

46 ISSN 1990-5548 Electronics and Control Systems 2023. N 2(76): 46-55

©National Aviation University, 2023
http://jrnl.nau.edu.ua/index.php/ESU, http://ecs.in.ua

UDC 004.855.5(045)
DOI:10.18372/1990-5548.76.17668

1V. M. Sineglazov,
2A. V. Sheruda

RECOMMENDER SYSTEMS BASED ON REINFORCED LEARNING
1Aviation Computer-Integrated Complexes Department, Faculty of Air Navigation Electronics

and Telecommunications, National Aviation University, Kyiv, Ukraine
2Faculty of Informatics and Computer Science, National Technical University of Ukraine “Ihor Sikorsky

Kyiv Polytechnic Institute”, Kyiv, Ukraine
E-mails: 1svm@nau.edu.ua ORCID 0000-0002-3297-9060, 2sheruda.andrew@lll.kpi.ua

Abstract—This article is devoted to the problem of building recommender systems based on the use of
artificial intelligence methods. The paper analyzes the algorithms of recommender systems. Analyzes the
Markov decision-making process in the context of recommender systems. Approaches to the adaptation of
reinforcement learning algorithms to the task of recommendations (transition from the task of supervised
learning to the task of reinforcement learning) are considered. Reinforcement learning algorithms Deep
Deterministic Policy Gradient and Twin Delayed DDPG were implemented with their own environment
simulating the user's reaction, and the results were compared. The structure of a recommender system
has been developed, in which the recommender agent generates a list of offers for an individual user,
using his previous history of ratings. In the system itself, the user has the ability to interact only with the
space of recommended films. This can be compared to the main YouTube page, which is a feed with
suggestions, but we have a user interacting only with this feed and his reaction to objects in the
recommendation space falls into recommender agent, which regulates the parameters of the model in the
learning process.

Index Terms—Machine learning; reinforcement learning; recommendation systems; recommender
agent; collaborative filtering; Actor-Critic; explicit feedback.

I. INTRODUCTION

Like any field of research, recommender systems
are constantly evolving over the years, reaching new
heights in the selection of information according to
user preferences. As the complexity of algorithms
and approaches grows, the standards of
recommender systems are also increasing. From
collaborative filtering and Pearson's correlation
coefficient to powerful reinforcement learning
models, recommender systems have come a long
way in development and improvement. Modern
recommender systems are able to create new sets of
user preferences in real time, guided not only by
their previous actions, but also taking into account
any additional, and seemingly unimportant
information, with the help of efficient model training
solutions and built-in powerful neural networks.

Recommender systems are making a significant
impact on the global economy, finding their purpose
in every area where there is a relationship between
objects and users. From movie recommendations on
movie websites to investment recommendations for
large businesses, recommender systems can be a
game changer for any service in which they are
implemented. In today's world, large amounts of
information do not make it possible to independently
assess the needs of an individual user, and irrelevant

offers from a service or company can reduce the
interest and activity of the audience to which they
provide goods or services.

When the question of how to increase demand for
products comes up, manufacturers pay attention not
to the price-quality ratio, but to whether they have
chosen the right audience for its distribution.
Powerful recommendation systems can increase the
service's profit without any price manipulation, but
simply by offering certain products only to those
who are really interested in them. Each user is not
unique; they can be grouped by criteria, analyzed by
their behavior, and predicted what they will like,
which is the task of recommender systems.

Although the context of this work is movie
recommendations, this does not place any serious
limitations on the approach demonstrated. The
dataset used, movielens-100k, was chosen only
because of its popularity and prevalence, which
makes it possible to objectively evaluate the results.
The approach put forward in Section 3 can be used
for any recommendation tasks and demonstrate the
same high results.

II. RECOMMENDER SYSTEMS AND THEIR PROBLEMS

Driven by the explosive growth in the amount of
digital information available and the number of
Internet users, the problem of information overload

V.M. Sineglazov, A.V. Sheruda Recommender Systems Based on Reinforced Learning 47

prevents timely access to information of interest to a
particular user. This has led to an increase in
demand for recommender systems more than ever
before.

Recommender systems are a subclass of
information filtering systems that solve the problem
of information overload [1] by filtering out from a
large amount of dynamically generated data only
those fragments that are hypothetically interesting to
the user, referring to his past preferences, history of
interaction with the source and other user data. A
recommender system is able to predict whether a
particular user will prefer a certain piece of
information (goods, services, videos, etc.) or not
based on the user's profile data.

