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Abstract—This work is dedicated to the structural-parametric synthesis of capsule neural networks. A 

methodology for structural-parametric synthesis of capsule neural networks has been developed, which 

includes the following algorithms: determining the most influential parameters of the capsule neural 

network, a hybrid machine learning algorithm. Using the hybrid algorithm, the optimal structure and 

values of weight coefficients are determined. The hybrid algorithm consists of a genetic algorithm and a 

gradient algorithm (Adam). 150 topologies of capsule neural networks were evaluated, with an average 

evaluation time of one generation taking 10 hours. Chromosomes and weights are stored in the 

generation folder. The chromosome storage format is JSON, using the jsonpickle library for writing. 

Also, when forming a new generation, chromosome files from previous generations are used as a 

"cache". If a chromosome of the same structure exists, the accuracy is assigned immediately to avoid 

unnecessary training of neural networks. As a result of using the hybrid algorithm, the optimal topology 

and parameters of the capsule neural network for classification tasks have been found. 

Index Terms—Capsule neural network; structural and parametric synthesis; genetic algorithm; adaptive 

estimation of moment (Adam); classification problem. 

I. INTRODUCTION 

Artificial intelligence has truly become the 

hottest trend in the world of contemporary 

technology and business. In recent years, there has 

been rapid development in this field, significantly 

influencing various aspects of life, including 

medicine, education, manufacturing, finance, and 

many others. More and more companies and 

businesses are seeking to apply artificial intelligence 

in their processes and technologies. 

The idea of capsule networks is quite intuitive 

and is aimed at addressing issues with convolutional 

neural networks, primarily the loss of important 

information between layers. The output of a capsule 

has a vector or matrix form, allowing it to convey 

grouped essential features to the next layer. 

However, capsule neural networks currently have 

certain drawbacks, primarily significant training 

slowdown due to the use of computationally 

expensive algorithms. 

Some of the shortcomings of convolutional 

neural networks according to Geoffrey Hinton [1] 
1) Convolutional networks are hierarchically too 

simple-neurons, layers. Intuitively, the human brain 
has more complex structures used for image 
recognition, so neural networks should also have 
them. 

2) Convolutional networks lose a lot of 
information during the use of max pooling 
operation—where only the most active activation 
value is passed to the next layer as the 
dimensionality is reduced. All other information is 
lost. As Hinton states: "The pooling operation used 
in convolutional neural networks is a big mistake, 
and the fact that it works so well is a catastrophe." 

3) Convolutional networks do not consider the 
"pose" of the objects they investigate – object 
transformations and transpositions. For a 
convolutional network, a digit slightly tilted at a 
45-degree angle will appear foreign. This necessitates 
the use of a large amount of training data. 

4) Another consequence of ignoring pose is that 
the neural network does not take into account how 
elements of the image are positioned relative to each 
other when transitioning from simpler elements to 
more complex ones. 

Capsule networks address many issues of 
convolutional neural networks, performing 
significantly better on small-sized datasets and 
exhibiting superior feature learning for object 
recognition in images. While capsule neural 
networks have not yet surpassed convolutional 
neural networks in overall performance on complex 
and real-world datasets, they already yield 
impressive results on datasets like MNIST. Capsule 
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neural networks remain an active area of research in 
the field of modern computer vision. 

The emergence of this new type of neural network 
necessitates the formalization of approaches and the 
application of algorithms to create capsule neural 
networks with optimal architecture and parameters 
for image processing tasks. The goal of this work is 
to identify the most crucial hyperparameters and 
develop an algorithm for finding the optimal network 
topology and training parameters. 

II. OVERVIEW OF CAPSULE NETWORK RELATED 

RESEARCH 

Capsule neural networks began to develop 
rapidly relatively recently. Although the idea of 
using capsules in neural networks had been around 
for some time, it wasn't until 2011 that an article [1] 
proposed capsules as a research direction. Only in 
2017 did a work [2] introduce the "Routing by 
agreement" algorithm, giving rise to the architecture 
known as CapsNet. 

