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A LUSTERNIK-SCHNIRELMANN TYPE THEOREM FOR

C1-FRÉCHET MANIFOLDS

KAVEH EFTEKHARINASAB AND IVAN LASTIVKA

Abstract. We prove a Lusternik-Schnirelmann type theorem for a C1-

function ϕ : M → R, where M is a connected infinite dimensional Fréchet

manifold of class C1. To this end, in this context we prove the so-called

Deformation Lemma and by using it we derive the result generalizing the

Minimax Principle.

1. INTRODUCTION

The aim of this paper is to extend the Lusternik-Schnirelmann method to

study the minimal numbers of critical points of C1 real-valued functions on

Fréchet manifolds. The Lusternik-Schnirelmann theory is a method to study

critical points independent of nondegeneracy considerations which are present

in Morse theory. The Morse critical points theory was extended to Hilbert

manifolds by Palais [7] and Smale [12]. Also, it was studied in the case of

Banach manifolds; cf., Palais [8], Uhlenbeck [15], Tromba [14]. These critical

point theories in the context of Hilbert and Banach manifolds provide tools to

prove existence theorems in the calculus of variations. For example, they have

been used to geodesic problems (cf. the books of Milnor [3] and Palais [9]) and

to eigenvalue problems (cf. Browder [1]).

In the case of Fréchet manifolds, a proper intrinsic notion of nondegener-

acy that would recover Morse theory has not been defined yet due to natural

restrictions. Therefore, it would be desirable to have a Lusternik-Schnirelmann

theory in order to apply to problems in the calculus of variation that involve

these manifolds.

The classical Lusternik-Schnirelmann theory was extended to Banach man-

ifolds by Palais [6]. The construction of suitable deformations that characterize

critical values of functions and satisfy certain conditions is the most technical
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Manifolds, Deformation Lemma

c© Indian Mathematical Society, 2021 .
1



2 KAVEH EFTEKHARINASAB AND IVAN LASTIVKA

part of his method. The deformation approach is implemented by considering

the negative pseudo-gradient flows, so, the existence of pseudo-gradient vector

fields is inevitable. Another concern is that the flow generated by a vector field

is no longer a global flow since manifolds are infinite dimensional. It was intro-

duced a compactness condition on functions by Palais [7] and Smale [12], known

as the Palais-Smale condition, to show that flow generated by the pseudo-

gradient field ‘descends to the critial point sets’ in a strong enough sense. This

condition resolves the mentioned issue.

The Palais’s approach does not work in full extent for Fréchet manifolds.

Because of the deficient topological structures of dual spaces, cotangent bundles

do not admit smooth manifold structures. Consequently, the notion of pseudo-

gradient vector fields makes no sense. Moreover, the common Palais-Smale

condition requires a Finsler structure on a cotangent bundle.

In this paper, to define the Palais-Smale condition on a Fréchet Finsler

manifold M we use an auxiliary function Φ. The idea behind considering this

function is that on sets where a real-valued function ϕ on M has no critical

points and satisfies the Palais-Smale condition the auxiliary function is nega-

tive. This produces an appropriate deformation, Lemma 3.1, which in addition

needs to satisfy the following conditions:

A: If [c− ε, c+ ε] does not contain critical values, then the topology of a

manifold will not change between level sets c− ε and c+ ε.

B: Starting a little above a critical level c, then we will either bypass an

open neighborhood U of the level set c and reach a level c − ε or we

will end up in U .

To guarantee the existence of a deformation H (Corollary 3.5) that satisfies

condition A, we require that the function ϕ to be non-constant and closed. The

reason for this assumption is that continuous non-constant closed real-valued

functions on infinite dimensional Fréchet manifolds are proper ( [11, Theorem

1.1]), so strips {c− ε ≤ ϕ(x) ≤ c+ ε} are compact. This is a key point in the

proof of the existence of such deformations.

In order to the deformation H satisfies also condition B we assume that,

in addition, the function ϕ has finitely many critical critical points. This does

not restrict us to prove the main theorem in full generality.

Using the deformation H, we shall derive the standard Minimax Principle

(Theorem 3.6) that determines critical values of ϕ by consideration of minimax

expressions of the form c = inf supϕ. Finally, we prove the main theorem

(Theorem 3.10) asserting that a non-constant closed C1- function ϕ : M → R
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which is bounded below and satisfies the Palais-Smale condition on an infinite

dimensional connected Fréchet manifold M has at least CatMM critical points.

2. Preliminaries

In this section, we briefly recall the basic concepts of the theory of Fréchet

manifolds and establish our notations. We denote by F a Fréchet space whose

topology is defined by a sequence (‖ · ‖nF )n∈N of seminorms which we can

always assume to be increasing (by considering maxk≤n ‖ · ‖kF , if necessary).

