

34 ISSN 1990-5548 Electronics and Control Systems 2023. N 4(78): 34-43

©National Aviation University, 2023

http://jrnl.nau.edu.ua/index.php/ESU, http://ecs.in.ua

UDC 004.032.26(045)

DOI:10.18372/1990-5548.78.18261

1
V. M. Sineglazov,

D. O. Kudriev

STRUCTURAL-PARAMETRIC SYNTHESIS OF CAPSULE NEURAL NETWORKS

1
Aviation Computer-Integrated Complexes Department, Faculty of Air Navigation Electronics

and Telecommunications, National Aviation University, Kyiv, Ukraine

2
Department of Artificial Intelligence, Institute of Applied System Analysis, National Technical University

of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”, Kyiv, Ukraine

E-mails:
1
svm@nau.edu.ua ORCID 0000-0002-3297-9060,

2
hallos977@gmail.com

Abstract—This work is dedicated to the structural-parametric synthesis of capsule neural networks. A

methodology for structural-parametric synthesis of capsule neural networks has been developed, which

includes the following algorithms: determining the most influential parameters of the capsule neural

network, a hybrid machine learning algorithm. Using the hybrid algorithm, the optimal structure and

values of weight coefficients are determined. The hybrid algorithm consists of a genetic algorithm and a

gradient algorithm (Adam). 150 topologies of capsule neural networks were evaluated, with an average

evaluation time of one generation taking 10 hours. Chromosomes and weights are stored in the

generation folder. The chromosome storage format is JSON, using the jsonpickle library for writing.

Also, when forming a new generation, chromosome files from previous generations are used as a

"cache". If a chromosome of the same structure exists, the accuracy is assigned immediately to avoid

unnecessary training of neural networks. As a result of using the hybrid algorithm, the optimal topology

and parameters of the capsule neural network for classification tasks have been found.

Index Terms—Capsule neural network; structural and parametric synthesis; genetic algorithm; adaptive

estimation of moment (Adam); classification problem.

I. INTRODUCTION

Artificial intelligence has truly become the

hottest trend in the world of contemporary

technology and business. In recent years, there has

been rapid development in this field, significantly

influencing various aspects of life, including

medicine, education, manufacturing, finance, and

many others. More and more companies and

businesses are seeking to apply artificial intelligence

in their processes and technologies.

The idea of capsule networks is quite intuitive

and is aimed at addressing issues with convolutional

neural networks, primarily the loss of important

information between layers. The output of a capsule

has a vector or matrix form, allowing it to convey

grouped essential features to the next layer.

However, capsule neural networks currently have

certain drawbacks, primarily significant training

slowdown due to the use of computationally

expensive algorithms.

Some of the shortcomings of convolutional

neural networks according to Geoffrey Hinton [1]
1) Convolutional networks are hierarchically too

simple-neurons, layers. Intuitively, the human brain
has more complex structures used for image
recognition, so neural networks should also have
them.

2) Convolutional networks lose a lot of
information during the use of max pooling
operation—where only the most active activation
value is passed to the next layer as the
dimensionality is reduced. All other information is
lost. As Hinton states: "The pooling operation used
in convolutional neural networks is a big mistake,
and the fact that it works so well is a catastrophe."

3) Convolutional networks do not consider the
"pose" of the objects they investigate – object
transformations and transpositions. For a
convolutional network, a digit slightly tilted at a
45-degree angle will appear foreign. This necessitates
the use of a large amount of training data.

4) Another consequence of ignoring pose is that
the neural network does not take into account how
elements of the image are positioned relative to each
other when transitioning from simpler elements to
more complex ones.

Capsule networks address many issues of
convolutional neural networks, performing
significantly better on small-sized datasets and
exhibiting superior feature learning for object
recognition in images. While capsule neural
networks have not yet surpassed convolutional
neural networks in overall performance on complex
and real-world datasets, they already yield
impressive results on datasets like MNIST. Capsule

V.M. Sineglazov, D.O. Kudriev

Structural-parametric Synthesis of Capsule Neural Networks 35

neural networks remain an active area of research in
the field of modern computer vision.

The emergence of this new type of neural network
necessitates the formalization of approaches and the
application of algorithms to create capsule neural
networks with optimal architecture and parameters
for image processing tasks. The goal of this work is
to identify the most crucial hyperparameters and
develop an algorithm for finding the optimal network
topology and training parameters.

II. OVERVIEW OF CAPSULE NETWORK RELATED

RESEARCH

Capsule neural networks began to develop
rapidly relatively recently. Although the idea of
using capsules in neural networks had been around
for some time, it wasn't until 2011 that an article [1]
proposed capsules as a research direction. Only in
2017 did a work [2] introduce the "Routing by
agreement" algorithm, giving rise to the architecture
known as CapsNet.