In subsequent research, various modifications 
and alternative approaches to the original CapsNet 
architecture were proposed. In article [3], 
researchers suggested an alternative activation 
function for capsules and experimented with 
modifying the topology of the original network. 
Article [4] provided a formal description of the 
original dynamic routing approach as an 
optimization problem minimizing clustering loss and 
proposed a version.that was slightly modified The 
concept of group capsule networks was introduced 
in article [5], claiming equivariance for the output 
position and invariance for activations. The authors 
of the original CapsNet adapted the expectation-
maximization algorithm for clustering similar 
capsule votes during routing in article [6]. Spectral 
capsule networks [7], based on this work, modified 
routing by decomposing capsule votes from previous 
layers into single values. Article [8] proposed a 
routing mechanism based on variational Bayesian 
methods for training a Gaussian mixture model. 
Stability to affine transformations was the focus of 
researchers in article [9], separating transformation 
matrices between all low-level capsules and each 
high-level capsule. Article [10] raised doubts about 
the effectiveness of the existing routing algorithm, 
suggesting that better results could be achieved 
without routing. On the other hand, researchers in 
article [11] demonstrated that the "Routing by 
agreement" mechanism is necessary for ensuring 
compositional structures in capsule-based networks. 
Nevertheless, a new architecture based on a 
variation of the original capsule idea, called 
homogeneous filter capsules without inter-layer 
routing, was proposed in article [12]. 

The attention mechanism dynamically assigns 

more importance to specific features considered 

more relevant to solving a particular problem. This 

idea gained popularity in various deep learning 

applications and was implemented in natural 

language processing and computer vision. In article 

[13], researchers applied the attention mechanism to 

capsule routing with a feedforward function without 

iterations. However, they selected low-level 

capsules, multiplying their activations by a 

parameter vector learned through backpropagation, 

without measuring agreement. Thus, the original 

"Routing by agreement" idea was distorted. Article 

[14] slightly modified the original dynamic routing 

to calculate agreement between the pose of high-

level capsules and votes of low-level capsules using 

an inverse scalar dot product mechanism. They 

proposed parallel iterative routing instead of 

sequential, performing the routing procedure 

simultaneously on all capsule layers. Capsules, 

together with a self-attention mechanism, were 

applied in article [15] for entity interactions in 

natural language processing tasks. 

In article [16], researchers consolidated previous 

contributions and applied a self-attention mechanism 

to capsules for routing information to higher-level 

capsules, resulting in a lightweight architecture with 

a small number of trainable parameters (160K). 

Nevertheless, currently, there are no studies that 

focus on finding optimal topologies and parameters 

of capsule neural networks using advanced methods 

such as genetic algorithms. In the article [3], only a 

small series of experiments were conducted, which 

did not lead to significant improvements in results. 

III. CAPSNET TOPOLOGY 

A capsule is a group of neurons whose output 

represents various properties of a single entity. 

Instead of using the pooling operation, which loses a 

lot of information, capsules can be used to not only 

show the probability of the existence of a certain 

feature but also its characteristics that the neural 

network learns to recognize. Each layer of a capsule 

network contains many capsules. The activities of 

neurons in an active capsule reflect various 

properties of a specific entity present in the image. 

These properties may include various instantiation 

parameters, such as pose, deformation, velocity, 

albedo, shading, texture, etc. An obvious way to 

represent existence is to use a separate logistic 

block, the output of which is the probability that the 

entity exists. However, the probability of the 

existence of an entity can also be determined by the 

length of the feature vector. 
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Active capsules on one level determine, through 

transformation matrices, the instantiation parameters 

of capsules on the next level. 

The weight coefficients between capsules of a 

lower level and a capsule at the next level are 

iteratively updated for each data input using the 

"Routing by agreement" algorithm in such a way 

that the output of each capsule is directed to the 

capsule where its output value forms a cluster with 

the outputs of other capsules. 

In other words, a capsule processing certain 

elements of an image is given data from capsules at a 

lower level if many capsules have a similar pose and 

activation (eyes, lips, nose positioned to form a face). 

Thus, capsule neural networks, unlike 

convolutional neural networks, have the following 

characteristics 
1) Capsule networks avoid using pooling 

operations, which prevents information loss. 

