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Abstract—This article is devoted to the problem of building recommender systems based on the use of 
artificial intelligence methods. The paper analyzes the algorithms of recommender systems. Analyzes the 
Markov decision-making process in the context of recommender systems. Approaches to the adaptation of 
reinforcement learning algorithms to the task of recommendations (transition from the task of supervised 
learning to the task of reinforcement learning) are considered. Reinforcement learning algorithms Deep 
Deterministic Policy Gradient and Twin Delayed DDPG were implemented with their own environment 
simulating the user's reaction, and the results were compared. The structure of a recommender system 
has been developed, in which the recommender agent generates a list of offers for an individual user, 
using his previous history of ratings. In the system itself, the user has the ability to interact only with the 
space of recommended films. This can be compared to the main YouTube page, which is a feed with 
suggestions, but we have a user interacting only with this feed and his reaction to objects in the 
recommendation space falls into recommender agent, which regulates the parameters of the model in the 
learning process. 

Index Terms—Machine learning; reinforcement learning; recommendation systems; recommender 
agent; collaborative filtering; Actor-Critic; explicit feedback. 

I. INTRODUCTION 

Like any field of research, recommender systems 
are constantly evolving over the years, reaching new 
heights in the selection of information according to 
user preferences. As the complexity of algorithms 
and approaches grows, the standards of 
recommender systems are also increasing. From 
collaborative filtering and Pearson's correlation 
coefficient to powerful reinforcement learning 
models, recommender systems have come a long 
way in development and improvement. Modern 
recommender systems are able to create new sets of 
user preferences in real time, guided not only by 
their previous actions, but also taking into account 
any additional, and seemingly unimportant 
information, with the help of efficient model training 
solutions and built-in powerful neural networks. 

Recommender systems are making a significant 
impact on the global economy, finding their purpose 
in every area where there is a relationship between 
objects and users. From movie recommendations on 
movie websites to investment recommendations for 
large businesses, recommender systems can be a 
game changer for any service in which they are 
implemented. In today's world, large amounts of 
information do not make it possible to independently 
assess the needs of an individual user, and irrelevant 

offers from a service or company can reduce the 
interest and activity of the audience to which they 
provide goods or services.  

When the question of how to increase demand for 
products comes up, manufacturers pay attention not 
to the price-quality ratio, but to whether they have 
chosen the right audience for its distribution. 
Powerful recommendation systems can increase the 
service's profit without any price manipulation, but 
simply by offering certain products only to those 
who are really interested in them. Each user is not 
unique; they can be grouped by criteria, analyzed by 
their behavior, and predicted what they will like, 
which is the task of recommender systems. 

Although the context of this work is movie 
recommendations, this does not place any serious 
limitations on the approach demonstrated. The 
dataset used, movielens-100k, was chosen only 
because of its popularity and prevalence, which 
makes it possible to objectively evaluate the results. 
The approach put forward in Section 3 can be used 
for any recommendation tasks and demonstrate the 
same high results. 

II. RECOMMENDER SYSTEMS AND THEIR PROBLEMS 

Driven by the explosive growth in the amount of 
digital information available and the number of 
Internet users, the problem of information overload 
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prevents timely access to information of interest to a 
particular user. This has led to an increase in 
demand for recommender systems more than ever 
before. 

Recommender systems are a subclass of 
information filtering systems that solve the problem 
of information overload [1] by filtering out from a 
large amount of dynamically generated data only 
those fragments that are hypothetically interesting to 
the user, referring to his past preferences, history of 
interaction with the source and other user data. A 
recommender system is able to predict whether a 
particular user will prefer a certain piece of 
information (goods, services, videos, etc.) or not 
based on the user's profile data. 

Recommender systems are extremely beneficial 
for both service users and service providers [2]. 
They reduce transaction costs for searching and 
selecting products in the online shopping 
environment [3]. It has also been proven that 
recommender systems improve decision-making and 
decision quality [4]. In e-commerce, recommender 
systems can increase revenues because they help 
users choose the products they are interested in [2]. 
Thus, the need to use effective and accurate 
recommendation methods in a system that will 
provide relevant and reliable recommendations to 
users cannot be overemphasized. Let's consider the 
challenges of recommender systems. 