In subsequent research, various modifications
and alternative approaches to the original CapsNet
architecture were proposed. In article [3],
researchers suggested an alternative activation
function for capsules and experimented with
modifying the topology of the original network.
Article [4] provided a formal description of the
original dynamic routing approach as an
optimization problem minimizing clustering loss and
proposed a version.that was slightly modified The
concept of group capsule networks was introduced
in article [5], claiming equivariance for the output
position and invariance for activations. The authors
of the original CapsNet adapted the expectation-
maximization algorithm for clustering similar
capsule votes during routing in article [6]. Spectral
capsule networks [7], based on this work, modified
routing by decomposing capsule votes from previous
layers into single values. Article [8] proposed a
routing mechanism based on variational Bayesian
methods for training a Gaussian mixture model.
Stability to affine transformations was the focus of
researchers in article [9], separating transformation
matrices between all low-level capsules and each
high-level capsule. Article [10] raised doubts about
the effectiveness of the existing routing algorithm,
suggesting that better results could be achieved
without routing. On the other hand, researchers in
article [11] demonstrated that the "Routing by
agreement" mechanism is necessary for ensuring
compositional structures in capsule-based networks.
Nevertheless, a new architecture based on a
variation of the original capsule idea, called
homogeneous filter capsules without inter-layer
routing, was proposed in article [12].

The attention mechanism dynamically assigns

more importance to specific features considered

more relevant to solving a particular problem. This

idea gained popularity in various deep learning

applications and was implemented in natural

language processing and computer vision. In article

[13], researchers applied the attention mechanism to

capsule routing with a feedforward function without

iterations. However, they selected low-level

capsules, multiplying their activations by a

parameter vector learned through backpropagation,

without measuring agreement. Thus, the original

"Routing by agreement" idea was distorted. Article

[14] slightly modified the original dynamic routing

to calculate agreement between the pose of high-

level capsules and votes of low-level capsules using

an inverse scalar dot product mechanism. They

proposed parallel iterative routing instead of

sequential, performing the routing procedure

simultaneously on all capsule layers. Capsules,

together with a self-attention mechanism, were

applied in article [15] for entity interactions in

natural language processing tasks.

In article [16], researchers consolidated previous

contributions and applied a self-attention mechanism

to capsules for routing information to higher-level

capsules, resulting in a lightweight architecture with

a small number of trainable parameters (160K).

Nevertheless, currently, there are no studies that

focus on finding optimal topologies and parameters

of capsule neural networks using advanced methods

such as genetic algorithms. In the article [3], only a

small series of experiments were conducted, which

did not lead to significant improvements in results.

III. CAPSNET TOPOLOGY

A capsule is a group of neurons whose output

represents various properties of a single entity.

Instead of using the pooling operation, which loses a

lot of information, capsules can be used to not only

show the probability of the existence of a certain

feature but also its characteristics that the neural

network learns to recognize. Each layer of a capsule

network contains many capsules. The activities of

neurons in an active capsule reflect various

properties of a specific entity present in the image.

These properties may include various instantiation

parameters, such as pose, deformation, velocity,

albedo, shading, texture, etc. An obvious way to

represent existence is to use a separate logistic

block, the output of which is the probability that the

entity exists. However, the probability of the

existence of an entity can also be determined by the

length of the feature vector.

36 ISSN 1990-5548 Electronics and Control Systems 2023. N 4(78): 34-43

Active capsules on one level determine, through

transformation matrices, the instantiation parameters

of capsules on the next level.

The weight coefficients between capsules of a

lower level and a capsule at the next level are

iteratively updated for each data input using the

"Routing by agreement" algorithm in such a way

that the output of each capsule is directed to the

capsule where its output value forms a cluster with

the outputs of other capsules.

In other words, a capsule processing certain

elements of an image is given data from capsules at a

lower level if many capsules have a similar pose and

activation (eyes, lips, nose positioned to form a face).

Thus, capsule neural networks, unlike

convolutional neural networks, have the following

characteristics
1) Capsule networks avoid using pooling

operations, which prevents information loss.

2) Capsule networks employ vector
representations of features rather than scalar ones.

3) Capsule networks take into account feature
properties, reducing the need for extensive training
data; the network can recognize features even with
slightly altered appearances.

4) Capsule networks create an understanding of
the existence of higher-level features by considering
the spatial relationships between low-level features.

5) Capsule networks enable the use of "Routing by
Agreement" algorithms between capsules at different
levels, allowing more efficient data transmission.

Topologically, these differences are achieved by
introducing two new types of layers compared to
convolutional neural networks.

 Convolutional capsule layer (called
PrimaryCaps in article [2]). This layer performs
convolution operations similar to a convolutional
layer in a convolutional neural network but adjusts
the dimensions of the output feature maps to
represent the number of capsules in the layer and
their output lengths.

