

36 ISSN 1990-5548 Electronics and Control Systems 2023. N 1(75): 36-43

©National Aviation University, 2023
http://jrnl.nau.edu.ua/index.php/ESU, http://ecs.in.ua

UDC 004.855.5(045)
DOI:10.18372/1990-5548.75.17553

1V. M. Sineglazov,
2A. O. Samoshyn

SEMI-SUPERVISED SUPPORT VECTOR MACHINE
1Aviation Computer-Integrated Complexes Department, Faculty of Air Navigation Electronics and

Telecommunications, National Aviation University, Kyiv, Ukraine
2Educational and Scientific Institute of Applied System Analysis, National Technical University of Ukraine

“Ihor Sikorsky Kyiv Polytechnic Institute,” Kyiv, Ukraine
E-mails: 1svm@nau.edu.ua ORCID 0000-0002-3297-9060, 2samoshyn.andriy@lll.kpi.ua

Abstract—The article considers a new approach to constructing a support vector machine with semi-
supervised learning for solving a classification problem. It is assumed that the distributions of the classes
may overlap. The cost function has been modified by adding elements of a penalty to it for labels not in
their class. The penalty is represented as a linear function of the distance between the label and the class
boundary. To overcome the problem of multicriteria, a global optimization method known as continuation
is proposed. For a combination of predictions, it is suggested to use the voting method of models with
different kernels. The Optuna framework was chosen as the tool for configuring hyperparameters. The
following were considered as training samples: type_dataset, banana, banana_inverse, c_circles,
two_moons_classic, two_moons_tight, two_moons_wide.

Index Terms—Support vector machine; semi-supervised learning; multi-class classification;
multicriteria; method of global optimization.

I. INTRODUCTION

Support Vector Machine (SVM) it is one of the
most effective machine learning methods used to
solve classification and regression problems, widely
used in many fields, including computer vision,
natural language processing, bioinformatics, and
others.

An important property of support vector
machines is that the determination of model
parameters corresponds to a convex optimization
problem, and therefore any local solution is also a
global optimum.

This method is based on finding the hyperplane
in the feature space that best separates the two
classes of data. The main idea of the method is the
translation of the original vectors into a higher-
dimensional space and the search for a separating
hyperplane with the largest gap in this space. Two
parallel hyperplanes (support vectors) are built on
both sides of the hyperplane that separates the
classes. The separating hyperplane will be the
hyperplane that creates the greatest distance to two
parallel hyperplanes. The algorithm is based on the
assumption that the greater the difference or distance
between these parallel hyperplanes, the smaller the
average classifier error will be.

The special property of the support vector
machine is the continuous decrease in the empirical
classification error and the increase in the gap, so the

method is also known as the maximum gap
classifier method.

ІІ. FORMALIZATION OF THE METHOD SVM

Let's enter the notation. In general, the problem is
solved for which class labels can take values Y = {–1,
+1}. The object is a vector with n features

1 2(, , ,)nx x x x in space nR . During training, the
algorithm must build a function () ,F x y which
takes an argument х (object in space nR) and returns
the label of the class y.

The main purpose of SVM as a classifier is to
find the equation of the separating hyperplane

1 1 2 2 0n nw x w x w x b in space nR , which
will divide the two classes in the most optimal way.
General view of the transformation F object x in
the class label Y: () sign().TF x w x b After
adjusting the algorithm weights w and offset b, all
objects that fall on one side of the constructed
hyperplane will be predicted as the first class, and
objects that fall on the other side as the second class.

There are different methods for constructing the
separating hyperplane, but in the case of SVM, the
weights w and b are adjusted so that the objects of
the classes are as far away from the separating
hyperplane as possible. In other words, the algorithm
maximizes the margin between the hyperplane and
the objects of the classes that are closest to it [1].