A. Collecting feedback from users 
 It is a fact that most users do not give any 

assessment of the product or the information 
presented. Thus, a research problem arises: how to 
find out how satisfied the user is with the product. 
There are two ways to get evaluations. The first one 
is an explicit evaluation of the user after they have 
purchased a product or after viewing information. 
The other way is to predict their ratings for a 
particular product based on their preferences for 
other products. This method is known as the implicit 
rating collection method. [5], [6]. 

B. The cold start problem 
The cold start problem is the problem of lack of 

information about a user or object in the system. [7] 
In this case, recommendation systems based on 
collaborative filtering, which require mandatory 
information about the user or object before making a 
recommendation, lose their effectiveness. The cold 
start can be broken down into three sub-problems.  

The first problem is that we don't have any 
information about a new user. For example, when 
they have just joined the system. This problem is 
known as the new user cold start problem [12]. 

The second problem occurs when we introduce a 
new item into the system, but this item is unique in 
its kind and the system cannot find any evaluation 
related to this object. For example, collaborative 
filtering systems that need a matrix of user ratings to 
make a recommendation will not be able to run. This 
problem is known as the item cold start problem. 
The third problem 

The third problem occurred when we launched 
the system for the first time. In this case, we have 
neither user nor product information. In other words, 
we don't have a user-item rating matrix, which is 
necessary for recommender systems to work 
properly and collaborate properly. This problem is 
known as a system cold start problem. For cold start 
problems, well-known content-based solutions can 
be applied[8, 9] and combinations of different 
machine learning methods can be used [10], [11]. 

C. Sparsity problem 
A common problem with recommender systems 

(RS) is that users do not provide adequate feedback. 
Thus, even though there may be many users in our 
system, it is quite possible that we will receive very 
few ratings from them. Sometimes users provide 
information noise, irrelevant ratings, and misclick 
results to the system. This is perceived by the 
recommendation system as input, which 
subsequently shows the user undesirable results, 
which spoils the platform's performance. Also, users 
rarely rate the entire set of objects on the platform, 
which leads to the same problem [15]. 

The sparsity problem is a domain problem of 
collaborative filtering algorithms in RS that arises 
due to the sparsity of the rating matrix. From a 
mathematical point of view, when the user-item 
rating matrix becomes sparse, it gives rise to a 
unique problem that is known as the sparsity 
problem in RS [13], [14]. 

D. Scalability 
Scalability is a system property that determines 

how a recommender system copes with the growing 
number of objects and their properties in it [16].  

Scalability issues can be divided into two parts: 
hardware scalability and software scalability. 
Hardware scalability is about increasing the power 
or amount of hardware to solve a scalability 
problem.  

For example, you can increase the CPU, RAM, 
and server configuration to solve the problem. But 
only a hardware increase in bandwidth cannot solve 
the problem [16]. 

Software scalability is the ability of RS algorithms 
and methods to cope with the increasing number of 
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objects and their properties in the system. This is a 
major problem that is not as simple as it seems. Most 
algorithms demonstrate good results only in spaces 
with a small dimensionality. In this case, the 
prediction accuracy decreases with increasing data 
volume or their execution time increases to 
unacceptable intervals. Such algorithms are unable to 
keep pace with the growth of the platform and, 
therefore, the problem of scalability arises [13]. 

E. The problem of over-specialization 
This problem occurs if the recommended objects 

are too similar to each other and as a result, RS 
provides the user with the same recommendations.  

One solution to this problem is to diversify 
recommendations. In this case, we list all products 
that are not similar to each other but may be of 
interest to the user [17]. 

F. Lack of data 
Perhaps the biggest problem faced by 

recommender systems is that they need a lot of data 
to provide recommendations effectively. In the 
world of recommender systems, it is a common 
practice to use publicly available datasets from 
another environment to evaluate the effectiveness of 
recommendation algorithms [18]. These datasets are 
very useful and are used as a benchmark for 
developing new recommendation algorithms. For all 
RS algorithms, the more data we have about the user 
and objects on the platform, the more relevant the 
recommendations will be.  