 Capsule layer (called DigitCaps in article [2]).
This layer replaces the pooling layers in a
convolutional neural network and determines the
existence and properties of higher-level features.

Capsule neural networks share a similar topology
with convolutional neural networks, but they use
capsule convolutional layers instead of convolutional
layers and capsule layers instead of pooling layers.

Despite these changes, the first layers of the
neural network can still be a regular convolutional
layers. Thus, capsule neural networks can include
three types of layers:

 convolutional layers;

 capsule convolutional layers;

 capsule layers.
Convolutional layers, as in convolutional neural

networks, apply convolution operations to process
input data and obtain feature maps used to determine
the existence of specific features.

Capsule convolutional layers are similar to
convolutional layers but also incorporate an
additional nonlinear vector activation function.

IV. CAPSNET SPECIFIC LAYERS

Capsule neural networks use two new types of
layers compared to convolutional neural networks -
capsule layers and convolutional capsule layers.

Capsule layers – layers that replace pooling
layers, they receive maps of features and output a
representation of the properties of a feature of a
higher level in the form of vectors, where its length
is the probability that this feature exists.

Let’s go over the mathematical model of a
capsule layer (Fig. 1).

As input to the capsule j of the layer l + 1 are
given vectors ui from the layer l. They are multiplied
by a weight matrix Wij, which performs data
transformation.

|
ˆ .j i ij iW uu

Next a weighted sum of all input vectors is
calculated

|
ˆ ,j ij j i

i

s c u

where сij – weight coefficient. The more the input
vector “agrees” with the output vector, the greater
the value of сij, which belongs to the interval [0, 1].
These coefficients are calculated with the help of
routing algorithms.

As a final step, a non-linear activation function is
used, so-called “squashing” – one of the novelties
introduced in [1], as the activation function is vector
based, instead of scalar as in classic neural networks.
After its application we have the capsule output vector.

2

2 2

1
.

j j

j

j j

s s
v

s s

For one-dimensional vector, function graph is as

shown on Fig. 2.

Convolutional capsule layers – layers that closely

resemble regular convolutional layers. In these

layers, a convolution operation is performed with a

number of filters equal to the product of the number

of capsules and their dimensionality. After obtaining

feature maps, an additional "squashing" operation is

applied to add extra block-wise nonlinearity.

V.M. Sineglazov, D.O. Kudriev

Structural-parametric Synthesis of Capsule Neural Networks 37

Fig. 1. Math model diagram of a capsule in a capsule layer

Fig. 2. “Squash” function graph for one dimensional vector

Mathematically, the convolutional capsule layer

is equivalent to a convolutional layer, with the

additional application of a squashing function along

the dimensions of the resulting features.

(),i i iy W x b

where matrix W depends on the parameters of the

convolutional kernel, i = 1…k, k = m n, where m is
the amount of capsules, n is the size of the capsule
output vector.

All resulting feature maps are resized in order to
have the following output vector dimensionality:

(, , ,),H W n m

where H and W are height and width of resulting

feature maps after convolution application. After

that the “squash” function is used on the last layer.

V. STRUCTURAL-PARAMETRIC SYNTHESIS

OF CAPSULE NEURAL NETWORKS

A. Choice of approach and architecture

The architecture of the capsule neural network

was chosen with the incorportation of a generator

because it serves as an organic regularization

method for capsule neural networks (the prediction

vector of a capsule already encodes object

properties) and is widely applied in the literature

dedicated to capsules [2], [3], [13] and [16]. The

generator takes as input a vector formed by

concatenating the prediction vectors of capsules. It

utilizes a so-called "mask" that assigns zero values

to the vectors of capsules corresponding to a class

different from the true one. The implementation of

capsules was chosen from the article [16] due to the

following advantages:

 is ideologically similar to the original

CapsNet described in [2];

 has the greatest novelty (paper was released in

2021);

 data routing, applied through the attention

mechanism, accounts for capsule agreement;

 is computionally lighter than counterparts.

In the work, a capsule neural network with a

generator is used as an approach to regularization, so

the capsule neural network essentially consists of

two neural networks. The capsule neural network is

comprised of:

 convolutional layers;

 convolutional capsule layer;

 fully-connected capsule layers.

The convolutional layers can have a different

number of kernels, varying strides and kernel sizes,

and activation functions. The following activation

functions will be considered: sigmoid, ReLU, Leaky

38 ISSN 1990-5548 Electronics and Control Systems 2023. N 4(78): 34-43

ReLU. The adjustable parameters are the

convolutional kernel elements in the layer.

The convolutional capsule layer may have the

same number of kernels as the convolutional layer

that precedes it, with different strides and kernel

sizes. The product of the number of capsules in the

layer and their dimensions should equal the product

of the dimensions of the output feature map after

applying the convolution operation. The adjustable

parameters also include the convolutional kernels in

the layer. At the level of the capsule output vectors,

a capsule compression function is used.

