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A torus is a solid shape resembling a donut, formed by rotating a circle with radius r and 

centered at (R, 0) around the y-axis. Our goal is to determine the volume of the torus using the washer 

method. The equations for the inner and outer radii of the torus are as follows: 

inner radius 
2 2x R r R    , outer radius 

2 2x R r R   . 

Hence, employing the washer method, the cross-sectional area is as follows: 
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Next, the lowest cross-section will happen at y r   and the highest cross-section will happen 

at  y r   and so the limits for the integral will be  r y r   . Therefore, the integral giving the volume 

is as follows: 
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Result 

To solve the integral we will use the substitution:  

siny r   

by substituting into the integral we get  

/2
2 2 2 2 2

0 0

cos 1 / 4
r

r R dy r d r


      
 

Therefore, the volume of the torus is 
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