G. Changing data 
The next major challenge in the recommendation 

system is changing user preferences and keeping up 
with preferences that change too quickly. The user's 
intentions for viewing a particular item may be 
different at different times, so recommender systems 
that are entirely based on user preferences may 
provide incorrect recommendations [19]. 

III. PROBLEM STATEMENT 

The general approach to recommender systems 
is formulated as follows: 

Let the system have objects and users. The two 
entities are connected by the ratings that users give 
to an object. In the context of our problem, a rating 
is a positive integer from 1 to 5. Then all ratings 
can be represented as a matrix (Fig. 1). 

 
Fig. 1. The matrix of estimates 

Let there be a user j. The task is to predict how 
user j would rate object i. In this case, depending 
on the approach used, both the user and the object 
may have certain properties, and the evaluation 
may be any action. 

There are usually four approaches to 
recommender systems [20]: 

 content-based recommendations; 
 collaborative filtering; 
 demographic filtering; 
 hybrid approaches. 

A. Content-based recommendations 
For each user j, we want the algorithm to predict 

the rating of object i using the function 

     T
,j ix  

where  j  is a vector of parameters 1n  for user j; 
 ix  is a vector of features 1n  for object i;  ,i jy  is 

the real evaluation of object i by user j. 
The task is to minimize: 

    
 

           
2T 21 ,

1 : , 1 1 1

1 λθ , ., θ θ θ
2 2

u u
u

n n n
n j i i j j

k
j i r i j j ku u

J x y
n n   

       

Content-based filtering methods are based on the 
description of the object and the user's taste profile, 
and they place more emphasis on analyzing object 
attributes to make predictions. Recommendations 
are made based on user profiles using features 
extracted from the content of objects that the user 
has rated in the past [21], [22].  

The user is recommended items that are mainly 
related to positively rated items. Content-based 
filtering uses different types of models to find 
similarities between documents to generate 
meaningful recommendations. It can use vector-
space models such as term frequency inverse 
document frequency (TF/IDF) or probabilistic 
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models such as naive Bayes classifier [23], decision 
trees [24], or neural networks to model the 
relationships between objects. The content-based 
filtering technique does not require the profiles of 
other users in the system, as they do not affect the 
recommendations. In addition, if a user's profile 
changes, this method still has the potential to adjust 
its recommendations within a very short period of 
time. The main disadvantage of this method is the 

need for a wide range of parameters to describe 
objects for good performance. 

B. Collaborative filtering 

Given the values of    1 , , ,un    minimize the 
square of the difference between the predicted 

ratings      Tj ix  and the actual ratings  , :i jy

   
 

            1

2 2T 2,
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2 2
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u u
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k
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x y x
n n    

     

The collaborative filtering method is based on a 
matrix of user-object relationships and ratings. The 
system selects users with similar interests and 
preferences by calculating the similarity between 
their interaction histories in the system, and then 
provides recommendations [25]. Such users form a 
group called neighbors. The user receives 
recommendations for those products that he or she 
has not rated before, but which have already been 
rated by neighboring users. 

 

C. Demographic filtering 
The optimization task for demographic filtering 

can be formulated as follows. Minimize the cost 
function  , ,J x  where   are model parameters 
corresponding to demographic categories; x is the 
user preference vectors; nu is the number of users; 
r(i, j) is an indicator of whether user i has already 
expressed their preference for category j; ( )id  are 
demographic characteristics of the user i; ( , )i jy  is an 
assessment of user i's preference for category j. 

The cost function is as follows: 
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Recommender systems based on demographic 

filtering (DF) classify users based on their 
demographic information and recommend services 
according to the type of user. In demographic 
filtering, user profiles are created by classifying 
users into stereotypical descriptions that represent 
the characteristics of user groups [26]. Demographic 
information identifies those users who are interested 
in similar services. DF creates categories of users 
with similar demographic characteristics, and then 
tracks the accumulated behavior or preferences of 
users in these categories. For a new user, 
recommendations are generated by first determining 
which category they belong to and then applying the 
accumulated preferences of previous users to that 
category. Similar to collaborative techniques, 
demographic techniques also generate human-to-
human correlations, but use different data. 
Collaborative and content-based techniques require a 
history of user ratings, which is not necessary for a 
demographic-based approach. 
D. Comparison of approaches 

The use of efficient and accurate 
recommendation methods is a key factor for a 
productive recommender system. Approaches and 
algorithms may differ for different tasks, but it is 

important to evaluate all the benefits they can 
provide and the limitations that accompany them 
before choosing one. 