Capsule fully connected layers can have an

arbitrary number of capsules and their sizes. The

adjustable parameters are represented by affine

transformation weight matrices W of vector values

of capsules from previous layers and optimal capsule

connection weight matrices B. “Squash” function is

applied to the output vectors.

Generator neural network, on the other hand, can

be comprised of:

 convolutional layers;

 deconvolutional layers;

 fully-connected layers.

In the work, a generator architecture will be

employed in which a fully connected layer at the

beginning transforms its shape into a small image

with a large number of filters. This small image is

then enlarged to the required size of the output

image using layers of transposed convolutions.

Additionally, an extra convolutional layer with three

convolutional kernels converts the image to the RGB

format.

VI. STRUCTURAL-PARAMETRIC SYNTHESIS

OF CAPSULE NEURAL NETWORKS PROBLEM

STATEMENT

The mose decisive parameters of the capsule

neural network are the ones below.

а) Layer count and their positioning:

 convolutional layers;

 convolutional capsule layers.

b) Capsule activation function (“squash”), can

be of different types:

 from paper [2]

2

2 2
,

1

j j

j

j j

s s
v

s s

 from paper [16]
2

1
1 .

j

j

j s

j

s
v

se

с) Convolutional layer parameters:

 kernel size;

 stride;

 neuron activation function;

 kernel count.
d) Convolutional parameters in convolutional

capsule layers: similar to parameters of
convolutional layers.

e) Capsule count and dimensionality in capsule
and convolutional capsule layers.

g) Capsule implementation approach:

 routing by agreement;

 expectation maximization;

 attention routing;

 homogenous vector capsules;

 self-attention routing.
Loss function for one of the capsules in the

capsule neural network is the following:

2

2

max 0,

(1) max 0, ,

c c c

c c

L T m v

T v m

where Tc is the correct prediction flag, 1 when
prediction is correct, 0, when incorrect; vc is the
capsule output vector norm; m

+
 is the correct

prediction margin (usually 0.9); m
–
 incorrect

prediction margin (usually 0.1).
Thus, the entire loss function is the following:

,ii
L L

where i = 1…m are indeces of capsules in the last
layer, which is responsible for classification.

In addition, in CapsNet architectures with
generator usage, loss function has an additive with
the error of reconstruction of the original image,
which was the generator output.

,i true predi
L L z z (1)

where truez is the input to the capsule neural

network;
predz is the reconstruction created by the

generator; is the regularization impact coefficient.

We are given a finite set {(,)}j jJ R Y

1, ...,j P of pairs “attribute-value”, where ,j jR Y

is the input and output neural network vectors.
The problem is to determine X optimal values of

parameters of the capsule neural network, which
would minimize the loss function (1).

Vector X can be defined in the following way:

2

7

11 12 1 2 3 4 5 61 62

T

6 7 8 9

(, , , , , , , , , , ,

 , , , ,)

x

x

x x x x x x x x x

x x x x

 X

where X is the vector, which defines the topology
and parameters of the network, that need to be
found, when solving the problem of structural-

V.M. Sineglazov, D.O. Kudriev

Structural-parametric Synthesis of Capsule Neural Networks 39

parametric synthesis; 1ix is the vector of

convolutional layer i properties; 1 1 1 1
, , ,

i i i i
kx f s

T

1
,

i
a where 1if is the kernel count in the

convolutional layer, 1ik is the kernel size, 1is is the

stride length, 1ia is the neuron activation function;

x2 is the convolutional layer count; 3x is the

convolutional capsule layer parameter vector.

T

3 3 3 3 3 3(, , , ,) ,x f k s N D

where 3f is the kernel count in convolutional

capsule layer; 3 {32,64,96,128,160, 192,f
224,256}; k3 is the kernel size, 3 {3,5, 9} 7,k ; 3s is

the stride length, 3 {1,2,3,4 }; ,5s 3N is the capsule

count, 3 ;N ℕ 3D is the capsule size,

3 3 3 3 ;,D N D f ℕ 4x is the capsule layer

parameters vector,

T

4 4 4(,) ,x N D

where 4N is the capsule count, 4 ,N m where m is

the amount of classes in the training dataset; 4D is

the capsule size, 4 {8,16,32,48 }; ,64D 5x is the

output dimensions of a fully-connected layer at the
beginning of the generator after reshaping

T

5 5 5(,) ,x x z

where 5x is the height and width, 5 {2, 4,8},x 5z

is the channel count, 5 {128,256, }; 512z 6ix is the

deconvolutional layer parameters vector і in a

generator, i = 1… 7x

6 6 6

T

6(, ,) ,i i i ix f k a

where 6if is the kernel count, 6 {32,64,96, , 128if

160,192,224,256},
6ik is the kernel size,

6 {2,4 8} , ,ik 6ia is the neuron activation function,

6 ia {'relu', 'sigmoid', 'leaky_relu'}; x7 is the amount

of deconvolutional layers; x8 is the kernel size of the
final convolutional layer in the neural network,

8 {1,2,3,4 }; ,5x 9x is the weight parameters.

