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Abstract—In this work, quantum convolutional neural networks are considered in the task of recognizing
handwritten digits. A proprietary quantum scheme for the convolutional layer of a quantum convolutional
neural network is proposed. A proprietary quantum scheme for the pooling layer of a quantum
convolutional neural network is proposed. The results of learning quantum convolutional neural
networks are analyzed. The built models were compared and the best one was selected based on the
accuracy, recall, precision and fl-score metrics. A comparative analysis was made with the classic
convolutional neural network based on accuracy, recall, precision and fl1-score metrics. The object of the
study is the task of recognizing numbers. The subject of research is convolutional neural network,
quantum convolutional neural network. The result of this work can be applied in the further research of
quantum computing in the tasks of artificial intelligence.

Index Terms—Quantum computer; quantum method of support vectors; quantum convolutional neural

network; quantum computing; classification; machine learning.

I. INTRODUCTION

Today, there are many methods of classifying
non-linearly separable data. For example, neural
networks. But these methods have one significant
drawback — it's training time. Quantum machine
learning should solve this problem in the future,
namely training speed. We already have enough
scientific works on quantum machine learning.
Guillaume Verdon, Michael Broughton, and Jacob
Biamonte demonstrate neural network training on a
quantum computer [1]. Maria Schuld, Alex
Bocharov, Krista Svore, and Nathan Wiebe
demonstrated a variational quantum classifier [2].

But all these works have one thing in common,
the optimization takes place on a classic computer.
So far, leading scientists have not been able to
optimize on quantum computers for several reasons:

e noise immunity of quantum computers;

e property of superposition of qubits.

The noise immunity problem has already been
improved on April 12, 2021. Scientists have
developed quantum error correction, which works
with twice as much noise [3].

II. QUANTUM COMPUTING

Quantum computing is a branch of computer
science that uses the principles and effects of
quantum physics to perform calculations. In order

for a quantum computer to be able to perform
calculations, a quantum circuit must be developed.

Quantum circuit is a model for quantum
computing, in which the computation is a sequence
of quantum gates [4].

Quantum gate is a quantum logic element. It is
described using unitary matrices [4].

Unitary matrix (English unitary matrix) is a square
matrix U, in which the elements of this matrix are
complex numbers and has the following property

UU=UU =1, (D

where U is a square matrix; U~ is the transposed
matrix U with complex-conjugate numbers; / unit
matrix.

To date, the following quantum gates are known:

e Pauli X;

e Pauliy;

e PauliZ

e Hadamard;

e CNOT;

o Toffoli.

The Bloch sphere is used to display the quantum
state of the qubit.

The state of the qubit is described using bracket
notation.

Two base qubits are used:

1
. |0> ={ } — zero state;
0
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0
. |1> =L} — one state.

On the Bloch sphere, they reflect as follows
(according to Fig. 1)

n m

Fig. 1. Representation of basis qubits using on the Bloch
sphere

When a quantum system has two qubits, it is
mathematically denoted as follows:

1
0
|00} ={0)®]0) = ol 2)

0

That is, the size of the vector that describes the
state of the quantum system is equal to

m=2", 3)

where m 1is the size of the vector that describes the
quantum system; »n number of qubits.

Therefore, one qubit corresponds to two classical
bits. If there are two qubits, then 4 bits are needed to
interpret it in a classical computer.

III. QUANTUM MACHINE LEARNING

Quantum machine learning combines the
principles of quantum physics and machine learning
methods to solve data analysis and model training
tasks on quantum computers. It is seen as a
transition from classical ~machine learning
algorithms to the use of quantum computing to
improve computational speed and the ability of
models to recognize complex patterns in data.

Basic concepts and methods of quantum machine
learning include:

1) Quantum computing models: Quantum neural
networks and algorithms such as quantum gradient
descent, quantum variational algorithm, and
quantum cluster analysis are used. These models and
algorithms are used for learning on quantum data
and performing quantum calculations using the
principles of quantum information processing;

2) Quantum entanglement and superposition:
Quantum systems can exist in an entangled state
where the states of different qubits are
interdependent and indivisible. This allows quantum
models to perform calculations in parallel and
handle many possible options simultaneously;

3) Quantum Measurements and Quantum
Properties: Using quantum measurements and
quantum properties such as superposition and
entanglement to gain insight into the raw data and
improve pattern recognition;

4) Quantum data processing: Application of
quantum algorithms for efficient processing and
analysis of large volumes of data, in particular in
clustering, classification and regression tasks.

Advantages of quantum machine learning include
the potential for rapid advances in complex data
processing, optimization, and artificial intelligence
tasks. However, at present, quantum machine
learning remains an active field of research, and
requires further development of algorithms,
hardware and infrastructure for  practical
implementations and use in real applications.