Recommender systems are extremely beneficial
for both service users and service providers [2].
They reduce transaction costs for searching and
selecting products in the online shopping
environment [3]. It has also been proven that
recommender systems improve decision-making and
decision quality [4]. In e-commerce, recommender
systems can increase revenues because they help
users choose the products they are interested in [2].
Thus, the need to use effective and accurate
recommendation methods in a system that will
provide relevant and reliable recommendations to
users cannot be overemphasized. Let's consider the
challenges of recommender systems.

A. Collecting feedback from users
 It is a fact that most users do not give any

assessment of the product or the information
presented. Thus, a research problem arises: how to
find out how satisfied the user is with the product.
There are two ways to get evaluations. The first one
is an explicit evaluation of the user after they have
purchased a product or after viewing information.
The other way is to predict their ratings for a
particular product based on their preferences for
other products. This method is known as the implicit
rating collection method. [5], [6].

B. The cold start problem
The cold start problem is the problem of lack of

information about a user or object in the system. [7]
In this case, recommendation systems based on
collaborative filtering, which require mandatory
information about the user or object before making a
recommendation, lose their effectiveness. The cold
start can be broken down into three sub-problems.

The first problem is that we don't have any
information about a new user. For example, when
they have just joined the system. This problem is
known as the new user cold start problem [12].

The second problem occurs when we introduce a
new item into the system, but this item is unique in
its kind and the system cannot find any evaluation
related to this object. For example, collaborative
filtering systems that need a matrix of user ratings to
make a recommendation will not be able to run. This
problem is known as the item cold start problem.
The third problem

The third problem occurred when we launched
the system for the first time. In this case, we have
neither user nor product information. In other words,
we don't have a user-item rating matrix, which is
necessary for recommender systems to work
properly and collaborate properly. This problem is
known as a system cold start problem. For cold start
problems, well-known content-based solutions can
be applied[8, 9] and combinations of different
machine learning methods can be used [10], [11].

C. Sparsity problem
A common problem with recommender systems

(RS) is that users do not provide adequate feedback.
Thus, even though there may be many users in our
system, it is quite possible that we will receive very
few ratings from them. Sometimes users provide
information noise, irrelevant ratings, and misclick
results to the system. This is perceived by the
recommendation system as input, which
subsequently shows the user undesirable results,
which spoils the platform's performance. Also, users
rarely rate the entire set of objects on the platform,
which leads to the same problem [15].

The sparsity problem is a domain problem of
collaborative filtering algorithms in RS that arises
due to the sparsity of the rating matrix. From a
mathematical point of view, when the user-item
rating matrix becomes sparse, it gives rise to a
unique problem that is known as the sparsity
problem in RS [13], [14].

D. Scalability
Scalability is a system property that determines

how a recommender system copes with the growing
number of objects and their properties in it [16].

Scalability issues can be divided into two parts:
hardware scalability and software scalability.
Hardware scalability is about increasing the power
or amount of hardware to solve a scalability
problem.

For example, you can increase the CPU, RAM,
and server configuration to solve the problem. But
only a hardware increase in bandwidth cannot solve
the problem [16].

Software scalability is the ability of RS algorithms
and methods to cope with the increasing number of

48 ISSN 1990-5548 Electronics and Control Systems 2023. N 2(76): 46-55

objects and their properties in the system. This is a
major problem that is not as simple as it seems. Most
algorithms demonstrate good results only in spaces
with a small dimensionality. In this case, the
prediction accuracy decreases with increasing data
volume or their execution time increases to
unacceptable intervals. Such algorithms are unable to
keep pace with the growth of the platform and,
therefore, the problem of scalability arises [13].

E. The problem of over-specialization
This problem occurs if the recommended objects

are too similar to each other and as a result, RS
provides the user with the same recommendations.

One solution to this problem is to diversify
recommendations. In this case, we list all products
that are not similar to each other but may be of
interest to the user [17].

F. Lack of data
Perhaps the biggest problem faced by

recommender systems is that they need a lot of data
to provide recommendations effectively. In the
world of recommender systems, it is a common
practice to use publicly available datasets from
another environment to evaluate the effectiveness of
recommendation algorithms [18]. These datasets are
very useful and are used as a benchmark for
developing new recommendation algorithms. For all
RS algorithms, the more data we have about the user
and objects on the platform, the more relevant the
recommendations will be.