If the sample is linearly separable, then simple
geometric understanding leads to the following

V.M. Sineglazov, A.O. Samoshyn
Semi-supervised Support Vector Machine 37

problem: it is necessary to find the values of the
parameters w and b, at which the norm of the vector
w is minimal. This is formalized into the following
problem:

T

T

min,
2

1, 1, ..., ,i i

w w

y w x b i k

where k are number of training sample objects.
In order to generalize SVM to the case of linear

non-separability, let's allow the algorithm to make
errors on training examples, but at the same time try
to reduce the number of errors. For this, we introduce
an additional set of variables i , which characterize
the magnitude of the error on the objects ix and to
the functional that is minimized, we will add a
penalty for the general error and its regularization by
the coefficient C (adjustable parameter).

One of the main innovations brought by the
support vector machine is the kernel trick.

It can be shown that the linear function used in
the support vector machine can be rewritten as:

() ()

1 1

(,),
m m

i i
i i

i i

w x b b x x b k x x

 (1)

where x(і) is the training example, α is a vector of
coefficients, and ()(,)ik x x is the kernel function
(kernel).

The most commonly used functions are:
 a linear kernel: K(xi,xj) = T ,i jx x which

corresponds to the classifier on the support vectors
in the original space;

 polynomial kernel with degree p: K(xi,xj) =

 T1 ;
p

i jx x
 Gaussian kernel with radial basis function

(RBF): K(xi,xj) = exp(γ||xi − xj||2);
 sigmoid kernel: K(xi,xj) = T

0t n .a h i jx x
Each core is characterized by parameters (p, γ,

β0 etc.), which are subject to optimization
The main idea of using kernels is that when

mapping data to a higher-dimensional space, the
original set of points can become linearly separable [2].

The kernel trick is useful for two reasons. First, it
allows (as discussed above) to train non-linear x
models using convex optimization methods that are
known to converge efficiently. Second, the kernel
function k often allows for a much more
computationally efficient implementation. The most
common is the Gaussian kernel

k(u, v) = N(u – v; 0, σ2I), (2)

where N(х; μ, Σ) is the standard density function of
the normal distribution.

ІІІ. SEMI-SUPERVISED LEARNING IN THE PROBLEM
OF SVM SYNTHESIS

Labeled data are used to tune the SVM.
However, they can be expensive, time-consuming,
and difficult to access in many applications. Semi-
supervised learning (SSL) aims to take advantage of
large amounts of unlabeled data to improve learning
performance. Empirical evidence suggests that in
certain favorable situations unlabeled data may help,
while in other situations it may not. As a result,
several attempts have recently been made to develop
a theoretical understanding of semi-supervised
learning. It is generally accepted that unlabeled data
can only help when there is a relationship between
the marginal distribution of the data and the
objective function to be studied.

ІV. PROBLEM STATEMENT

The transductive support vector machine
(TVSM) algorithm is used as the base in this work.

Let the training set consist of l labeled pairs (xi,
yi), where xi – feature vector, yi – the label of the
class that belongs to the set {1, –1}. Let there also
exist an unlabeled sample 1 ,..., ,kx x which belongs
to the same distribution as the marked objects. Then
transductive learning based on the support vector
method can be described by the following
optimization problem [3]:

T
* *

1 1

T

* T * *

*

min,
2

1 , 1, , ,

1 , 1, , ,

0, 1, , ,
0, 1, , .

l k

i i
i j

i i i

j j j

i

j

w w С С

y w x b i l

y w x b j k

i l
j k

Solving this problem means finding a label
1 ,..., ,ky y labeled data 1 ,..., ,kx x and get a

hyperplane (,)w b , so that this hyperplane separates
both training and test data with maximum margin.

i and j
 is the changing marked and unmarked

objects, respectively, to handle linear non-
separability. С and С∗ – these are options that the
user sets. They allow you to trade the size of the
margin against the misclassification of training and
unmarked objects.

38 ISSN 1990-5548 Electronics and Control Systems 2023. N 1(75): 36-43

V. REVIEW OF SVM IN SSL

Among the popular approaches of semi-
supervised learning S3VM [4] – [6] is based on the
low-density assumption and try to learn a low-
density separator that favors the solution boundary
passing through low-density regions in the feature
space [7]. These approach has already been applied
to various applications such as text classification [6],
image search [8], bioinformatics [9], natural
language processing [10] natural language
processing etc. However, as with other semi-
supervised learning approaches, it has been found
that S3VM can degrade performance when using
unlabeled data [11], [8], [12], [13].