2) Capsule networks employ vector 
representations of features rather than scalar ones. 

3) Capsule networks take into account feature 
properties, reducing the need for extensive training 
data; the network can recognize features even with 
slightly altered appearances. 

4) Capsule networks create an understanding of 
the existence of higher-level features by considering 
the spatial relationships between low-level features. 

5) Capsule networks enable the use of "Routing by 
Agreement" algorithms between capsules at different 
levels, allowing more efficient data transmission. 

Topologically, these differences are achieved by 
introducing two new types of layers compared to 
convolutional neural networks. 

 Convolutional capsule layer (called 
PrimaryCaps in article [2]). This layer performs 
convolution operations similar to a convolutional 
layer in a convolutional neural network but adjusts 
the dimensions of the output feature maps to 
represent the number of capsules in the layer and 
their output lengths. 

 Capsule layer (called DigitCaps in article [2]). 
This layer replaces the pooling layers in a 
convolutional neural network and determines the 
existence and properties of higher-level features. 

Capsule neural networks share a similar topology 
with convolutional neural networks, but they use 
capsule convolutional layers instead of convolutional 
layers and capsule layers instead of pooling layers. 

Despite these changes, the first layers of the 
neural network can still be a regular convolutional 
layers. Thus, capsule neural networks can include 
three types of layers: 

 convolutional layers; 

 capsule convolutional layers; 

 capsule layers. 
Convolutional layers, as in convolutional neural 

networks, apply convolution operations to process 
input data and obtain feature maps used to determine 
the existence of specific features. 

Capsule convolutional layers are similar to 
convolutional layers but also incorporate an 
additional nonlinear vector activation function. 

IV. CAPSNET SPECIFIC LAYERS 

Capsule neural networks use two new types of 
layers compared to convolutional neural networks - 
capsule layers and convolutional capsule layers. 

Capsule layers – layers that replace pooling 
layers, they receive maps of features and output a 
representation of the properties of a feature of a 
higher level in the form of vectors, where its length 
is the probability that this feature exists. 

Let’s go over the mathematical model of a 
capsule layer (Fig. 1). 

As input to the capsule j of the layer l + 1 are 
given vectors ui from the layer l. They are multiplied 
by a weight matrix Wij, which performs data 
transformation. 

|
ˆ .j i ij iW uu   

Next a weighted sum of all input vectors is 
calculated 

|
ˆ ,j ij j i

i

s c u  

where сij – weight coefficient. The more the input 
vector “agrees” with the output vector, the greater 
the value of сij, which belongs to the interval [0, 1]. 
These coefficients are calculated with the help of 
routing algorithms. 

As a final step, a non-linear activation function is 
used, so-called “squashing” – one of the novelties 
introduced in [1], as the activation function is vector 
based, instead of scalar as in classic neural networks. 
After its application we have the capsule output vector. 

2

2 2

1
.

j j

j

j j

s s
v

s s



 

For one-dimensional vector, function graph is as 

shown on Fig. 2. 

Convolutional capsule layers – layers that closely 

resemble regular convolutional layers. In these 

layers, a convolution operation is performed with a 

number of filters equal to the product of the number 

of capsules and their dimensionality. After obtaining 

feature maps, an additional "squashing" operation is 

applied to add extra block-wise nonlinearity. 
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Fig. 1. Math model diagram of a capsule in a capsule layer 

 

Fig. 2. “Squash” function graph for one dimensional vector 

Mathematically, the convolutional capsule layer 

is equivalent to a convolutional layer, with the 

additional application of a squashing function along 

the dimensions of the resulting features. 

( ),i i iy W x b    

where matrix W depends on the parameters of the 

convolutional kernel, i = 1…k, k = m  n, where m is 
the amount of capsules, n is the size of the capsule 
output vector. 

All resulting feature maps are resized in order to 
have the following output vector dimensionality: 

( , , , ),H W n m  

where H and W are height and width of resulting 

feature maps after convolution application. After 

that the “squash” function is used on the last layer. 