G. Changing data
The next major challenge in the recommendation

system is changing user preferences and keeping up
with preferences that change too quickly. The user's
intentions for viewing a particular item may be
different at different times, so recommender systems
that are entirely based on user preferences may
provide incorrect recommendations [19].

III. PROBLEM STATEMENT

The general approach to recommender systems
is formulated as follows:

Let the system have objects and users. The two
entities are connected by the ratings that users give
to an object. In the context of our problem, a rating
is a positive integer from 1 to 5. Then all ratings
can be represented as a matrix (Fig. 1).

Fig. 1. The matrix of estimates

Let there be a user j. The task is to predict how
user j would rate object i. In this case, depending
on the approach used, both the user and the object
may have certain properties, and the evaluation
may be any action.

There are usually four approaches to
recommender systems [20]:

 content-based recommendations;
 collaborative filtering;
 demographic filtering;
 hybrid approaches.

A. Content-based recommendations
For each user j, we want the algorithm to predict

the rating of object i using the function

 T
,j ix

where j is a vector of parameters 1n for user j;
 ix is a vector of features 1n for object i; ,i jy is

the real evaluation of object i by user j.
The task is to minimize:

2T 21 ,

1 : , 1 1 1

1 λθ , ., θ θ θ
2 2

u u
u

n n n
n j i i j j

k
j i r i j j ku u

J x y
n n

Content-based filtering methods are based on the
description of the object and the user's taste profile,
and they place more emphasis on analyzing object
attributes to make predictions. Recommendations
are made based on user profiles using features
extracted from the content of objects that the user
has rated in the past [21], [22].

The user is recommended items that are mainly
related to positively rated items. Content-based
filtering uses different types of models to find
similarities between documents to generate
meaningful recommendations. It can use vector-
space models such as term frequency inverse
document frequency (TF/IDF) or probabilistic

V.M. Sineglazov, A.V. Sheruda Recommender Systems Based on Reinforced Learning 49

models such as naive Bayes classifier [23], decision
trees [24], or neural networks to model the
relationships between objects. The content-based
filtering technique does not require the profiles of
other users in the system, as they do not affect the
recommendations. In addition, if a user's profile
changes, this method still has the potential to adjust
its recommendations within a very short period of
time. The main disadvantage of this method is the

need for a wide range of parameters to describe
objects for good performance.

B. Collaborative filtering

Given the values of 1 , , ,un minimize the
square of the difference between the predicted

ratings Tj ix and the actual ratings , :i jy

 1

2 2T 2,

, , 1 : , 1 1 1

1 λmin θ
2 2

.
u u

nu

n n n
j i i j j

k
x x j i r i j j ku u

x y x
n n

The collaborative filtering method is based on a
matrix of user-object relationships and ratings. The
system selects users with similar interests and
preferences by calculating the similarity between
their interaction histories in the system, and then
provides recommendations [25]. Such users form a
group called neighbors. The user receives
recommendations for those products that he or she
has not rated before, but which have already been
rated by neighboring users.

C. Demographic filtering
The optimization task for demographic filtering

can be formulated as follows. Minimize the cost
function , ,J x where are model parameters
corresponding to demographic categories; x is the
user preference vectors; nu is the number of users;
r(i, j) is an indicator of whether user i has already
expressed their preference for category j; ()id are
demographic characteristics of the user i; (,)i jy is an
assessment of user i's preference for category j.

The cost function is as follows:

2T 2,

1 : , 1 1 1

1 λ, θ
2 2

.
u un n n

j i i i j j
k

j j r i j i ku u

J x x d y x
n n

Recommender systems based on demographic

filtering (DF) classify users based on their
demographic information and recommend services
according to the type of user. In demographic
filtering, user profiles are created by classifying
users into stereotypical descriptions that represent
the characteristics of user groups [26]. Demographic
information identifies those users who are interested
in similar services. DF creates categories of users
with similar demographic characteristics, and then
tracks the accumulated behavior or preferences of
users in these categories. For a new user,
recommendations are generated by first determining
which category they belong to and then applying the
accumulated preferences of previous users to that
category. Similar to collaborative techniques,
demographic techniques also generate human-to-
human correlations, but use different data.
Collaborative and content-based techniques require a
history of user ratings, which is not necessary for a
demographic-based approach.
D. Comparison of approaches

The use of efficient and accurate
recommendation methods is a key factor for a
productive recommender system. Approaches and
algorithms may differ for different tasks, but it is

important to evaluate all the benefits they can
provide and the limitations that accompany them
before choosing one.