Paper [14] is devoted to concider SVM with
partial teacher training based on the use of the
continuation method, which is an effective tool for
solving optimization problems with complex
constraints that take into account uncertainty in
semi-supervised learning. The authors note that
SVM is one of the most popular classification
methods, however, in many situations, data
collection with labeled data can be a very complex
or expensive process.

The work [1] considers the SVM, which is one of
the most popular machine learning techniques using
kernels. The SVM method is considered as a
solution to an optimization problem that reduces to
maximizing the width of the gap between classes in
the discriminant function. The notion of
regularization and soft separating hyperplane are
discussed in order to avoid overfitting.

V. DEVELOPMENT OF SSL SVM

Currently, there are a number of learning
algorithms with SSL SVM:

 Proxy Labeling SVM;
 Noisy Student SVM;
 Co-training SVM;
 MixMatch SVM;
 S3VM;
 Transductive SVM.
Consider their features.
The first proxy-tagged SVM approach involves

using an initial SVM to create proxy labels for
unlabeled data, and then training a new SVM on the
combined labeled and proxy labeled datasets. This
approach uses information about labeled data to
improve the accuracy of predictions on unlabeled
data.

The second approach involves iteratively training
the SVM model on a growing labeled dataset,
adding the highest confidence predictions from the
previous iteration and adding noise to the new
labeled data. This approach uses the information in
the unlabeled data to generate additional labeled
examples and to improve the accuracy of the final
SVM model.

The third approach involves training two SVMs
on two different subsets of labeled data, and then
iteratively adding examples to each subset using a
different SVM to label them. This approach uses
unlabeled data to improve the accuracy of SVM
models by generating additional labeled data.

The fourth approach involves combining labeled
and pseudolabeled examples into a mixed dataset
and applying data extension techniques to improve
model robustness. This approach uses unobserved
data to generate additional examples used to train
the SVM model and improve its accuracy.

The fifth approach uses both labeled and
unlabeled data for SVM training. Unlabeled data is
used to learn the structure of the data, while labeled
data is used to configure SVM parameters. This
method is shown to be effective in reducing the
amount of labeled data required for training.

The sixth approach also uses both labeled and
unlabeled data for SVM training. The approach is
similar to S3VM, but instead of treating unlabeled
data as a pool of candidates for future labeling,
TSVM treats all untagged data as test data and tries
to find a decision limit that better separates labeled
data while minimizing error on unlabeled data.

Each of these approaches has disadvantages. In
our opinion, the TSVM has the greatest advantages
over the others, so this algorithm is taken as a basis.
One way to improve it is to use the voting method of
several algorithms: aggregating the results of each
individual classifier and determining the major
prediction based on the largest majority of votes.
The idea is that instead of creating separate
specialized models and looking for accuracy for
each of them, we create a single model that learns
from these models and predicts the result based on
their overall majority vote for each class of results.
Thus, as several different algorithms in nature, it is
possible to use several different kernel functions (eg,
radial basis, linear, sigmoidal, polynomial) to train
different SVMs.

Optimization of hyperparameters is an important
stage when working with TSVM, as well-tuned
hyperparameters can improve the stability of the

V.M. Sineglazov, A.O. Samoshyn
Semi-supervised Support Vector Machine 39

algorithm. Some possible hyperparameter
optimization techniques for TSVM:

● Grid Search: This method consists of
choosing a set of hyperparameters and iterating
through all possible combinations of these
hyperparameter values to find the best parameters.
The disadvantage of this method is that it is
computationally expensive for large numbers of
hyperparameters and their values.

● Random Search: This method is to randomly
select a set of hyperparameters and perform model
training on this set of hyperparameters. This method
is less time consuming than Grid Search, but may
require more iterations to find the best parameters.

● Bayesian Optimization: This method is more
complicated, but it can help reduce the number of
iterations to find the best parameters. It is based on a
model of Gaussian processes, which allows
estimation of the cost function based on information
about the accuracy of the model for certain values of
the hyperparameters. From this model, new sets of
hyperparameters are generated for the next iteration.