V. STRUCTURAL-PARAMETRIC SYNTHESIS 

OF CAPSULE NEURAL NETWORKS 

A. Choice of approach and architecture 

The architecture of the capsule neural network 

was chosen with the incorportation of a generator 

because it serves as an organic regularization 

method for capsule neural networks (the prediction 

vector of a capsule already encodes object 

properties) and is widely applied in the literature 

dedicated to capsules [2], [3], [13] and [16]. The 

generator takes as input a vector formed by 

concatenating the prediction vectors of capsules. It 

utilizes a so-called "mask" that assigns zero values 

to the vectors of capsules corresponding to a class 

different from the true one. The implementation of 

capsules was chosen from the article [16] due to the 

following advantages: 

 is ideologically similar to the original 

CapsNet described in [2]; 

 has the greatest novelty (paper was released in 

2021); 

 data routing, applied through the attention 

mechanism, accounts for capsule agreement; 

 is computionally lighter than counterparts. 

In the work, a capsule neural network with a 

generator is used as an approach to regularization, so 

the capsule neural network essentially consists of 

two neural networks. The capsule neural network is 

comprised of: 

 convolutional layers; 

 convolutional capsule layer; 

 fully-connected capsule layers. 

The convolutional layers can have a different 

number of kernels, varying strides and kernel sizes, 

and activation functions. The following activation 

functions will be considered: sigmoid, ReLU, Leaky 
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ReLU. The adjustable parameters are the 

convolutional kernel elements in the layer. 

The convolutional capsule layer may have the 

same number of kernels as the convolutional layer 

that precedes it, with different strides and kernel 

sizes. The product of the number of capsules in the 

layer and their dimensions should equal the product 

of the dimensions of the output feature map after 

applying the convolution operation. The adjustable 

parameters also include the convolutional kernels in 

the layer. At the level of the capsule output vectors, 

a capsule compression function is used. 

Capsule fully connected layers can have an 

arbitrary number of capsules and their sizes. The 

adjustable parameters are represented by affine 

transformation weight matrices W of vector values 

of capsules from previous layers and optimal capsule 

connection weight matrices B. “Squash” function is 

applied to the output vectors. 

Generator neural network, on the other hand, can 

be comprised of: 

 convolutional layers; 

 deconvolutional layers; 

 fully-connected layers. 

In the work, a generator architecture will be 

employed in which a fully connected layer at the 

beginning transforms its shape into a small image 

with a large number of filters. This small image is 

then enlarged to the required size of the output 

image using layers of transposed convolutions. 

Additionally, an extra convolutional layer with three 

convolutional kernels converts the image to the RGB 

format. 

VI. STRUCTURAL-PARAMETRIC SYNTHESIS 

OF CAPSULE NEURAL NETWORKS PROBLEM 

STATEMENT 

The mose decisive parameters of the capsule 

neural network are the ones below. 

а) Layer count and their positioning: 

 convolutional layers; 

 convolutional capsule layers. 

b) Capsule activation function (“squash”), can 

be of different types: 

 from paper [2] 

2

2 2
,

1

j j

j

j j

s s
v

s s



 

 from paper [16] 
2

1
1 .

j

j

j s

j

s
v

se

 
  
 

 

с) Convolutional layer parameters: 

 kernel size; 

 stride; 

 neuron activation function; 

 kernel count. 
d) Convolutional parameters in convolutional 

capsule layers: similar to parameters of 
convolutional layers. 

e) Capsule count and dimensionality in capsule 
and convolutional capsule layers. 

g) Capsule implementation approach: 

 routing by agreement; 

 expectation maximization; 

 attention routing; 

 homogenous vector capsules; 

 self-attention routing. 
Loss function for one of the capsules in the 

capsule neural network is the following: 

 
 

2

2

                      

max 0,

(1 ) max 0, ,

c c c

c c

L T m v

T v m





 

   
 

where Tc is the correct prediction flag, 1 when 
prediction is correct, 0, when incorrect; vc is the 
capsule output vector norm; m

+
 is the correct 

prediction margin (usually 0.9); m
–
 incorrect 

prediction margin (usually 0.1). 
Thus, the entire loss function is the following: 

,ii
L L  

where i = 1…m are indeces of capsules in the last 
layer, which is responsible for classification. 