As we can see in Table I, the choice of approach
requires some compromises and therefore, when
creating a recommender system, it is important to
evaluate the purposes for which it will be created
and the environment in which it will operate, i.e.
what properties the users and objects in it will have.

In the broader context of recommender systems,
there are also many other approaches and their
variations that have their own advantages, for
example:

 Matrix factorization: The approach is based
on decomposing the user and item interaction matrix
into smaller matrices, which allows finding hidden
dependencies and making recommendations based
on them.

 Knowledge-based: This approach uses expert
knowledge or rules to make recommendations. It
takes into account user requirements and item
characteristics to make recommendations.

 Transformer-based: This approach uses a
transformer model architecture for recommender
systems. It is able to model long-term dependencies
in the sequences of user interactions with the system

50 ISSN 1990-5548 Electronics and Control Systems 2023. N 2(76): 46-55

and items, which allows for more accurate and
contextualized recommendations.

 Reinforcement Learning-based: This approach
uses reinforcement learning techniques to build an

optimal recommendation strategy. The system
interacts with the environment, observes how users
react to recommendations, and learns to improve
recommendations based on the rewards they receive.

TABLE I. ADVANTAGES AND DISADVANTAGES OF RECOMMENDER SYSTEM APPROACHES

No Advantages Disadvantages Techniques
1 1. The system does not use user data

for recommendations.
1. It requires analyzing and determining
all characteristics of items to create a
recommendation list.

Content-based
recommendations

 2. The system can recommend new
items to users based on the similarity
of their characteristics.

2. The system is not dependent on user
ratings for a particular item, so the quality
rating of a product is not considered.

2 1. The system does not use
demographic information for
recommendations.

1. The quality of the system depends on
the list of items with the highest ratings.

Collaborative
filtering

 2. The system compares similar items
among users.

2. There is a problem with how to
recommend items to a new user (cold-start
problem).

 3. The system can recommend items
that do not match the user's
preferences, but they might still like
them.

3 1. The system is not based on user
ratings of items; it provides
recommendations before the user has
rated any item.

1. Collecting demographic data raises
confidentiality issues.

Demographic
filtering

 2. Stability problem versus plasticity.
4 1. Combines all the advantages of

content-based and collaborative
approaches.

1. There is a cold-start problem. Hybrid approaches

 2. Based on content description and
user ratings.

2. Early adopter problem for products.

 3. Helps avoid recommendation
saturation.

3. Data sparsity problem.

Our task is to consider and implement the latter
approach.

IV. ALGORITHMS

A. Deep Deterministic Policy Gradient

The task is to minimize:

 2
(,) , ; ,, ;J r Q s a Q s a

where are critic network parameters; are

parameters of the target Critic network; , |Q s a

is the critic network result for (s, a); , ;Q s a is
the target Critic network result.

Algorithm

1: Initialize the Actor
πθf and Critic , |Q s a

networks with random weights.
2: Initialize the target networks f and Q with

weights

, .
3: Initialize replay buffer M
4: for session = 1 to M do
5: Refresh space of items I
6: Initialize state s0 from previous sessions
7: for t = 1 to T do
8: Stage 1: Transition generating stage
9: Select an action at according to

πθf
10: Execute action at and

observe the reward rt
11: Save transition 1, , ,t t t ts a r s in M
12: 1t ts s
13: Stage 2: Parameter updating stage

14: Sample minibatch with N transitions
 , , ,s a r s from M

15: Generate a according
to target Actor network

πθf

16: , ;y r Q s a

V.M. Sineglazov, A.V. Sheruda Recommender Systems Based on Reinforced Learning 51

17: Update Critic by minimizing

 2
, ;y Q s a according to:

 1 , ; , ;
i

L y Q s a Q s a
N

18: Update Actor using the sampled policy
gradient:

 1 , |a
i

f Q s a f s
N

19: Update the Critic target network:
 1

20: Update the Actor target network:
 πτθ 1 τ

21:end for
22: end for

B. Twin Delayed DDPG
Twin Delayed DDPG (TD3) is a modification of

the Deep Deterministic Policy Gradient (DDPG)
algorithm that uses several innovations. Smoothing
the target policy:
 πθ Low Highclip clip , , , , ,a s f s c c a a

 0, – noise.

Low Higha a a is the clip range of the target
action.