Bayesian optimization can be less
computationally demanding than lattice and random
search because it considers fewer combinations of
hyperparameters. In addition, Bayesian optimization
allows the model to focus on those hyperparameters
that are important to achieve the best results.

The Optuna framework was chosen as the
hyperparameter tuning tool, which is an open source
framework for automatic hyperparameter
optimization that uses Bayesian optimization to
efficiently find optimal hyperparameter values. This
framework has become popular due to its ease of
use, speed and flexibility [15].

Optuna has several advantages that make it the
optimal choice for SVM hyperparameter tuning using
Bayesian optimization. Below are a few of them:

 Ease of use: Optuna has a simple and intuitive
interface that makes it easy to configure and run
SVM hyperparameter optimization.

 Efficiency: Optuna uses Bayesian
optimization, which is an efficient method for
finding optimal hyperparameter values. This allows
you to focus on the hyperparameters that are
important to achieve the best results.

 Flexibility: Optuna allows you to use various
optimization methods, including Bayesian
optimization, which allows you to find optimal
hyperparameter values in a wide range of machine
learning problems.

To configure TSVM hyperparameters, you need
to define a range of possible hyperparameter values

to search for. In our case, ranges of values were
defined:

 C [0.5, 5];
 C [0.5, 5];
 kernel [‘linear’, ‘poly’, ‘rbf’, ‘sigmoid’];
 gamma [0.05, 0.75, ’scale’].
Let's define the function of evaluating the quality

of the adjusted model on the validation sample. The
F1-metric is selected, which is maximized.

After optimization, the following
hyperparameters were obtained:

 C = 1;
 C = 0.5;
● Kernel = ‘sigmoid’
● Gamma = 0.5
Due to the fact that TSVM is quite sensitive to

outliers in the training sample, it is proposed to
create a combination of several TSVM algorithms
with different settings. For a combination of
predictions, it is suggested to use the voting method
of models with different kernels [16]. In addition to
the already mentioned reduction in sensitivity to
outliers, the voting method may have several other
advantages compared to the prediction of a separate
algorithm:

● Reducing the risk of overfitting: when only
one algorithm is used, there is the possibility of
overfitting, when the model becomes overly
complex and fits the training data precisely, which
reduces its ability to generalize to new data. Using
multiple algorithms in voting reduces this risk, as
each algorithm solves the problem with its own
approach and hyperparameters.

● Improved prediction accuracy: Provided the
algorithms used have different methods and
hyperparameters, better accuracy can be achieved
than using a single algorithm alone. Each algorithm
can highlight different aspects in the data, so a
combination of them can give a better result.

● Increasing the diversity of results: If the
algorithms used have significant differences in their
methods and hyperparameters, then voting can
produce diverse results for different inputs,
providing a wider coverage of possible answers and
reducing the probability of false predictions.

A separate TSVM model with different kernel
parameters is created for each kernel (['linear', 'poly',
'rbf', 'sigmoid']) , , and ,lin poly rbf sigmF F F F which are
trained on the same data set. After training the
defined algorithms, predictions are made

* * * *, , and)lin poly rbf sigmy y y y (on marked data 1 , , kx x
and decision functions are calculated

40 ISSN 1990-5548 Electronics and Control Systems 2023. N 1(75): 36-43

 , , andlin poly rbf sigmdec dec dec dec , which are
proportional to the distances from the predicted
objects to the trained separating hyperplane.

The resulting decision functions from different
TSVM models are combined using median voting:

 * median , , , .comb lin poly rbf sigmdec dec dec dec dec

Each prediction of the TSVM model counts as a
vote, and the final decision is made based on the
median of these votes. The final prediction is formed
according to the rule that if the median is greater
than or equal to 0, then it is classified as class 1,
otherwise it is classified as class –1:

*1, if 0,
1, else.

comb
comb

dec
y

After voting, a final prediction is obtained, which
can be compared with the actual values.

As a result, we have the following algorithm
1. Data preparation.