In addition, in CapsNet architectures with 
generator usage, loss function has an additive with 
the error of reconstruction of the original image, 
which was the generator output. 

,i true predi
L L z z               (1) 

where truez  is the input to the capsule neural 

network; 
predz  is the reconstruction created by the 

generator;   is the regularization impact coefficient. 

We are given a finite set {( , )}j jJ R Y  

1, ...,j P  of pairs “attribute-value”, where ,j jR Y  

is the input and output neural network vectors. 
The problem is to determine X optimal values of 

parameters of the capsule neural network, which 
would minimize the loss function (1).  

Vector X can be defined in the following way: 

2

7

11 12 1 2 3 4 5 61 62

T

6 7 8 9

( , , , , , , , , , , ,

                                                       , , , ,)

x

x

x x x x x x x x x

x x x x

  X
 

where X is the vector, which defines the topology 
and parameters of the network, that need to be 
found, when solving the problem of structural-
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parametric synthesis; 1ix  is the vector of 

convolutional layer i properties; 1 1 1 1
, , ,

i i i i
kx f s  

T

1
,

i
a  where 1if  is the kernel count in the 

convolutional layer, 1ik  is the kernel size, 1is  is the 

stride length, 1ia  is the neuron activation function; 

x2 is the convolutional layer count; 3x  is the 

convolutional capsule layer parameter vector. 

T

3 3 3 3 3 3( , , , , ) ,x f k s N D  

where 3f  is the kernel count in convolutional 

capsule layer; 3 {32,64,96,128,160, 192,f 
224,256}; k3 is the kernel size, 3 {3,5, 9} 7,k  ; 3s  is 

the stride length, 3 {1,2,3,4 }; ,5s   3N  is the capsule 

count, 3  ;N ℕ  3D  is the capsule size, 

3 3 3 3 ;,D N D f  ℕ  4x  is the capsule layer 

parameters vector, 

T

4 4 4( , ) ,x N D  

where 4N  is the capsule count, 4 ,N m  where m is 

the amount of classes in the training dataset; 4D  is 

the capsule size, 4 {8,16,32,48 }; ,64D   5x  is the 

output dimensions of a fully-connected layer at the 
beginning of the generator after reshaping 

T

5 5 5( , ) ,x x z  

where 5x  is the height and width, 5 {2, 4,8},x   5z  

is the channel count, 5 {128,256, }; 512z   6ix  is the 

deconvolutional layer parameters vector і in a 

generator, i = 1… 7x  

6 6 6

T

6( , , ) ,i i i ix f k a  

where 6if  is the kernel count, 6 {32,64,96, , 128if   

160,192,224,256},
6ik  is the kernel size, 

6 {2,4 8} , ,ik   6ia  is the neuron activation function, 

6  ia  {'relu', 'sigmoid', 'leaky_relu'}; x7 is the amount 

of deconvolutional layers; x8 is the kernel size of the 
final convolutional layer in the neural network, 

8 {1,2,3,4 }; ,5x   9x  is the weight parameters. 

VII. METHOD (ALGORITHM) OF STRUCTURAL-
PARAMETRIC SYNTHESIS OF CAPSULE 

NEURAL NETWORKS  

The structural-parametric synthesis of a capsule 
neural network consists of two stages – structural 
synthesis and parametric synthesis. 

Structural synthesis is achieved by finding the 
optimal number of layers, their types, mutual 

arrangement, as well as the parameters characteristic 
to these layers. 

Parametric synthesis aims to find optimal weight 
coefficients for the neural network obtained during 
structural synthesis, which will lead to the best 
overall performance. 

The hybrid algorithm for structural-parametric 
synthesis performs the task of discovering optimal 
network topologies and determining optimal weight 
coefficients. 

It combines the actions of two algorithms – the 
genetic algorithm and the optimization algorithm 
using gradient descent. 

The sequence of actions is presented below. 
1) Initialize neural network population. 

2) Perform capsule neural network parameters 
optimization for m training epochs (m – is a 
hyperparameter which is set before training) . 

3) Use gradient descent algorithm on neural 
networks with the best parameters which would give 
the highest prediction accuracy. 