Smoothing the target policy serves to regularize
the algorithm. This regularization option is intended
for a specific type of biases when μ, ; θQ s a forms
an incorrect sharp peak for some actions, the policy
may behave erratically because of this.

The TD3 algorithm is based on two different
Critics , 1,2

i
Q i , each of which has the same

properties. A similar solution is also created for the
purpose of regularization. The target value will have
the form:

 ,1,2
, , min , ' , .i ii

y r s d r Q s a s

TD3 updates the policy only with a certain
frequency, which contributes to the stable operation
of the algorithm. Typically, the policy is updated
every second iteration.

The task is to minimize:

,1,2

2

,

, min , (),

 , ; 1, 2

i ii

i i

J r Q s a s

Q s a i

where are parameters of Critic network; are

parameters of Critic target network; , |iQ s a is

the result of the work of the Critic's network i for (s,
a); , ;iQ s a is the result of the work of the

Critic's target network i for ,s a .

Algorithm
1: Initialize Actor network

πθf and critic's

 1 ,1, |Q s a and 2 ,2, |Q s a with random weights.
2: Initialize target networks 1f and iQ with

weights
, .

3: Initialize replay buffer M
4: for session = 1 to M do
5: Refresh space of items I
6: Initialize state s0 from previous sessions
7: for t = 1 to T do
8: Stage 1: Transition generating stage
9: Select an action at according to

πθf
10: Execute action at and

observe the reward rt
11: Save transition 1, , ,t t t ts a r s in M
12: 1t ts s
13: Stage 2: Parameter updating stage

14: Sample minibatch with N transitions
 , , ,s a r s from M

15: Generate a according
to target Actor network

πθf

16: ,1,2
min , ,i ii

y r Q s a s

17: Update Critic by minimizing

 2

,, ;i iy Q s a according to:

,

,

,

, ,
1 , ; , ; ,

 =1,2

i

i

i

i i i i
i

L

y Q s a Q s a
N

i

18: Update Actor using the sampled policy
gradient,

if session % 2=0:

 1
1 , |a

i

f Q s a f s
N

19: Update the Critic's target network:
 , , ,1 , 1,2i i i i

20: Update the Actor target network:

 πτθ 1 τ

21:end for
22: end for

52 ISSN 1990-5548 Electronics and Control Systems 2023. N 2(76): 46-55

V. RESULTS OF WORK

The results were obtained using the movielens-
100k dataset.

This dataset represents the history of ratings of
1682 movies by 943 users, with a total of 100,000
records (Fig. 2).

Fig. 2. Data representation in movielens-100k

The reason for its selection is that this dataset is
quite popular among developers of recommender
systems and is usually used for testing RS.

To evaluate normalized discounted cumulative
gain (NDCG) and mean reciprocal rank (MRR), we
use the relevance metric – the score multiplied by
0.2. That is, if the rating is 5, then the relevance is
maximum, and so on. For hit rate (HR), a score of 4
or 5 is considered the correct answer [27].

Usually, in the process of training Reinforcement
learning (RL) models, a graph of cumulative reward
growth over an epoch is plotted to visualize the
improvement of the model. However, because our
model uses a replay buffer, the reward is averaged
and we cannot track it for each individual trajectory.
In fact, our model does not feed the data of an
individual user sequentially and does not calculate
the cumulative reward for the user over the entire
trajectory of his or her history, but we build a
trajectory for all users simultaneously. In the context
of RS, this feature is a significant advantage without
which the system implementation is not possible. In
general, to evaluate the quality of the system, it is
enough to use the relevance metrics of
recommendations and the distribution of ratings of
movies that RA has recommended to the entire user
population.

To get better results, the model should be run 4–5
times on training data, because simply increasing the
number of epochs is not enough. The reasoning
behind this is that the recommender agent, in
particular the data in the playback buffer, needs a
"restart" so that it can perform better in the first
epochs of training when there is little data.

For training and testing, the input sample was
split into training and testing samples in a ratio of

1:4. The following results were obtained on the test
sample. We also took into account the cases when
the generated recommendation is not in the dataset
(one or more movies from the recommendation list
are missing), in which case the result represents the
residual for which the ratings exist.

Python 3.8 and the following versions of libraries
were used:

 Keras '2.12.0';
 Tensorflow '2.12.0';
 Pandas '2.0.2';
 Numpy '1.12.5'.