1.1. Dividing the dataset into separate parts:
training and validation labeled samples, unlabeled
data.

1.2. Application of data preprocessing: filling
gaps, normalization of features.

2. TSVM training and optimization.
2.1. Select initial kernel for TSVM (linear,

radial, polynomial or sigmoid).
2.2. Set initial values of hyperparameters such

as C, Cu and gamma.
2.3. Initial training.

2.3.1. We initialize the parameters by setting
the positive class label to +1 and the negative class
label to –1.

2.3.2. We calculate the ratio of positive
labeled examples in X1 to the total number of
labeled examples. This ratio is then used to
determine the number of positive examples to mark
in X2.

2.3.3. We then calculate the sample weight for
each example by setting the weight Cl for each
labeled example in X1 and 0 for each example in
X2. Cl is a hyperparameter that defines the penalty
for misclassifying the labeled example.

2.3.4. We train a binary SVM classifier on X1
with the sample weights assigned in the previous
step. We classify the num_plus examples with the
highest value as +1, and the rest as –1.

2.3.5. We predict the labels for X2 using the
trained classifier, and label the num_plus examples
with the highest values of the decision function +1
and the rest with –1.

2.3.6. We set the initial weight of each
example in X2 to C_minus if it is marked as –1, and
C_plus if it is marked as +1. C_minus and C_plus
are hyperparameters that define the penalty for
misclassifying an unlabeled example.

2.3.7. We create a new data set X3, which is a
concatenation of X1 and X2. We also create a new
set of labels, Y3, which is a concatenation of Y1 and
the predicted labels for X2.

2.3.8. We enter a cycle that continues until
C_minus and C_plus reach the specified maximum
value (Cu).

2.3.9. We train a binary SVM classifier on X3
using the sample weights assigned in the previous
step.

2.3.10. We calculate slack variables that
represent the degree to which each example violates
the classification boundary.

2.3.11. We then calculate the epsilon slack
for the labeled examples, which is the sag variable
for the labeled examples.

2.3.12. We check whether there are any
unobserved examples with epsilon-slack greater than
zero, which indicates the condition when an example
is misclassified.

2.3.13. If such an example exists, we enter
another loop where we identify the positive and
negative set of examples with the highest epsilon-
slack values.

2.3.14. We change the labels for these two
examples and update the sample weights for each
example.

2.3.15. We then retrain the binary SVM
classifier on X3 with the updated sampling weights.

2.3.16. We repeat steps 11-16 until there are
no unlabeled examples with epsilon slack greater
than zero.

2.3.17. Then we increase C_minus and
C_plus by a factor of 2 or until they reach their
maximum value, Cu.

2.3.18. We update the sampling weights for
each example and repeat steps 10-18 until C_minus
and C_plus reach Cu.

2.3.19. Finally, we return the predicted
labels for X2 as the result of the TSVM algorithm.

2.4. Determine the acceptable range of
hyperparameter values for optimization and use
Bayesian optimization (using the Optuna library) to
find optimal hyperparameter values based on quality
metrics.

2.4.1. Iterating over the allowable range of
hyperparameter values.

2.4.2. Training a TSVM model based on
previous steps 2.3.1–2.3.19 and a combination of
hyperparameters from the current iteration.

V.M. Sineglazov, A.O. Samoshyn
Semi-supervised Support Vector Machine 41

2.4.3. Using the trained model, make a
forecast on the control sample.

2.4.4. Evaluate the quality of the forecast
using the F1 metric.

2.5. Select the best set of hyperparameters by
selecting the best estimate of the prediction.

3. Create a combined forecast by training
multiple TSVM models.

3.1. Take as a basis the best hyperparameters
from the results of step 2.4 and train separate TSVM
models for different kernels (linear, radial,
polynomial or sigmoid).

3.2. After training each TSVM model,
predictions are made on unlabeled data and a
decision function is computed, which returns the
distance to the separating hyperplane.

3.3. The resulting decision functions are
combined using median voting. Each prediction of

the TSVM model counts as a vote, and the final
decision is made based on the median of these votes.
If the median is greater than or equal to 0, then it is
classified as a positive class, otherwise it is
classified as a negative class.