Moreover, the complete translation-invariant metric

dF (x, y) :=
∑
n∈N

1

2n
· ‖ x− y ‖

n
F

1+ ‖ x− y ‖nF
(2.1)

induces the same topology on F . Define a closed unit semi-ball centered at the

zero vector 0F of F by

Bn(0F , 1) = {f ∈ F : ‖ f ‖nF≤ 1}

for each seminorm ‖ · ‖nF . Let

B∞(0F ) =

∞⋂
i=1

Bi(0F , 1).

The set B∞(0F ) is not empty (0 ∈ B∞(0F )) and is infinite (because it is convex

so by the Kolmogorov theorem it is bounded only in Banach spaces).

Let E,F be Fréchet spaces, U an open subset of E and ϕ : U → F a

continuous map. Let CL(E,F ) be the space of all continuous linear maps from

E to F topologized by the compact-open topology. If the directional (Gâteaux)

derivatives

dϕ(x)h = lim
t→0

φ(x+ th)− φ(x)

t

exist for all x ∈ U and all h ∈ E, and the induced map dϕ(x) : U → CL(E,F )

is continuous for all x ∈ U , then we say that ϕ is a Keller’s differentiable map

of class C1. The higher directional derivatives and Ck-maps, k ≥ 2, are defined

in the obvious inductive fashion.

Let k ≥ 1, a Ck-Fréchet manifold is a Hausdorff second countable manifold

modeled on a Fréchet space with an atlas of coordinate charts such that the

coordinate transition functions are all Ck-maps.

If ϕ : F → R at x is C1, the derivative of ϕ at x, ϕ′(x), is an element of

the dual space F ′. The directional derivative of ϕ at x toward h ∈ E is given

by

dϕ(x)h = 〈ϕ′(x), h〉,
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where 〈·, ·〉 is duality pairing. Let x ∈ M and h ∈ TxM . A chart (x ∈ U,ψ)

induces a canonical map ψ∗ from TxM onto F . Let ϕ : M → R be a C1-

function, then

ϕ′(x, h) = lim
t→0

ϕ
(
ψ−1(ϕ(x) + tψ∗(x)(h))

)
− ϕ(x)

t
.

Definition 2.1. [13] Let F be a Fréchet space T a topological space, and

V = T ×F the trivial bundle with fiber F over T . A Finsler structure for V is

a collection of continuous functions ‖ · ‖n: V → R+, n ∈ N, such that

(1) For b ∈ T fixed, ‖ (b, f) ‖n=‖ f ‖nb is a collection of seminorms on F

which gives the topology of F .

(2) Given k > 1 and t0 ∈ T , there exists a neighborhood U of t0 such that

1

k
‖ f ‖nt0 ≤‖ f ‖

n
u ≤ k ‖ f ‖nt0 (2.2)

for all u ∈ U , n ∈ N, f ∈ F .

Suppose M is a Fréchet manifold modeled on F . Let πM : TM → M be

the tangent bundle and let ‖ · ‖n: TM → R+ be a collection of continuous

functions, n ∈ N. We say {‖ · ‖n}n∈N is a Finsler structure for TM if for a

given x ∈M there exists a bundle chart ψ : U × F ' TM |U with x ∈ U such

that

{‖ · ‖n ◦ψ−1}n∈N

is a Finsler structure for U × F .

A Fréchet Finsler manifold is a Fréchet manifold together with a Finsler

structure on its tangent bundle. Regular (in particular paracompact) manifolds

admit Finsler structures.

If {‖ · ‖n}n∈N is a Finsler structure for M then we can obtain a graded

Finsler structure, denoted by (‖ · ‖n)n∈N, that is ‖ · ‖i≤‖ · ‖i+1 for all i.

We define the length of a C1-curve γ : [a, b]→M with respect to the n-th

component by

Ln(γ) =

∫ b

a

‖ γ′(t) ‖nγ(t) d t.

The length of a piecewise path with respect to the n-th component is the sum

over the curves constituting to the path. On each connected component of M ,

the distance is defined by

ρn(x, y) = inf
γ
Ln(γ),

where infimum is taken over all continuous piecewise C1-curve connecting x to

y. Thus, we obtain an increasing sequence of metrics ρn(x, y) and define the
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distance ρ by

ρ(x, y) =

∞∑
n=1

1

2n
· ρn(x, y)

1 + ρn(x, y)
. (2.3)

Theorem 2.1. [13] Suppose M is connected and endowed with a Finsler

structure (‖ · ‖n)n∈N. Then the distance ρ defined by (2.3) is a metric for M .

Furthermore, the topology induced by this metric coincides with the original

topology of M .