VIII. RESULTS AND ANALYSIS 

A. Results of applying the genetic algorithm for 

topology discovery 

The population size was set at 30 individuals. 

The total number of generations, including the initial 

one, was set to 5. Training with the Adam optimizer 

took place over 10 epochs, after which the highest 

accuracy achieved during the network training 

period was assigned to the corresponding individual 

and its chromosome. 

Thus, 150 topologies of capsule neural networks 

were evaluated. The average evaluation time for one 

generation was 10 hours. Chromosomes and weights 

are stored in the generation folder. The chromosome 

storage format is JSON, utilizing the jsonpickle 

library for recording. Additionally, when forming a 

new generation, chromosome files from previous 

generations are used as a "cache." If a chromosome 

of the same structure exists, the accuracy is 

immediately assigned to individuals to avoid 

unnecessary training of neural networks (Fig. 3). 
As evident from the evolutionary trajectory, the 

overall quality of neural networks improved, except 
for the last generation where the minimum quality 
decreased. There is an explanation for this. Since the 
input image is standardized beforehand, its pixel 
values lie in the range [-1, 1]. In the initial version of 
the genetic algorithm, the activation function in the 
genes of the last convolutional layer could take 
values such as hyperbolic tangent, ReLU, Sigmoid, 
or Leaky ReLU. Only hyperbolic tangent has output 
values in the range [-1, 1]. After correcting this 
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mistake, many neural networks began to receive 
correct values for the generator loss function. The 
architectures of some of them were likely adapted to 
generator loss functions that remained unchanged, 
negatively impacting the training results. 

 

Fig. 3. File system appearence, after algorithm execution 

for 5 generations

Evolutionary trajectory can be seen on Fig. 4. 

 

Fig. 4. Evolutionary trajectory 

Five neural networks with the highest accuracy 

were attained (Table I). 

TABLE I. NEURAL NETWORKS WITH THE HIGHEST ACCURACY 

Generation Specimen 
number 

Accuracy Network 
parameters 

count 

Generator 
parameters 

count 

0 8 0.837 3 798 064 5 645 059 

4 4 0.831 5 011 312 5 270 243 

2 10 0.830 2 870 192 2 906 275 

3 5 0.825 3 548 816 7 887 747 

2  14 0.824 3 548 816 2 013 859 
 

Overall, even through comparative search, neural 

networks were found that achieved better results than 

those discovered manually. The baseline model had 

an accuracy of 0.831, and the subsequent learning 

curve was observed over 20 epochs (Fig. 5). 

 

Fig. 5. Baseline neural network training curve 

Below are the topologies of the best neural 

networks. 

Generation 0. Specimen 8. 

Convolutional layer f = 64, k = 3, s = 1, a = ‘Leaky ReLU’. 

Convolutional layer f = 256, k = 3, s = 1, a = ‘ReLU’. 

Convolutional layer f = 160, k = 5, s = 1, a = ‘Leaky ReLU’. 

Convolutional layer f = 192, k = 7, s = 1, a = ‘ReLU’. 

Convolutional capsule layer f = 192, k = 7, s = 5, N = 72, 

D = 24. 

Capsule layer N = 10, D = 64. 

Fully connected layer x = 2, z = 256. 

Deconvolutional layer f = 256, k = 8, s = 2, a = ‘Sigmoid’. 

Deconvolutional layer f = 256, k = 2, s = 2, a = ‘Leaky 

ReLU’. 

Deconvolutional layer f = 256, k = 2, s = 2, a = ‘Leaky 

ReLU’. 

Deconvolutional layer f = 256, k = 2, s = 2, a = ‘Leaky 

ReLU’. 

Final convolutional layer f = 3, k = 3, s = 1, a = ‘Sigmoid’. 

Generation 4. Specimen 4. 

Convolutional layer f = 64, k = 3, s = 1, a = ‘Leaky ReLU’. 

Convolutional layer f = 256, k = 3, s = 1, a = ‘ReLU’. 

Convolutional layer f = 224, k = 7, s = 1, a = ‘ReLU’. 