4. After performing training, optimization and
combining the predictions, a final prediction is
obtained, which can be compared with the actual
values.

5. Evaluate the quality of the forecast using the
F1 metric.

V. RESULTS
After voting, a final prediction is obtained, which

can be compared with the actual values. The
obtained results are shown in the Tables 1–3.

TABLE І. AVERAGE BY DATASET TYPE

 Accuracy Recall Precision f1

 TSVM
Voting
TSVM

Base
SVM TSVM

Voting
TSVM

Base
SVM TSVM

Voting
TSVM

Base
SVM TSVM

Voting
TSVM

Base
SVM

type_dataset

banana 0.518 0.497 0.493 0.643 0.618 0.753 0.505 0.494 0.489 0.549 0.539 0.555

banana_inverse 0.541 0.635 0.554 0.719 0.814 0.738 0.527 0.632 0.547 0.598 0.689 0.610

c_circles 0.501 0.618 0.504 0.507 0.610 0.563 0.348 0.422 0.337 0.411 0.499 0.418

two_moons_classic 0.828 0.888 0.760 0.838 0.918 0.807 0.823 0.867 0.739 0.830 0.891 0.769

two_moons_tight 0.632 0.781 0.600 0.563 0.740 0.523 0.669 0.814 0.407 0.595 0.763 0.454

two_moons_wide 0.942 0.928 0.906 0.917 0.870 0.966 0.969 0.987 0.864 0.937 0.913 0.912

TABLE ІI. AVERAGE BY PERCENTAGE OF MARKING

 Accuracy Recall Precision f1

 TSVM
Voting
TSVM

Base
SVM TSVM

Voting
TSVM

Base
SVM TSVM

Voting
TSVM

Base
SVM TSVM

Voting
TSVM

Base
SVM

perc_labeled

1 0.637 0.640 0.618 0.644 0.642 0.635 0.597 0.615 0.443 0.587 0.593 0.510

10 0.696 0.774 0.665 0.785 0.836 0.897 0.677 0.754 0.636 0.722 0.787 0.730

50 0.649 0.760 0.625 0.664 0.807 0.643 0.646 0.739 0.612 0.651 0.768 0.619

TABLE ІII. GENERAL RESULTS

 Accuracy Recall Precision f1

 TSVM
Voting
TSVM

Base
SVM TSVM

Voting
TSVM

Base
SVM TSVM

Voting
TSVM

Base
SVM TSVM

Voting
TSVM

Base
SVM

type_dataset
perc_la
beled

banana 1 0.577 0.512 0.498 0.966 0.852 1.000 0.542 0.506 0.498 0.694 0.635 0.665

10 0.500 0.501 0.499 0.612 0.592 1.000 0.499 0.500 0.499 0.550 0.542 0.666

42 ISSN 1990-5548 Electronics and Control Systems 2023. N 1(75): 36-43

50 0.478 0.478 0.482 0.351 0.410 0.259 0.473 0.477 0.471 0.403 0.441 0.334

banana_inve
rse

1 0.549 0.496 0.496 0.974 1.000 1.000 0.525 0.496 0.496 0.682 0.663 0.663

10 0.594 0.712 0.588 0.604 0.632 0.524 0.597 0.757 0.606 0.600 0.689 0.562

50 0.480 0.698 0.578 0.579 0.809 0.689 0.458 0.642 0.540 0.511 0.716 0.606

c_circles 1 0.416 0.467 0.497 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