As we can see in Table I, the choice of approach 
requires some compromises and therefore, when 
creating a recommender system, it is important to 
evaluate the purposes for which it will be created 
and the environment in which it will operate, i.e. 
what properties the users and objects in it will have. 

In the broader context of recommender systems, 
there are also many other approaches and their 
variations that have their own advantages, for 
example: 

 Matrix factorization: The approach is based 
on decomposing the user and item interaction matrix 
into smaller matrices, which allows finding hidden 
dependencies and making recommendations based 
on them. 

 Knowledge-based: This approach uses expert 
knowledge or rules to make recommendations. It 
takes into account user requirements and item 
characteristics to make recommendations. 

 Transformer-based: This approach uses a 
transformer model architecture for recommender 
systems. It is able to model long-term dependencies 
in the sequences of user interactions with the system 
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and items, which allows for more accurate and 
contextualized recommendations. 

 Reinforcement Learning-based: This approach 
uses reinforcement learning techniques to build an 

optimal recommendation strategy. The system 
interacts with the environment, observes how users 
react to recommendations, and learns to improve 
recommendations based on the rewards they receive. 

TABLE I. ADVANTAGES AND DISADVANTAGES OF RECOMMENDER SYSTEM APPROACHES 

No Advantages Disadvantages Techniques 
1 1. The system does not use user data 

for recommendations. 
1. It requires analyzing and determining 
all characteristics of items to create a 
recommendation list. 

Content-based 
recommendations 

 2. The system can recommend new 
items to users based on the similarity 
of their characteristics. 

2. The system is not dependent on user 
ratings for a particular item, so the quality 
rating of a product is not considered. 

 

2 1. The system does not use 
demographic information for 
recommendations. 

1. The quality of the system depends on 
the list of items with the highest ratings. 

Collaborative 
filtering 

 2. The system compares similar items 
among users. 

2. There is a problem with how to 
recommend items to a new user (cold-start 
problem). 

 

 3. The system can recommend items 
that do not match the user's 
preferences, but they might still like 
them. 

  

3 1. The system is not based on user 
ratings of items; it provides 
recommendations before the user has 
rated any item. 

1. Collecting demographic data raises 
confidentiality issues. 

Demographic 
filtering 

  2. Stability problem versus plasticity.  
4 1. Combines all the advantages of 

content-based and collaborative 
approaches. 

1. There is a cold-start problem. Hybrid approaches 

 2. Based on content description and 
user ratings. 

2. Early adopter problem for products.  

 3. Helps avoid recommendation 
saturation. 

3. Data sparsity problem.  

Our task is to consider and implement the latter 
approach. 

IV. ALGORITHMS 

A. Deep Deterministic Policy Gradient 

The task is to minimize: 

    2
( , ) , ; ,, ;J r Q s a Q s a                

where   are critic network parameters;   are 

parameters of the target Critic network;  , |Q s a   

is the critic network result for (s, a);  , ;Q s a      is 
the  target Critic network result. 

Algorithm 

1: Initialize the Actor 
πθf  and Critic  , |Q s a   

networks with random weights. 
2: Initialize the target networks f   and Q  with 

weights 

, .          
3: Initialize replay buffer M 
4: for session = 1 to M do 
5: Refresh space of items I 
6: Initialize state s0 from previous sessions 
7: for t = 1 to T do 
8: Stage 1: Transition generating stage 
9: Select an action at according to 

πθf  
10: Execute action at and 

observe the reward rt 
11: Save transition  1, , ,t t t ts a r s   in M 
12: 1t ts s   
13: Stage 2: Parameter updating stage 

14: Sample minibatch with N transitions 
 , , ,s a r s  from M 

15: Generate a  according 
to target Actor network 

πθf  

16:  , ;y r Q s a         
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17: Update Critic by minimizing 

  2
, ;y Q s a    according to: 

      1 , ; , ;
i

L y Q s a Q s a
N             

18: Update Actor using the sampled policy 
gradient: 

   1 , |a
i

f Q s a f s
N             

19: Update the Critic target network: 
 1           

20: Update the Actor target network: 
 πτθ 1 τ        

21:end for 
22: end for 

B. Twin Delayed DDPG 
Twin Delayed DDPG (TD3) is a modification of 

the Deep Deterministic Policy Gradient (DDPG) 
algorithm that uses several innovations. Smoothing 
the target policy: 
      πθ Low Highclip clip , , , , ,a s f s c c a a         

 0,   – noise. 