A. Results for DDPG

The distribution of grades for movies
recommended by the system based on the DDPG
algorithm is shown in Fig. 3. Table II shows the
results of the selected metrics. Figure 4 shows the
last training iterations of the algorithm.

Fig. 3. Distribution of scores for users in the test sample

for DDPG

TABLE II. RESULTS FOR DDPG

AVRR HR MRR NDCG

4.1667 0.7916 0.5945 0.5357

Fig. 4. Latest iterations of DDPG model training

V.M. Sineglazov, A.V. Sheruda Recommender Systems Based on Reinforced Learning 53

B. Results for TD3

The distribution of grades for movies
recommended by the system based on the TD3
algorithm is shown in Fig. 5. Table III shows the
results of the selected metrics. Figure 4 shows the
last training iterations of the algorithm.

Fig. 5. Distribution of scores for users in the test sample

for TD3

TABLE III. RESULTS FOR TD3

AVRR HR MRR NDCG

4.2438 0.8212 0.6129 0.7357

Fig. 6. Latest iterations of TD3 model training

VI. CONCLUSIONS

In the course of the research, an approach to
recommendation systems based on reinforcement
learning was developed. In its context, three specific
modules were created: for coding states, for
generating rewards, and for reproducing actions.
These three components made it possible to move
from the task of supervised learning to the task of
RL, while taking advantage of both approaches
within the same dataset.

The reward generation component allowed us to
fully optimize the model to leave room for more
powerful reinforcement learning algorithms, which
showed quite good results.

A separate disadvantage is the rather long
training time, which is especially noticeable in the
TD3 model, although it showed better results.

REFERENCES

[1] J. A. Konstan and J. Riedl, “Recommender systems:
from algorithms to user experience,” User Model
User-Adapt Interact, 22: 101–23. 2012.
https://doi.org/10.1007/s11257-011-9112-x

[2] P. Pu, L. Chen, and R. Hu, “A user-centric evaluation
framework for recommender systems,” In:
Proceedings of the fifth ACM conference on
Recommender Systems (RecSys’11), ACM, New
York, NY, USA; 2011, pp. 57–164.
https://doi.org/10.1145/2043932.2043962

[3] R. Hu and P. Pu, “Potential acceptance issues of
personality-ASED recommender systems,” In:
Proceedings of ACM conference on recommender
systems (RecSys’09), New York City, NY, USA;
October 2009. pp. 22–5.
https://doi.org/10.1145/1639714.1639753

[4] B. Pathak, R.Garfinkel R. Gopal, R. Venkatesan, and
F. Yin, “Empirical analysis of the impact of
recommender systems on sales,” J Manage In form
Syst, 27(2): 159–88, 2010.
https://doi.org/10.2753/MIS0742-1222270205

[5] Soufiene Jaffali, Salma Jamoussi, Kamel Smaili, and
Abdelmajid Ben Hamadou, “Like-tasted user groups
to predict ratings in recommender systems,” Social
Netw. Analys, Mining, vol. 10, no. 1, p. 42, 2020.
https://doi.org/10.1007/s13278-020-00643-w

[6] K. Zhou, S.-H. Yang, and H. Zha, “Functional matrix
factorizations for cold-start recommendation,” in
Proceedings of the 34th International ACM SIGIR
Conference on Research and Development in
Information Retrieval, SIGIR ’11, (New York, NY,
USA), pp. 315–324, ACM, 2011.
https://doi.org/10.1145/2009916.2009961

[7] X. Zhang, J. Cheng, T. Yuan, B. Niu, and H. Lu,
“Semi-supervised discriminative preference
elicitation for cold-start recommendation,” in
Proceedings of the 22Nd ACM International
Conference on Information & Knowledge
Management, CIKM ’13, (New York, NY, USA), pp.
1813–1816, ACM, 2013.
https://doi.org/10.1145/2505515.2507869

[8] P. Mazumdar, B. K. Patra, and K. S. Babu, “Cold-star
point-of-interest recommendation through crowd
sourcing,” ACM Trans. Web, vol. 14, Aug. 2020.
https://doi.org/10.1145/3407182

[9] N. K. Mishra, V. Mishra, and S. Chaturvedi, “Solving
cold start problem using MBA,” in 2017 IEEE
International Conference on Power, Control, Signals
and Instrumentation Engineering (ICPCSI),