VII. METHOD (ALGORITHM) OF STRUCTURAL-
PARAMETRIC SYNTHESIS OF CAPSULE

NEURAL NETWORKS

The structural-parametric synthesis of a capsule
neural network consists of two stages – structural
synthesis and parametric synthesis.

Structural synthesis is achieved by finding the
optimal number of layers, their types, mutual

arrangement, as well as the parameters characteristic
to these layers.

Parametric synthesis aims to find optimal weight
coefficients for the neural network obtained during
structural synthesis, which will lead to the best
overall performance.

The hybrid algorithm for structural-parametric
synthesis performs the task of discovering optimal
network topologies and determining optimal weight
coefficients.

It combines the actions of two algorithms – the
genetic algorithm and the optimization algorithm
using gradient descent.

The sequence of actions is presented below.
1) Initialize neural network population.

2) Perform capsule neural network parameters
optimization for m training epochs (m – is a
hyperparameter which is set before training) .

3) Use gradient descent algorithm on neural
networks with the best parameters which would give
the highest prediction accuracy.

VIII. RESULTS AND ANALYSIS

A. Results of applying the genetic algorithm for

topology discovery

The population size was set at 30 individuals.

The total number of generations, including the initial

one, was set to 5. Training with the Adam optimizer

took place over 10 epochs, after which the highest

accuracy achieved during the network training

period was assigned to the corresponding individual

and its chromosome.

Thus, 150 topologies of capsule neural networks

were evaluated. The average evaluation time for one

generation was 10 hours. Chromosomes and weights

are stored in the generation folder. The chromosome

storage format is JSON, utilizing the jsonpickle

library for recording. Additionally, when forming a

new generation, chromosome files from previous

generations are used as a "cache." If a chromosome

of the same structure exists, the accuracy is

immediately assigned to individuals to avoid

unnecessary training of neural networks (Fig. 3).
As evident from the evolutionary trajectory, the

overall quality of neural networks improved, except
for the last generation where the minimum quality
decreased. There is an explanation for this. Since the
input image is standardized beforehand, its pixel
values lie in the range [-1, 1]. In the initial version of
the genetic algorithm, the activation function in the
genes of the last convolutional layer could take
values such as hyperbolic tangent, ReLU, Sigmoid,
or Leaky ReLU. Only hyperbolic tangent has output
values in the range [-1, 1]. After correcting this

40 ISSN 1990-5548 Electronics and Control Systems 2023. N 4(78): 34-43

mistake, many neural networks began to receive
correct values for the generator loss function. The
architectures of some of them were likely adapted to
generator loss functions that remained unchanged,
negatively impacting the training results.

Fig. 3. File system appearence, after algorithm execution

for 5 generations

Evolutionary trajectory can be seen on Fig. 4.

Fig. 4. Evolutionary trajectory

Five neural networks with the highest accuracy

were attained (Table I).

TABLE I. NEURAL NETWORKS WITH THE HIGHEST ACCURACY

Generation Specimen
number

Accuracy Network
parameters

count

Generator
parameters

count

0 8 0.837 3 798 064 5 645 059

4 4 0.831 5 011 312 5 270 243

2 10 0.830 2 870 192 2 906 275

3 5 0.825 3 548 816 7 887 747

2 14 0.824 3 548 816 2 013 859

Overall, even through comparative search, neural

networks were found that achieved better results than

those discovered manually. The baseline model had

an accuracy of 0.831, and the subsequent learning

curve was observed over 20 epochs (Fig. 5).

Fig. 5. Baseline neural network training curve

Below are the topologies of the best neural

networks.

Generation 0. Specimen 8.

Convolutional layer f = 64, k = 3, s = 1, a = ‘Leaky ReLU’.

Convolutional layer f = 256, k = 3, s = 1, a = ‘ReLU’.

Convolutional layer f = 160, k = 5, s = 1, a = ‘Leaky ReLU’.

Convolutional layer f = 192, k = 7, s = 1, a = ‘ReLU’.

Convolutional capsule layer f = 192, k = 7, s = 5, N = 72,

D = 24.

Capsule layer N = 10, D = 64.

Fully connected layer x = 2, z = 256.

Deconvolutional layer f = 256, k = 8, s = 2, a = ‘Sigmoid’.

Deconvolutional layer f = 256, k = 2, s = 2, a = ‘Leaky

ReLU’.

Deconvolutional layer f = 256, k = 2, s = 2, a = ‘Leaky

ReLU’.

Deconvolutional layer f = 256, k = 2, s = 2, a = ‘Leaky

ReLU’.