IV. QUANTUM CONVOLUTION NEURAL NETWORK

Convolutional neural networks (CNN) are a
special class of multilayer perceptrons for data
processing with a network topology (LeCun, 1989).
CNNs were created to recognize images represented
by a two-dimensional matrix of pixels, with a high
degree of invariance to transformations, scaling,
distortions, and other types of input data
deformation [4].

Convolution is an operation used in signal
processing and image processing. It is used to
combine two functions or signals to create a new
signal.

Let's consider an example. We have a sensor that
outputs a single value u(¢) — this is the position of
the ship at time #:

e sensor measurements contain noise;

e to obtain a more accurate estimate of the
ship's position, we will take several measurement
results and average them;

o the last measurements are more important, so
we calculate the weighted average, giving more
weight to the last measurements;

o take the weight function w(a), where a is
the age of the dimension.

We will get a new function that gives a smoothed
estimate of the ship's position and is called
convolution:



42 ISSN 1990-5548 Electronics and Control Systems 2023. N 2(76): 40-45

s(t) = [u(a)w(t - a)da, (4)

where wu(a) is input function, w(a)is kernel
function. The output is called a feature map.

Let the sensor provide the result after certain
intervals, and the functions are defined only for the
integer indices of the moment of time t. We obtain a

discrete convolution [4]:

0

s(6)=*w)(0)= Y u(ayw(t —a). “4)

a=-o

An example of convolution in a neural network is
shown in Fig. 2.
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Fig. 2. An example of convolution

Also, the convolutional layer has properties of
stride and padding.

Padding is a technique used in signal processing
and image processing, particularly in convolutional
neural networks. It involves adding extra values or
pixels to the edges of the input image or signal
before applying convolution.

Stray is a parameter used in convolutional
operations such as convolution of images or signals
in convolutional neural networks. It defines the step
or distance the kernel moves during convolution
over the input signal.

Also, a convolution neural network has a pooling
layer.

A pooling layer is one of the types of layers used
in convolutional neural networks to reduce the
spatial dimensions of the input data. Its main
function is to summarize information from a certain
area of the input signal and compress this
information to a single value. The output image is
divided into blocks of size w by h and some function
is calculated for each block. The function of
maximum (max pooling) or (weighted) average
((weighted) average pooling) is most often used.

There are no learning parameters for this layer. The
main goals of the pooling layer:

e reducing the image so that subsequent
convolutions operate over a larger area of the
original image;

e increasing the invariance of the network
output with respect to small input transfer;

e acceleration of calculations.

A quantum convolutional neural network is a
convolutional neural network in which the
convolution operation takes place on a quantum
computer [5]. The scheme of the neural network
in Fig. 3.

. Data Encoding
. Convolution
O Pocling

Classical Computer

T arg ming C(#) |

Fig. 3. Quantum convolutional neural network [5]

Such a neural network is being built on the basis
of parameterized quantum gates. And then they are
optimized based on the cost function:

C(0) =2 ae(y,- f(x,,0)), (5)

where f(x,,0) is a machine learning model with
parameters 0 that gives the probability of an object
label x,; c(a,b) is quantitative difference between a

M
and b; o, weight have property Zoci =1.

i=1
A. Data Encoding

Many machine learning techniques transform the
input data X into another space to make the job
easier. It is the same in quantum computing. We
need to translate the representation of classical data
into another space X — H (H — Hilbert space) so
that the model can work with them. There are four
ways of representation:

1) amplitude encoding;

2) qubit encoding;

3) dense qubit encoding;

4) hybrid encoding.

B. Convolutional layer

Parameterized quantum circuits for convolutional
layers in a quantum convolutional neural network
consist of different configurations of one-qubit and
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two-qubit quantum gates. Most of the known
quantum circuits are shown in Fig. 4. Circuit 1 is
used as a parameterized quantum scheme for
training a tensor tree network [6]. Circuits 2, 3, 4, 5,
7 and 8 are taken from the work of Sim [8], which
includes the analysis of expressiveness and
entanglement of four-qubit parametrized quantum
circuits. In article [5], circuits 7 and 8 are reduced
versions of the schemes that recorded the best
expressiveness in the study. Circuit 2 is a two-qubit
version of the quantum scheme that has
demonstrated the best entanglement capability.
Circuits 3, 4 and 5 are created from circuits that have
a balanced value of both expressiveness and
entanglement. Circuit 6 is designed as a suitable
candidate for a two-tight variational quantum
eigenvalue solver (VQE) [7].

¥

=
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(a) Convolutional circuit |

(2) Convolutional eireuit 7

Fig. 4. An example of convolutional layers [5]

C. Pooling layer

The pooling layer applies parameterized quantum
gates to the two qubits and tracks one of the qubits
to reduce the two-qubit states to single-qubit states.
An example of quantum pooling is shown in Fig. 5.

Fig. 5. An example quantum circuit for pooling layer [5]
V. RESULTS

The following quantum neural networks were
implemented in our work: QCNNI and QCNN2
(Figs 6 and 8 correspondingly).