Convolutional layer f = 192, k = 3, s = 1, a = ‘Leaky ReLU’. 

Convolutional layer f = 224, k = 5, i = 2, a = ‘ReLU’. 

Convolutional capsule layer f = 224, k = 7, s = 1, N = 56, 

D = 16. 

Capsule layer N = 10, D = 64. 

Fully connected layer x = 2, z = 256. 

Deconvolutional layer f = 256, k = 8, s = 2, a = ‘Sigmoid’. 

Deconvolutional layer f = 192, k = 2, s = 2, a = ‘Leaky 

ReLU’. 
Deconvolutional layer f = 64, k = 4, s = 2, a = ‘Leaky ReLU’. 
Deconvolutional layer f = 96, k = 2, s = 2, a = ‘Sigmoid’. 
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Final convolutional layer f = 3, k = 2, s = 1, a = ‘tanh’. 

Generation 2. Specimen 10. 

Convolutional layer f = 192, k = 3, s = 1, a = ‘ReLU’. 
Convolutional layer f = 64, k = 3, s = 1, a = ‘Sigmoid’. 
Convolutional layer f = 224, k = 7, s = 1, a = ‘ReLU’. 
Convolutional layer f = 192, k = 3, s = 1, a = ‘Leaky 
ReLU’. 
Convolutional layer f = 224, k = 5, s = 2, a = ‘ReLU’. 
Convolutional capsule layer f = 224, k = 7, s = 1, N = 56, 
D = 16. 
Capsule layer N = 10, D = 64. 
Fully connected layer x = 2, z = 128. 
Deconvolutional layer f = 64, k = 2, s = 2, a = ‘Leaky ReLU. 
Deconvolutional layer f = 160, k = 4, s = 2, a = ‘Leaky 
ReLU’. 
Deconvolutional layer f = 224, k = 8, s = 2, a = ‘Sigmoid’. 
Deconvolutional layer f = 96, k = 2, s = 2, a = ‘Sigmoid’. 
Final convolutional layer f = 3, k = 2, s = 1, a = ‘ReLU. 

Generation 3. Specimen 5. 

Convolutional layer f = 64, k = 3, s = 1, a = ‘Leaky ReLU’. 
Convolutional layer f = 256, k = 3, s = 1, a = ‘ReLU’. 
Convolutional layer f = 160, k = 5, s = 1, a = ‘Leaky ReLU’. 
Convolutional layer f = 224, k = 3, s = 1, a = ‘Leaky ReLU’. 
Convolutional layer f = 192, k = 5, s = 2, a = ‘ReLU’. 
Convolutional capsule layer f = 224, k = 7, s = 1, N = 56, 
D = 16. 
Capsule layer N = 10, D = 64. 
Fully connected layer x = 2, z = 256. 
Deconvolutional layer f = 256, k = 8, s = 2, a = ‘Sigmoid’. 
Deconvolutional layer f = 192, k = 2, s = 2, a = ‘Leaky 
ReLU’. 
Deconvolutional layer f = 224, k = 8, s = 2, a = ‘Sigmoid’. 
Deconvolutional layer f = 96, k = 2, s = 2, a = ‘Sigmoid’. 
Final convolutional layer f = 3, k = 2, s = 1, a = ‘ReLU’. 

Generation 2. Specimen 14. 

Convolutional layer f = 64, k = 3, s = 1, a = ‘Leaky ReLU’. 
Convolutional layer f = 256, k = 3, s = 1, a = ‘ReLU’. 
Convolutional layer f = 160, k = 5, s = 1, a = ‘Leaky ReLU’. 
Convolutional layer f = 224, k = 3, s = 1, a = ‘Leaky ReLU’. 
Convolutional layer f = 192, k = 3, s = 1, a = ‘Leaky ReLU’. 
Convolutional layer f = 224, k = 5, s = 2, a = ‘ReLU’. 
Convolutional capsule layer f = 224, k = 7, s = 1, N = 56, 
D = 16. 
Capsule layer N = 10, D = 64. 
Fully connected layer x = 2, z = 256. 
Deconvolutional layer f = 192, k = 4, s = 2, a = ‘Sigmoid’. 
Deconvolutional layer f = 32, k = 2, s = 2, a = ‘Leaky 
ReLU’. 
Deconvolutional layer f = 224, k = 8, s = 2, a = ‘Sigmoid’. 
Deconvolutional layer f = 96, k = 2, s = 2, a = ‘Sigmoid’. 
Final convolutional layer f = 3, k = 2, s = 1, a = ‘ReLU’. 