54 ISSN 1990-5548 Electronics and Control Systems 2023. N 2(76): 46-55

pp. 1598–1601, 2017.
https://doi.org/10.1109/ICPCSI.2017.8391981

[10] N. Mishra, V. Mishra, and S. Chaturvedi, “Tools and
techniques for solving cold start recommendation,” in
Proceedings of the 1st International Conference on
Internet of Things and Machine Learning, IML ’17,
(New York, NY, USA), Association for Computing
Machinery, 2017.
https://doi.org/10.1145/3109761.3109772

[11] M. Saveskiand A. Mantrach, “Item cold-start
recommendations: Learning local collective
embeddings,” in Proceedings of the 8th ACM
Conference on Recommender Systems, RecSys ’14,
(New York, NY, USA), pp. 89–96, ACM, 2014.
https://doi.org/10.1145/2645710.2645751

[12] Y. Rong, X. Wen, and H. Cheng, “A monte-carlo
algorithm for cold start-recommendation,” in
Proceedings of the 23rd international conference on
Worldwide web, pp. 327–336, ACM, 2014.
https://doi.org/10.1145/2566486.2567978

[13] A. da Costa, E. Fressato, F. Neto, M. Manzato, and
R. Campello, “Case recommender: A flexible and
extensible python frame work for recommender
systems,” in Proceedings of the 12th ACM
Conference on Recommender Systems, RecSys ’18,
(New York, NY, USA), p. 494–495, Association for
Computing Machinery, 2018.
https://doi.org/10.1145/3240323.3241611

[14] T. Kitazawaand M. Yui, “Query-based simple and
scalable recommender systems with apache hive
mall,” in Proceedings of the 12th ACM Conference
on Recommender Systems, RecSys ’18, (New York,
NY, USA), p. 502–503, Association for Computing
Machinery, 2018.
https://doi.org/10.1145/3240323.3241592

[15] N. Mishra, S. Chaturvedi, V. Mishra, R. Srivastava,
and P. Bargah, “Solving sparsity problem in rating-
based movie recommendation system,” in
Computational Intelligence in Data Mining (H. S.
Beheraand D. P. Mohapatra, eds.), (Singapore), pp.
111–117, Springer Singapore, 2017.
https://doi.org/10.1007/978-981-10-3874-7_11

[16] W. Pan, E. W. Xiang, N. N. Liu, and Q. Yang,
"Transfer learning in collaborative filtering for
sparsity reduction.," in AAAI, vol. 10, pp. 230–235,
2010. https://doi.org/10.1609/aaai.v24i1.7578.

[17] P. Adamopoulos and A. Tuzhilin, “On over-
specialization and concentration bias of
recommendations: Probabilistic neighborhood
selection in collaborative filtering systems,” in
Proceedings of the 8th ACM Conference on
Recommender systems, pp. 153–160, ACM, 2014.
https://doi.org/10.1145/2645710.2645752

[18] Z.-K. Zhang, C. Liu, Y.-C. Zhang, and T. Zhou,
“Solving the cold-start problem in recommender
systems with social tags,” EPL (Euro physics
Letters), vol. 92, no. 2, p. 28002, 2010.
https://doi.org/10.1209/0295-5075/92/28002

[19] N. Lathia, S. Hailes, L. Capra, and X. Amatriain,
“Temporal diversity in recommender systems,” in
Proceedings of the 33rd international ACM SIGIR
conference on Research and development in
information retrieval, pp. 210–217, ACM, 2010.
https://doi.org/10.1145/1835449.1835486

[20] Lalita Sharma and Anju Gera. "A Survey of
Recommendation System: Research Challenges,"
International Journal of Engineering Trends and
Technology (IJETT), vol. 4(5) 2013, pp.1989–1992.

[21] J. Bobadilla, F. Ortega, A. Hernando, and A.
Gutiérrez, "Hybrid recommender systems: survey and
experiments," User Model User-adapted Interact, 12
(4) (2002), pp. 331–370

[22] N. Friedman, D. Geiger, and M. Goldszmidt,
”Recommender systems survey Knowl-Based Syst,”
Bayesian net work classifiers, vol.46, pp. 109–132,
2013, https://doi.org/10.1016/j.knosys.2013.03.012

[23] Mach Learn, 29 (2–3), 1997, pp. 131–163.
https://doi.org/10.1023/A:1007465528199

[24] R. O. Duda, P. E. Hart, and D. G. Stork, Pattern
classification John Wiley & Sons (2012).