Low Higha a a   is the clip range of the target 
action. 

Smoothing the target policy serves to regularize 
the algorithm. This regularization option is intended 
for a specific type of biases when  μ, ; θQ s a  forms 
an incorrect sharp peak for some actions, the policy 
may behave erratically because of this. 

The TD3 algorithm is based on two different 
Critics , 1,2

i
Q i  , each of which has the same 

properties. A similar solution is also created for the 
purpose of regularization. The target value will have 
the form: 

    ,1,2
, , min , ' , .i ii

y r s d r Q s a s 
        

TD3 updates the policy only with a certain 
frequency, which contributes to the stable operation 
of the algorithm. Typically, the policy is updated 
every second iteration. 

The task is to minimize: 

   
 

,1,2

2

,

, min , ( ),

                                      , ; 1, 2

i ii

i i

J r Q s a s

Q s a i

  



          

  
 

where   are parameters of Critic network;   are 

parameters of Critic target network;  , |iQ s a   is 

the result of the work of the Critic's network i for (s, 
a);  , ;iQ s a      is the result of the work of the 

Critic's target network i for  ,s a  . 

Algorithm 
1: Initialize Actor network 

πθf  and critic's 

 1 ,1, |Q s a   and  2 ,2, |Q s a   with random weights. 
2: Initialize target networks 1f   and iQ  with 

weights 
, .          

3: Initialize replay buffer M 
4: for session = 1 to M do 
5: Refresh space of items I 
6: Initialize state s0 from previous sessions 
7: for t = 1 to T do 
8: Stage 1: Transition generating stage 
9: Select an action at according to 

πθf  
10: Execute action at and 

observe the reward rt 
11: Save transition  1, , ,t t t ts a r s   in M 
12: 1t ts s   
13: Stage 2: Parameter updating stage 

14: Sample minibatch with N transitions 
 , , ,s a r s  from M 

15: Generate a  according 
to target Actor network 

πθf  

16:   ,1,2
min , ,i ii

y r Q s a s 
        

17: Update Critic by minimizing 

  2

,, ;i iy Q s a    according to: 

 
    

,

,

,

, ,
1 , ; , ; ,

                      =1,2

i

i

i

i i i i
i

L

y Q s a Q s a
N

i





 

  

 

      

18: Update Actor using the sampled policy 
gradient, 

if session % 2=0: 

   1
1 , |a

i

f Q s a f s
N             

19: Update the Critic's target network: 
 , , ,1 , 1,2i i i i            

20: Update the Actor target network: 

 πτθ 1 τ        

21:end for 
22: end for 
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V. RESULTS OF WORK 

The results were obtained using the movielens-
100k dataset.  

This dataset represents the history of ratings of 
1682 movies by 943 users, with a total of 100,000 
records (Fig. 2). 

 
Fig. 2. Data representation in movielens-100k 

The reason for its selection is that this dataset is 
quite popular among developers of recommender 
systems and is usually used for testing RS. 

To evaluate normalized discounted cumulative 
gain (NDCG) and mean reciprocal rank (MRR), we 
use the relevance metric – the score multiplied by 
0.2. That is, if the rating is 5, then the relevance is 
maximum, and so on. For hit rate (HR), a score of 4 
or 5 is considered the correct answer [27]. 

Usually, in the process of training Reinforcement 
learning (RL) models, a graph of cumulative reward 
growth over an epoch is plotted to visualize the 
improvement of the model. However, because our 
model uses a replay buffer, the reward is averaged 
and we cannot track it for each individual trajectory. 
In fact, our model does not feed the data of an 
individual user sequentially and does not calculate 
the cumulative reward for the user over the entire 
trajectory of his or her history, but we build a 
trajectory for all users simultaneously. In the context 
of RS, this feature is a significant advantage without 
which the system implementation is not possible. In 
general, to evaluate the quality of the system, it is 
enough to use the relevance metrics of 
recommendations and the distribution of ratings of 
movies that RA has recommended to the entire user 
population. 