Fig. 6. Quantum circuit of quantum convolution neuron
network QCNNI1

In the QCNNI1 network, we used the following
convolutional quantum circuit in Fig. 7.

Fig. 8. Quantum circuit of quantum convolution neuron
network QCNN2

The QCNN2 network has a different convolutional
quantum circuit (Fig. 9).

Fig. 9. Convolutional quantum circuit for QCNN2

Both neural networks have the following quantum
scheme for pooling (Fig. 10).

Fig. 10. Quantum circuit for pooling layer

The difference between QCNN1 and QCNN?2 is
that they have a different number of qubits and a
different number of parameters in the Table I.

TABLE I. CHARACTERISTICS OF QUANTUM
CONVOLUTIONAL NEURAL NETWORKS

Model Number of Number of
qubits parameters

QCNNI1 8 40

QCNN2 6 20

The Table II shows the results of training.
Training was performed on the MNIST data set on
numbers 1, 5. The size of the training sample is 1000,
the test sample is 500. The training was performed
using the artificial bee colony algorithm.

TABLE II. RESULTS OF LEARNING QUANTUM
CONVOLUTIONAL NEURAL NETWORKS

Model | Accuracy | Precision | Recall Fl-
score
QCNNI1 0.832 0.884 0.764 | 0.8197
QCNN2 0.892 0.892 0.892 | 0.892

As we can see, reducing the number of parameters
and the number of qubits did not affect the quality of
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training, but rather improved it. Also, the time spent
on training has decreased.

To compare how quantum machine learning
methods are superior to classical ones, let's use the

classical convolutional neural network VGGI19
(Table III).
TABLEIII. RESULTS OF LEARNING CONVOLUTIONAL
NEURAL NETWORKS VGG19
.. F1-
Dataset | Accuracy | Precision | Recall
score
Train 1.0 1.0 1.0 1.0
Test 0.998 0.996 1.0 0.998

VI. CONCLUSIONS

In the course of the research, the properties of
quantum neural networks, their advantages and
disadvantages were studied on the MNIST dataset.

After many experiments, it was established that
the classical method has an advantage (neuron
network VGG19) over these topologies of quantum
neural networks.

VGG19 has the best results, but if we further
analyze the architectures, [ think quantum
convolutional neural network performed much better
and better than classical convolutional neural
network because quantum network needed less
parameters to achieve great results.

So, in summary, quantum convolutional neural
network has a potential advantage over classical
machine learning methods, as demonstrated by the
results. And recent works demonstrate that an
increase in the number of parameters does not
worsen the learning result [9].
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B. M. Cunernasos, I1. A. Unauank. KBaHTOBa 3ropTKOBa HelipOHHA Mepexka

VY naHiii poOOTI pO3MNIIHYTO KBAaHTOBI 3rOPTKOBI HEHPOHHI Mepexi B 3aladi pO3Mi3HABAHHS PYKONMUCHUX LHUQP.
3anpornoHoBaHO BJAaCHY KBAaHTOBY CXEMY Ui 3TOPTKOBOrO INApy KBAHTOBOI 3TOPTKOBOI HEWPOHHOI Mepexi.
3anpornoHoBaHO BIacHY KBAaHTOBY CXEMY JUIsl IYJIHT IIapy KBaHTOBOI 3TOPTKOBOI HeWpoHHOI Mepexi. [IpoananizoBaHi
pe3yabTaTH HaBYAHHS KBAHTOBHX 3TOPTKOBHX HEHPOHHHX Mepek. [IpoBeneHO MOpiBHAHHS MOOYIOBaHUX MOJENEH Ta
BHOpaHO HaMKpally 3a METpUKaMu accuracy, recall, precision i fl1-score. 3po0ieHo MOpiBHAIBHUIN aHali3 3 KJIACHIHOKO
3TOPTKOBOIO HEHPOHOI0 MEpEkKer 3a MeTpukamu accuracy, recall, precision i fl-score. O0’€KTOM IOCIIDKEHHS €
3ajaya po3mnizHaBaHHs 1uQp. [Ipenqmer nociimpkeHHsT — 3rOpTKOBa HelpoMepeka, KBaHTOBa 3rOPTKOBA HelpoMepexa.
PesynbTaT 1aHoi poOOTH MOXHA 3aCTOCYBATH Y MOJAIBIIOMY JOCTIDKCHHI KBAHTOBUX OOYHCIICHD Y 3aa4aX IITyYHOT'O
IHTEIIEKTY.

Kunro4oBi ciioBa: KBaHTOBHI KOMIT'IOTEp, KBAHTOBHI METOJ OMOPHUX BEKTODIB, KBAHTOBA 3TOPTKOBA HeWpoMepexka,
KBaHTOB1 OOYMCIICHHS, KiTacu(iKallis, MalllMHHE HABYaHHS.
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