Final convolutional layer f = 3, k = 3, s = 1, a = ‘Sigmoid’.

Generation 4. Specimen 4.

Convolutional layer f = 64, k = 3, s = 1, a = ‘Leaky ReLU’.

Convolutional layer f = 256, k = 3, s = 1, a = ‘ReLU’.

Convolutional layer f = 224, k = 7, s = 1, a = ‘ReLU’.

Convolutional layer f = 192, k = 3, s = 1, a = ‘Leaky ReLU’.

Convolutional layer f = 224, k = 5, i = 2, a = ‘ReLU’.

Convolutional capsule layer f = 224, k = 7, s = 1, N = 56,

D = 16.

Capsule layer N = 10, D = 64.

Fully connected layer x = 2, z = 256.

Deconvolutional layer f = 256, k = 8, s = 2, a = ‘Sigmoid’.

Deconvolutional layer f = 192, k = 2, s = 2, a = ‘Leaky

ReLU’.
Deconvolutional layer f = 64, k = 4, s = 2, a = ‘Leaky ReLU’.
Deconvolutional layer f = 96, k = 2, s = 2, a = ‘Sigmoid’.

V.M. Sineglazov, D.O. Kudriev

Structural-parametric Synthesis of Capsule Neural Networks 41

Final convolutional layer f = 3, k = 2, s = 1, a = ‘tanh’.

Generation 2. Specimen 10.

Convolutional layer f = 192, k = 3, s = 1, a = ‘ReLU’.
Convolutional layer f = 64, k = 3, s = 1, a = ‘Sigmoid’.
Convolutional layer f = 224, k = 7, s = 1, a = ‘ReLU’.
Convolutional layer f = 192, k = 3, s = 1, a = ‘Leaky
ReLU’.
Convolutional layer f = 224, k = 5, s = 2, a = ‘ReLU’.
Convolutional capsule layer f = 224, k = 7, s = 1, N = 56,
D = 16.
Capsule layer N = 10, D = 64.
Fully connected layer x = 2, z = 128.
Deconvolutional layer f = 64, k = 2, s = 2, a = ‘Leaky ReLU.
Deconvolutional layer f = 160, k = 4, s = 2, a = ‘Leaky
ReLU’.
Deconvolutional layer f = 224, k = 8, s = 2, a = ‘Sigmoid’.
Deconvolutional layer f = 96, k = 2, s = 2, a = ‘Sigmoid’.
Final convolutional layer f = 3, k = 2, s = 1, a = ‘ReLU.

Generation 3. Specimen 5.

Convolutional layer f = 64, k = 3, s = 1, a = ‘Leaky ReLU’.
Convolutional layer f = 256, k = 3, s = 1, a = ‘ReLU’.
Convolutional layer f = 160, k = 5, s = 1, a = ‘Leaky ReLU’.
Convolutional layer f = 224, k = 3, s = 1, a = ‘Leaky ReLU’.
Convolutional layer f = 192, k = 5, s = 2, a = ‘ReLU’.
Convolutional capsule layer f = 224, k = 7, s = 1, N = 56,
D = 16.
Capsule layer N = 10, D = 64.
Fully connected layer x = 2, z = 256.
Deconvolutional layer f = 256, k = 8, s = 2, a = ‘Sigmoid’.
Deconvolutional layer f = 192, k = 2, s = 2, a = ‘Leaky
ReLU’.
Deconvolutional layer f = 224, k = 8, s = 2, a = ‘Sigmoid’.
Deconvolutional layer f = 96, k = 2, s = 2, a = ‘Sigmoid’.
Final convolutional layer f = 3, k = 2, s = 1, a = ‘ReLU’.

Generation 2. Specimen 14.

Convolutional layer f = 64, k = 3, s = 1, a = ‘Leaky ReLU’.
Convolutional layer f = 256, k = 3, s = 1, a = ‘ReLU’.
Convolutional layer f = 160, k = 5, s = 1, a = ‘Leaky ReLU’.
Convolutional layer f = 224, k = 3, s = 1, a = ‘Leaky ReLU’.
Convolutional layer f = 192, k = 3, s = 1, a = ‘Leaky ReLU’.
Convolutional layer f = 224, k = 5, s = 2, a = ‘ReLU’.
Convolutional capsule layer f = 224, k = 7, s = 1, N = 56,
D = 16.
Capsule layer N = 10, D = 64.
Fully connected layer x = 2, z = 256.
Deconvolutional layer f = 192, k = 4, s = 2, a = ‘Sigmoid’.
Deconvolutional layer f = 32, k = 2, s = 2, a = ‘Leaky
ReLU’.
Deconvolutional layer f = 224, k = 8, s = 2, a = ‘Sigmoid’.
Deconvolutional layer f = 96, k = 2, s = 2, a = ‘Sigmoid’.
Final convolutional layer f = 3, k = 2, s = 1, a = ‘ReLU’.