To get better results, the model should be run 4–5 
times on training data, because simply increasing the 
number of epochs is not enough. The reasoning 
behind this is that the recommender agent, in 
particular the data in the playback buffer, needs a 
"restart" so that it can perform better in the first 
epochs of training when there is little data. 

For training and testing, the input sample was 
split into training and testing samples in a ratio of 

1:4. The following results were obtained on the test 
sample. We also took into account the cases when 
the generated recommendation is not in the dataset 
(one or more movies from the recommendation list 
are missing), in which case the result represents the 
residual for which the ratings exist. 

Python 3.8 and the following versions of libraries 
were used: 

 Keras '2.12.0'; 
 Tensorflow '2.12.0'; 
 Pandas '2.0.2'; 
 Numpy '1.12.5'. 

A. Results for DDPG 

The distribution of grades for movies 
recommended by the system based on the DDPG 
algorithm is shown in Fig. 3. Table II shows the 
results of the selected metrics. Figure 4 shows the 
last training iterations of the algorithm.  

 
Fig. 3. Distribution of scores for users in the test sample 

for DDPG 

TABLE II. RESULTS FOR DDPG 

AVRR HR MRR NDCG 

4.1667 0.7916 0.5945 0.5357 

 
Fig. 4. Latest iterations of DDPG model training 
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B. Results for TD3 

The distribution of grades for movies 
recommended by the system based on the TD3 
algorithm is shown in Fig. 5. Table III shows the 
results of the selected metrics. Figure 4 shows the 
last training iterations of the algorithm.  

 
Fig. 5. Distribution of scores for users in the test sample 

for TD3 

TABLE III. RESULTS FOR TD3 

AVRR HR MRR NDCG 

4.2438 0.8212 0.6129 0.7357 

 
Fig. 6. Latest iterations of TD3 model training 

VI. CONCLUSIONS 

In the course of the research, an approach to 
recommendation systems based on reinforcement 
learning was developed. In its context, three specific 
modules were created: for coding states, for 
generating rewards, and for reproducing actions. 
These three components made it possible to move 
from the task of supervised learning to the task of 
RL, while taking advantage of both approaches 
within the same dataset. 

The reward generation component allowed us to 
fully optimize the model to leave room for more 
powerful reinforcement learning algorithms, which 
showed quite good results. 

A separate disadvantage is the rather long 
training time, which is especially noticeable in the 
TD3 model, although it showed better results. 
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В. М. Синєглазов, А. В. Шеруда. Системи рекомендацій на основі посиленого навчання 
Статтю присвячено проблемі побудови рекомендаційних систем на основі використання методів штучного 
інтелекту. У роботі проведено аналіз алгоритмів рекомендаційних систем, проаналізовано марківський процес 
прийняття рішень у контексті рекомендаційних систем. Розглянуто підходи до адаптації алгоритмів навчання з 
підкріпленням до завдання рекомендацій (перехід від задачі контрольованого навчання до завдання навчання з 
підкріпленням). Реалізовано алгоритми навчання з підкріпленням Deep Deterministic Policy Gradient та Twin 
Delayed DDPG із власним середовищем-імітацією реакції користувача та виконано порівняння результатів. 
Розроблено структуру рекомендаційної системи, у якій рекомендаційний агент генерує список пропозицій 
окремому користувачеві, використовуючи його попередню історію оцінок. У самій системі користувач має 
можливість взаємодії тільки з простором фільмів, що рекомендуються. Це можна порівняти з головною 
сторінкою YouTube, що є стрічкою з пропозиціями, у нас же користувач взаємодія тільки з цією стрічкою і його 
реакція на об'єкти в просторі рекомендацій потрапляє до рекомендаційного агента, який регулює параметри 
моделі в процесі навчання. 
Ключові слова: машинне навчання; навчання з підкріпленням; системи рекомендацій; рекомендаційний агент; 
колаборативна фільтрація; Актор-Критик; явний зворотній зв’язок. 
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