ukrainian 2. Conversion of methane to C2–C5 hydrocarbons (2013) Focus on Catalysts, 2013 (3), pp. 7-8. 3. Derendorp, L., Holzinger, R., Wishkerman, A., Keppler, F., Röckmann, T. Methyl chloride and C2-C5 hydrocarbon emissions from dry leaf litter and their dependence on temperature (2011) Atmospheric Environment, 45 (18), pp. 3112-3119. Цитировано 23 раз. doi: 10.1016/j.atmosenv.2011.03.016 4. Bojchenko, S.V. (2001) Ratsional’Ne Vykoristann’Ya Vuglevodnevykh Palyv [Rational Use of Hydrocarbon Fuels, p. 216. NAU Publishers, Kyiv, in Ukrainian 5. Bojchenko, S.V., Spirkin, V.G. (2009) Vstup Do Khimotologiyi Palyv Ta Olyv [The Introduction to Chemmotology of Fuels and Oils], p. 236. Odesa, in Ukrainian 6. Hong, T.D., Soerawidjaja, T.H., Reksowardojo, I.K., Fujita, O., Duniani, Z., Pham, M.X. A study on developing aviation biofuel for the Tropics: Production process - Experimental and theoretical evaluation of their blends with fossil kerosene (2013) Chemical Engineering and Processing: Process Intensification, 74, pp. 124-130. Цитировано 25 раз. www.elsevier.com/inca/publications/store/5/0/4/0/8/1/index.htt doi: 10.1016/j.cep.2013.09.013 7. Zakharov, I.I., Ijagbuji, A.A., Tselishtev, A.B., Loriya, M.G., Fedotov, R.N. The new pathway for methanol synthesis: Generation of methyl radicals from alkanes (2015) Journal of Environmental Chemical Engineering, 3 (1), pp. 405-412. Цитировано 5 раз. http://www.journals.elsevier.com/journal-of-environmental-chemical-engineering/ doi: 10.1016/j.jece.2014.08.008 8. Loriya, M.G., Zaharov, I.I., Celishev, O.B. Pryame peretvorennya propan-butanovogo gazu v metanol [Direct transformation of propane-butane gas to methanol] (2011) Acta Universitatis Pontica Euxinus, 3, pp. 103-105. Ukrainian 9. Celishev, A.B., Zaharov, I.I., Loriya, M.G. Analiz sposobov aktivatsii metana v «m’yagkikh» usloviyah [Analysis of the methods of methane activation under «mild» conditions (2012) Voprosy Khimii I Khimicheskoi Tekhnologii, (2), pp. 39-44. Цитировано 2 раз. Russian 10. Celishev, A.B., Loriya, M.G., Zaharov, I.I. Analiz fiziko-khimicheskikh metodov polucheniya gidroksil’nogo radikala [Analysis of the physicochemical methods of the production of hydroxyl radical] (2011) Vesnik KhPI, (65), pp. 111-124. Цитировано 2 раз. Russian 11. Celishev, O.B. Otrimannya gidroksyl’nogo radykala v «m’yakykh» umovakh [Production of hydroxyl radical under «mild» conditions] (2011) Voprosy Khimii I Khimicheskoi Tekhnologii, (2), pp. 35-38. Ukrainian 12. Tselischev, A., Loriya, M., Ijagbuji, A. Cavitation reactor installation for processing hydrocarbon (2016) Teka Commission of Motorization and Power Industry in Agriculture, 16 (2), pp. 37-42.
URI: http://er.nau.edu.ua:8080/handle/NAU/37633
ISSN: 0321-4095
Appears in Collections:Публікації у наукових виданнях співробітників кафедри екології

Files in This Item:
File Description SizeFormat 
Tselishchev.pdfОсновна стаття505.03 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.