B. Results of applying Adam to finish weight 
optimization 

Additional optimization was done for 40 training 

epochs (thus, the total epoch count is 50) (Table II). 

TABLE II. BEST NEURAL NETWORK ACCURACY AFTER 

TRAINING CONCLUSION 

Generation Specimen 
number 

Accuracy Accuracy 
after fine-

tuning 

0 8 0.837 0.849 

4 4 0.831 0.861 

2 10 0.830 0.850 

3 5 0.825 0.862 

2 14 0.824 0.861 

Neural network 5 from generation 3 had the 

highest prediction accuracy. Below, the graphs of its 

additional training are presented (Figs 6 and 7). 

 

Fig. 6. Accuracy 

 

Fig. 7. Loss functions 

Thus, a neural network with improved 

performance compared to manually discovered 

architectures was obtained. However, the results are 

not very satisfactory, as convolutional neural 

networks show significantly better performance on 

this dataset. There are several reasons why the 

capsule neural network did not perform well. 
1) Dataset – CIFAR-10 is a highly noisy dataset 

with significantly different backgrounds, which 
confuses capsules that should primarily encode the 
properties of objects in the class. Capsule neural 
networks have historically not outperformed 
convolutional networks on this dataset. 

2) Dependency on generator regularization - 
capsule neural networks heavily rely on the 
regularization of the generator network. Due to an 
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activation function error in the last layer and the 
absence of a separate metric indicating the 
effectiveness of the generator in creating images, 
which would be considered in the genetic algorithm, 
the generators were underdeveloped. 

3) Insufficient number of generations – the hybrid 
algorithm's application process is very time-
consuming, and it would have been desirable to train it 
for at least 20 generations, but there was a lack of time. 

IX. CONCLUSION 

In this paper, the task of structural-parametric 
synthesis of capsule neural networks was 
successfully accomplished. A detailed review of 
contemporary mathematical implementations of 
capsules was conducted, and the optimal approach 
was chosen. A hybrid algorithm, consisting of 
genetic and gradient descent algorithms, was applied 
to find the optimal topology of the capsule neural 
network and its adjustable parameters. The 
algorithm evaluated 150 topologies of capsule neural 
networks, 5 of which were further fine-tuned, 
yielding results superior to those achieved by 
manually crafted capsule neural networks. 
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В. М. Синєглазов, Д. О. Кудрєв. Структурно-параметричний синтез капсульних нейронних мереж 

Дану роботу присвячено структурно-параметричному синтезу капсульних нейронних мереж. Розроблено 

методологію структурно-параметрично синтезу капсульних нейронних яка включає наступні алгоритми: 

визначення найбільш впливових параметрів НМ, гібридний алгоритм машинного навчання. За допомогою 

гібридного алгоритму визначається оптимальна структура та значення вагових коефіцієнтів. Гібридний 

алгоритм складається з генетичного алгоритму та градієнтного алгоритму (Adam). було оцінено 150 топологій 

капсульних нейронних мереж. Середній час оцінки одного покоління складав 10 годин. Хромосоми та ваги 

зберігаються у папку покоління. Формат збереження хромосом – json, механізм запису бібліотека jsonpickle. 

Також при утворення нового покоління, файли хромосом з інших поколінь використовуються як “кеш”, якщо 

існує хромосома такого самого вигляду, то особині одразу присвоюється точність, для уникнення зайвих 

тренувань нейромереж. В результаті використання гібридного алгоритму знайдено оптимальну топологію та 

параметри капсульної нейронної мережі для вирішення задачі класифікації. 

Ключові слова: капсульна нейронна мережа; структурно-параметричний синтез; генетичний алгоритм; 

адаптивна оцsнка момента (Adam); задача класифікації. 
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