10 0.633 0.757 0.494 0.946 1.000 1.000 0.579 0.670 0.494 0.718 0.803 0.662

50 0.454 0.632 0.522 0.574 0.829 0.689 0.465 0.596 0.518 0.513 0.693 0.591

two_moons_
classic

1 0.780 0.832 0.785 0.792 0.848 0.836 0.773 0.822 0.758 0.782 0.835 0.795

10 0.843 0.907 0.776 0.866 0.960 0.886 0.827 0.867 0.724 0.846 0.911 0.797

50 0.862 0.926 0.720 0.857 0.944 0.698 0.867 0.912 0.733 0.862 0.928 0.715

two_moons_
tight

1 0.623 0.725 0.498 0.376 0.535 0.000 0.748 0.866 0.000 0.501 0.662 0.000

10 0.636 0.789 0.726 0.683 0.830 0.975 0.622 0.765 0.649 0.651 0.797 0.780

50 0.638 0.828 0.576 0.631 0.855 0.594 0.638 0.810 0.571 0.634 0.832 0.583

two_moons_
wide

1 0.877 0.806 0.935 0.759 0.614 0.972 0.995 1.000 0.906 0.861 0.761 0.938

10 0.968 0.981 0.908 1.000 1.000 0.998 0.939 0.963 0.845 0.969 0.981 0.915

50 0.982 0.996 0.874 0.992 0.996 0.929 0.973 0.996 0.840 0.982 0.996 0.882

VI. CONCLUSIONS

A new algorithm of the support vector machine
using semi-supervised learning was developed. The
high efficiency of the algorithm is ensured by the
use of the voting method, which makes it possible to
aggregate the results of each individual classifier and
determine the major prediction based on the largest
majority of votes. As several different algorithms in
nature, several different kernel functions (eg, rbf,
linear, sigmoidal, polynomial) can be used to train
different SVMs. Optuna is a machine learning
hyperparameter optimization framework that
provides a wide range of algorithms to find the best
hyperparameters.

REFERENCES
[1] C. M. Bishop, Pattern recognition and machine

learning. 2006. Berlin: Springer.
[2] N. Cristianini and J. Shawe-Taylor, An introduction

to support vector machines and other kernel-based
learning methods, Cambridge University Press,
2000, Cambridge.
https://doi.org/10.1017/CBO9780511801389

[3] A. Gammerman, V. Vapnik, and V. Vovk, “Learning
by transduction,” In Uncertainty in Artificial
Intelligence, pp. 148–155, 1998.

[4] V. N. Vapnik, Statistical learning theory. New York:
John Wiley & Sons, Inc.

[5] K. P. Bennett, A. Demiriz, and J. Shawe–Taylor, “A
Column Generation Algorithm for Boosting,”
(http://www.recognition.mccme.ru/pub/papers/boosti
ng/bennett00column.pdf). In Pat Langley, editor,
Proceedings of Seventeenth International Conference
on Machine Learning, pp. 65–72. Morgan Kaufmann,
2000.

[6] T. Joachims, “Transductive inference for text
classification using support vector machines,” In
ICML, 1999.

[7] O. Chapelle, and A. Zien, “Semi-supervised learning
by low density separation,” In AISTATS, pp. 57–64,
2005.
https://doi.org/10.7551/mitpress/9780262033589.001
.0001

[8] F. Wang, & C. Zhang, “Label propagation through
linear neighborhoods,” IEEE Transactions on
Knowledge and Data Engineering, 20(1), 2008, pp.
55–67. https://doi.org/10.1109/TKDE.2007.190672

[9] N. Kasabov and S. Pang, “Transductive support vector
machines and applications in bioinformatics for
promoter recognition,” In ICNNSP, 2004, pp. 1–6.
https://doi.org/10.1109/ICNNSP.2003.1279199

[10] C. Goutte, H. Deґjean, E. Gaussier, N. Cancedda, and
J.M. Renders, “Combining labelled and unlabelled
data: A case study on fisher kernels and transductive
inference for biological entity recognition,” In

V.M. Sineglazov, A.O. Samoshyn
Semi-supervised Support Vector Machine 43

CoNLL, 2002, pp. 1–7.
https://doi.org/10.3115/1118853.1118864

[11] T. Zhang and F. J. Oles, “A probability analysis on
the value of unlabeled data for classification
problems,” In ICML 00, pp. 1191–1198, 2000.

[12] O. Chapelle, B. Schölkopf, and A. Zien, (eds.). Semi-
Supervised Learning. MIT Press, Cambridge, MA,
2006b.

[13] O. Chapelle, V. Sindhwani, and S. S. Keerthi,
“Optimization techniques for semi-supervised
support vector machines,” J. Mach. Learn. Res., 9:
203–233, 2008.