[25] J. L. Herlocker, J. A. Konstan, L. G. Terveen, J. T.
Riedl, “Evaluating collaborative filtering
recommender systems ACM Trans ,” In form Syst,
22 (1), 2004. https://doi.org/10.1145/963770.963772

[26] M. Montaner, B. Lopez, and J. L. Dela Rosa, “A
Taxonomy of Recommender Agent son the Internet,”
Artificial Intelligence Review, Kluwer Academic
Publisher, 2003.

[27] Yan-Martin Tamm, Rinchin Damdinov, and Alexey
Vasilev, Quality Metrics in Recommender Systems:
Do We Calculate Metrics Consistently?

Received April 03, 2023

Sineglazov Victor. ORCID 0000-0002-3297-9060. Doctor of Engineering Science. Professor. Head of the
Department of Aviation Computer-Integrated Complexes.
Faculty of Air Navigation Electronics and Telecommunications, National Aviation University, Kyiv, Ukraine.
Education: Kyiv Polytechnic Institute, Kyiv, Ukraine, (1973).
Research area: Air Navigation, Air Traffic Control, Identification of Complex Systems, Wind/Solar power plant,
artificial intelligence.
Publications: more than 700 papers.
E-mail: svm@nau.edu.ua

V.M. Sineglazov, A.V. Sheruda Recommender Systems Based on Reinforced Learning 55

Sheruda Andrii. Bachelor.
Department of Information Systems, Faculty of Informatics and Computer Science, National Technical University of
Ukraine "Igor Sikorsky Kyiv Polytechnic Institute", Kyiv, Ukraine.
Education: National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute", Kyiv, Ukraine, (2022).
Research interests: artificial neural networks, artificial intelligence, distributed computing.
Publications: 1.
E-mail: sheruda.andrew@lll.kpi.ua

В. М. Синєглазов, А. В. Шеруда. Системи рекомендацій на основі посиленого навчання
Статтю присвячено проблемі побудови рекомендаційних систем на основі використання методів штучного
інтелекту. У роботі проведено аналіз алгоритмів рекомендаційних систем, проаналізовано марківський процес
прийняття рішень у контексті рекомендаційних систем. Розглянуто підходи до адаптації алгоритмів навчання з
підкріпленням до завдання рекомендацій (перехід від задачі контрольованого навчання до завдання навчання з
підкріпленням). Реалізовано алгоритми навчання з підкріпленням Deep Deterministic Policy Gradient та Twin
Delayed DDPG із власним середовищем-імітацією реакції користувача та виконано порівняння результатів.
Розроблено структуру рекомендаційної системи, у якій рекомендаційний агент генерує список пропозицій
окремому користувачеві, використовуючи його попередню історію оцінок. У самій системі користувач має
можливість взаємодії тільки з простором фільмів, що рекомендуються. Це можна порівняти з головною
сторінкою YouTube, що є стрічкою з пропозиціями, у нас же користувач взаємодія тільки з цією стрічкою і його
реакція на об'єкти в просторі рекомендацій потрапляє до рекомендаційного агента, який регулює параметри
моделі в процесі навчання.
Ключові слова: машинне навчання; навчання з підкріпленням; системи рекомендацій; рекомендаційний агент;
колаборативна фільтрація; Актор-Критик; явний зворотній зв’язок.

Синєглазов Віктор Михайлович. ORCID 0000-0002-3297-9060. Доктор технічних наук. Професор. Завідувач
кафедри авіаційних комп’ютерно-інтегрованих комплексів.
Факультет аеронавігації, електроніки і телекомунікацій, Національний авіаційний університет, Київ, Україна.
Освіта: Київський політехнічний інститут, Київ, Україна, (1973).
Напрям наукової діяльності: аеронавігація, управління повітряним рухом, ідентифікація складних систем,
вітроенергетичні установки, штучний інтелект.
Кількість публікацій: більше 700 наукових робіт.
E-mail: svm@nau.edu.ua

Шеруда Андрій Володимирович. Бакалавр.
Кафедра інформаційних систем, Факультет інформатики та обчислювальної техніки, Національний технічний
університет України «Київський політехнічний інститут імені Ігоря Сікорського», Київ, Україна.
Освіта: Національний технічний університет Україні «Київський політехнічний інститут імені Ігоря
Сікорського», (2022).
Напрям наукової діяльності: штучні нейронні мережі, штучний інтелект, розподіленні обчислення.
Кількість публікацій: 1.
E-mail: sheruda.andrew@lll.kpi.ua