B. Results of applying Adam to finish weight
optimization

Additional optimization was done for 40 training

epochs (thus, the total epoch count is 50) (Table II).

TABLE II. BEST NEURAL NETWORK ACCURACY AFTER

TRAINING CONCLUSION

Generation Specimen
number

Accuracy Accuracy
after fine-

tuning

0 8 0.837 0.849

4 4 0.831 0.861

2 10 0.830 0.850

3 5 0.825 0.862

2 14 0.824 0.861

Neural network 5 from generation 3 had the

highest prediction accuracy. Below, the graphs of its

additional training are presented (Figs 6 and 7).

Fig. 6. Accuracy

Fig. 7. Loss functions

Thus, a neural network with improved

performance compared to manually discovered

architectures was obtained. However, the results are

not very satisfactory, as convolutional neural

networks show significantly better performance on

this dataset. There are several reasons why the

capsule neural network did not perform well.
1) Dataset – CIFAR-10 is a highly noisy dataset

with significantly different backgrounds, which
confuses capsules that should primarily encode the
properties of objects in the class. Capsule neural
networks have historically not outperformed
convolutional networks on this dataset.

2) Dependency on generator regularization -
capsule neural networks heavily rely on the
regularization of the generator network. Due to an

42 ISSN 1990-5548 Electronics and Control Systems 2023. N 4(78): 34-43

activation function error in the last layer and the
absence of a separate metric indicating the
effectiveness of the generator in creating images,
which would be considered in the genetic algorithm,
the generators were underdeveloped.

3) Insufficient number of generations – the hybrid
algorithm's application process is very time-
consuming, and it would have been desirable to train it
for at least 20 generations, but there was a lack of time.

IX. CONCLUSION

In this paper, the task of structural-parametric
synthesis of capsule neural networks was
successfully accomplished. A detailed review of
contemporary mathematical implementations of
capsules was conducted, and the optimal approach
was chosen. A hybrid algorithm, consisting of
genetic and gradient descent algorithms, was applied
to find the optimal topology of the capsule neural
network and its adjustable parameters. The
algorithm evaluated 150 topologies of capsule neural
networks, 5 of which were further fine-tuned,
yielding results superior to those achieved by
manually crafted capsule neural networks.

REFERENCES

[1] G. Hinton, А. Krizhevsky, and S. Wang,

“Transforming Auto-Encoders,” Artificial Neural

Networks and Machine Learning: ICANN 2011, 21st

International Conference on Artificial Neural

Networks, Espoo, Finland, June 14-17, 2011, Proc.,

Part I. 44–51. https://doi.org/10.1007/978-3-642-

21735-7_6.

[2] S. Sabour, N. Frosst, and G. E. Hinton, Dynamic

Routing Between Capsules. arXiv:1710.09829.

https://doi.org/10.48550/arXiv.1710.09829

[3] Edgar Xi, Selina Bing, and Yang Jin, Capsule network

performance on complex data. arXiv: 1712.03480.

https://doi.org/10.48550/arXiv.1712.03480

[4] Dilin Wang and Qiang Liu, An optimization view on

dynamic routing between capsules, 2018. URL:

https://openreview.net/forum?id=HJjtFYJDf

[5] Jan Eric Lenssen, Matthias Fey, and Pascal

Libuschewski, Group equivariant capsule networks.

arXiv: 1806.05086.

https://doi.org/10.48550/arXiv.1806.05086

[6] Geoffrey E Hinton, Sara Sabour, and Nicholas Frosst,

Matrix capsules with EM routing, 2018. URL:

https://openreview.net/pdf?id=HJWLfGWRb

[7] Mohammad Taha Bahadori, Spectral capsule

networks, 2018. URL:

https://openreview.net/pdf?id=HJuMvYPaM

[8] Fabio De Sousa Ribeiro1, Georgios Leontidis, and

Stefanos D Kollias, Capsule routing via variational

bayes. arXiv: 1905.11455.

https://doi.org/10.48550/arXiv.1905.11455

[9] Jindong Gu and Volker Tresp, Improving the

robustness of capsule networks to image affine

transformations. arXiv: 1911.07968.

https://doi.org/10.48550/arXiv.1911.07968

[10] Inyoung Paik, Taeyeong Kwak, and Injung Kim,

Capsule networks need an improved routing

algorithm. arXiv: 1907.13327.

https://doi.org/10.48550/arXiv.1907.13327

[11] Sai Raam Venkatraman, Ankit Anand, S

Balasubramanian, and R Raghunatha Sarma, Learning

compositional structures for deep learning: Why

routing-by-agreement is necessary. arXiv: 2010.01488.

https://doi.org/10.48550/arXiv.2010.01488

[12] Adam Byerly, Tatiana Kalganova, and Ian Dear, No

Routing Needed Between Capsules. arXiv: 2001.09136.