[14] O. Chapelle, M. Chi, & A. Zien, “A continuation
method for semi-supervised SVMsm,” In
Proceedings of the 23rd international conference on

machine learning, 2006a, pp. 185–192.
https://doi.org/10.1145/1143844.1143868

[15] Takuya Akiba, Shotaro Sano, Toshihiko Yanase,
Takeru Ohta, Masanori Koyama, Optuna: A Next-
generation Hyperparameter Optimization
Framework, 2019,
https://doi.org/10.48550/arXiv.1907.10902

[16] Victor Chukwudi Osamor & Adaugo Fiona Okezie,
“Enhancing the weighted voting ensemble algorithm
for tuberculosis predictive diagnosis,” Scientific
Reports, vol. 11, Article number: 14806, 2021, 4922,
Accesses 19. https://doi.org/10.1038/s41598-021-
94347-6

Received February 19, 2023

Sineglazov Victor. ORCID 0000-0002-3297-9060.
Doctor of Engineering Science. Professor. Head of the Department.
Aviation Computer-Integrated Complexes Department, Faculty of Air Navigation Electronics and Telecommunications,
National Aviation University, Kyiv, Ukraine.
Education: Kyiv Polytechnic Institute, Kyiv, Ukraine, (1973).
Research area: Air Navigation, Air Traffic Control, Identification of Complex Systems, Wind/Solar power plant,
artificial intelligence.
Publications: more than 700 papers.
E-mail: svm@nau.edu.ua
Samoshyn Andrii. Bachelor.
Educational and Scientific Institute of Applied System Analysis, National Technical University of Ukraine “Ihor
Sikorsky Kyiv Polytechnic Institute,” Kyiv, Ukraine.
Education: National Technical University of Ukraine “Ihor Sikorsky Kyiv Polytechnic Institute,” (2022).
Research interests: artificial neural networks, programming.
E-mail: samoshyn.andriy@lll.kpi.ua

В. М. Синєглазов, А. О. Самошин. Напівкерована машина опорних векторів
У статті розглянуто новий підхід побудови машини опорних векторів із напівкерованим навчанням для
вирішення задачі багатокласової класифікації. Передбачається, що розподіли умовних класів можуть
перекриватися. Зроблено модифікацію функції вартості за рахунок додавання до неї елементів штрафу за
влучення міток не до свого класу. Штраф подається у вигляді лінійної функції відстані між міткою та межею
класу. Для подолання проблеми багатокритеріальності запропоновано метод глобальної оптимізації, відомий як
continuation. Для комбінації передбачень пропонується використати метод голосування моделей з різними
ядрами. За інструмент для налаштування гіперпараметрів був обраний фреймворк Optuna. В якості навчальних
вибірок було розглянуто наступні: type_dataset, banana, banana_inverse, c_circles, two_moons_classic,
two_moons_tight, two_moons_wide.
Ключові слова: машина опорних векторів; напівкероване навчання; багатокласова класифікація;
багатокритеріальність; метод глобальної оптимізації.

Синєглазов Віктор Михайлович. ORCID 0000-0002-3297-9060.
Доктор технічних наук. Професор. Завідувач кафедрою.
Кафедра авіаційних комп’ютерно-інтегрованих комплексів, Факультет аеронавігації електроніки і
телекомунікацій, Національний авіаційний університет, Київ, Україна.
Освіта: Київський політехнічний інститут, Київ, Україна, (1973).
Напрям наукової діяльності: аеронавігація, управління повітряним рухом, ідентифікація складних систем,
вітроенергетичні установки, штучний інтелект.
Кількість публікацій: більше 700 наукових робіт.
E-mail: svm@nau.edu.ua
Самошин Андрій Олександрович. Бакалавр.
Навчально-науковий інститут прикладного системного аналізу, Національний технічний університет України
«Київський політехнічний інститут імені Ігоря Сікорського», Київ, Україна.
Освіта: Національний технічний університет України «Київський політехнічний інститут імені Ігоря
Сікорського», Київ, Україна, (2022).
Напрям наукової діяльності: штучні нейронні мережі, програмування.
E-mail: samoshyn.andriy@lll.kpi.ua