https://doi.org/10.48550/arXiv.2001.09136

[13] Jaewoong Choi, Hyun Seo, Suii Im, and Myungjoo

Kang, Attention routing between capsules. arXiv:

1907.01750. https://doi.org/10.48550/arXiv.1907.01750

[14] Yao-Hung Hubert Tsai, Nitish Srivastava, Hanlin Goh,

and Ruslan Salakhutdinov. Capsules with inverted dot-

product attention routing. arXiv: 2002.04764.

https://doi.org/10.48550/arXiv.2002.04764

[15] Dunlu Peng, Dongdong Zhang, Cong Liu, and Jing

Lu, “Bg-sac: Entity relationship classification model

based on self-attention supported capsule networks,”

Appl. Sof Comput. 91, 106186, 2020.

https://doi.org/10.1016/j.asoc.2020.106186

[16] V. Mazzia, F. Salvetti, & M. Chiaberge, “Efficient-

CapsNet: capsule network with self-attention

routing,” Sci Rep 11, Article number 14634, 2021.

https://doi.org/10.1038/s41598-021-93977-0.

Received September 29, 2023

Sineglazov Victor. ORCID 0000-0002-3297-9060. Doctor of Engineering Science. Professor.

Head of the Department Aviation Computer-Integrated Complexes, Faculty of Air Navigation Electronics and

Telecommunications, National Aviation University, Kyiv, Ukraine.

Education: Kyiv Polytechnic Institute, Kyiv, Ukraine, (1973).

Research area: Air Navigation, Air Traffic Control, Identification of Complex Systems, Wind/Solar power plant,

artificial intelligence.

Publications: more than 700 papers.

E-mail: svm@nau.edu.ua

V.M. Sineglazov, D.O. Kudriev

Structural-parametric Synthesis of Capsule Neural Networks 43

Kudriev Denys. Graduate Student.

Department of Artificial Intelligence, Institute of Applied System Analysis, National Technical University of Ukraine

“Igor Sikorsky Kyiv Polytechnic Institute”, Kyiv, Ukraine.

Education: National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”, Kyiv, Ukraine,

(2022).

Research interests: artificial neural networks, capsule neural networks, programming.

E-mail: hallos977@gmail.com

В. М. Синєглазов, Д. О. Кудрєв. Структурно-параметричний синтез капсульних нейронних мереж

Дану роботу присвячено структурно-параметричному синтезу капсульних нейронних мереж. Розроблено

методологію структурно-параметрично синтезу капсульних нейронних яка включає наступні алгоритми:

визначення найбільш впливових параметрів НМ, гібридний алгоритм машинного навчання. За допомогою

гібридного алгоритму визначається оптимальна структура та значення вагових коефіцієнтів. Гібридний

алгоритм складається з генетичного алгоритму та градієнтного алгоритму (Adam). було оцінено 150 топологій

капсульних нейронних мереж. Середній час оцінки одного покоління складав 10 годин. Хромосоми та ваги

зберігаються у папку покоління. Формат збереження хромосом – json, механізм запису бібліотека jsonpickle.

Також при утворення нового покоління, файли хромосом з інших поколінь використовуються як “кеш”, якщо

існує хромосома такого самого вигляду, то особині одразу присвоюється точність, для уникнення зайвих

тренувань нейромереж. В результаті використання гібридного алгоритму знайдено оптимальну топологію та

параметри капсульної нейронної мережі для вирішення задачі класифікації.

Ключові слова: капсульна нейронна мережа; структурно-параметричний синтез; генетичний алгоритм;

адаптивна оцsнка момента (Adam); задача класифікації.

Синєглазов Віктор Михайлович. ORCID 0000-0002-3297-9060. Доктор технічних наук. Професор.

Завідувач кафедрою авіаційних комп’ютерно-інтегрованих комплексів. Факультет аеронавігації електроніки і

телекомунікацій, Національний авіаційний університет, Київ, Україна.

Освіта: Київський політехнічний інститут, Київ, Україна, (1973).

Напрям наукової діяльності: аеронавігація, управління повітряним рухом, ідентифікація складних систем,

вітроенергетичні установки, штучний інтелект.

Кількість публікацій: більше 700 наукових робіт.

E-mail: svm@nau.edu.ua

Кудрєв Денис Олексійович. Магістрант.

Кафедра штучного інтелекту, Інститут прикладного системного аналізу, Національний технічний університет

України «Київський політехнічний інститут імені Ігоря Сікорського», Київ, Україна.

Освіта: Національний технічний університет України «Київський політехнічний інститут імені Ігоря

Сікорського», Київ, Україна, (2022).

Напрям наукової діяльності: штучні нейронні мережі, капсульні нейронні мережі, програмування.

E-mail: hallos977@gmail.com