Remark 2.2. The tangent bundle π : TM → M is a C1-Fréchet manifold

modeled on F × F . Thus, we can also define a Finsler structure on the double

tangent bundle πTM : T (TM)→ TM , and it will induce a metric ρTM on TM

compatible with the topology of TM .

3. A Lusternik-Schnirelmann theorem

As mentioned in the introduction, we can define for a Fréchet manifold

(non-Banachable) the cotangent bundle as a set to be the dual bundle to the

tangent bundle, but it does not admit a smooth manifold structure (see [4, Re-

mark I.3.9]). Thus, we can not define Finsler structures on cotangent bundles

and consequently we can not define the usual Palais-Smale compactness con-

dition for differentiable maps by using cotangent bundles. We will define the

Palais-Smale condition by using an appropriate auxiliary function.

Let M be a connected C1-Fréchet manifold, and ϕ : M → R a C1-function.

Let x ∈M , we shall say that x is a critical point of ϕ if (ϕψ−1)′(ψ(x)) = 0 for

a chart (x ∈ U,ψ) and hence for every chart whose domain contains x.

Let {‖ · ‖nM}n∈N be a Finsler structure on TM . Define a closed unit semi-

ball centered at the zero vector 0x of TxM by

Bn(0x, 1) = {h ∈ TxM : ‖ h ‖nx≤ 1}

for each x ∈M and each seminorm ‖ · ‖nx . Let

B∞(0x) =

∞⋂
n=1

Bn(0x, 1).

The set B∞(0x) is not empty and is infinite because it can be identified with a

convex neighborhood of zero of the Fréchet space U × F , where U is an open

neighborhood of x.

Let ϕ : M → R be a C1-function and x ∈M , define

Φϕ(x) = inf
{
ϕ′(x, h) : h ∈ B∞(0x)

}
. (3.1)
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Condition (Palais-Smale ). We say that a C1- function ϕ : M → R satisfies

the Palais-Smale condition at a level c ∈ R, (PS)c in short, in a set A ⊂ M if

each sequence (mi)i∈N ⊂ A such that

ϕ(mi)→ c and Φϕ(mi)→ 0

has a convergent subsequence (by the continuity of ϕ′ converges to a critical

point).

Let ϕ : M → R be a C1-function. We denote by Cr(ϕ) the set of critical

points of ϕ, and for c ∈ R

Cr(ϕ, c) = {x ∈ Cr(ϕ), ϕ(x) = c},

ϕc = {x ∈M : ϕ(x) ≤ c}.

A mapping H ∈ C([0, 1]×M → M) is called a deformation if H(0, x) = x for

all x ∈ M . Let C be a subset of M , we say that H is a C-invariant for an

interval I ⊂ [0, 1] if H(t, x) = x for all x ∈ C and all t ∈ I.

A family F of subset of M is said to be deformation invariant if for each

A ∈ F and each deformation H for M , H1(x) :− H(1, x), it follows that

H1(A) ∈ F .

The idea of the proof of the following lemma is inspired by Ghoussoub [2,

Lemma 1].

Lemma 3.1. Let M be a connected C1-Fréchet manifold endowed with a

complete Finsler metric ρ. Assume ϕ : M → R is a C1-function. Let B and

A be closed disjoint subsets of M and let A be compact. Suppose k > 1 and

ε > 0 are such that Φϕ(x) < −2ε(1 + k2) for all x ∈ A. Then there exist t0 > 0

and B-invariant deformation H for [0, t0) such that

(1) ρ(H(t, x), x) ≤ kt, ∀x ∈M ,

(2) ϕ(H(t, x))− ϕ(x) ≤ −2ε(1 + k2)t, ∀x ∈M.

Proof. Since ϕ is C1 and so Gâteaux differentiable, in virtue of the assumption

that for xi ∈ A we have Φ(xi) < −2ε(1 + k2), we can find a chart ψi : Vi →
TxiM such that for all v ∈ ψi(Vi) and a tangent vector hi ∈ B∞(0xi) we obtain

〈(ϕ ◦ ψ−1
i )′(v), hi〉 < −2ε(1 + k2). (3.2)

Also, from the Finsler structure on TM we get

1

k
‖ · ‖nu ≤ ‖ · ‖nxi

≤ k ‖ · ‖nu (3.3)

for all n ∈ N and u ∈ Vi.
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Let k > 1 be fixed. Let Ui ⊂ Vi be an open neighborhood of xi such that

for some ri > 0

Bρ(Ui, ri) ⊆ Vi, BρTM
(ψi(Ui), ri) ⊆ ψi(Vi). (3.4)

It follows from the compactness of A that there exists a finite sub-covering

Ui1 , · · · ,Uip . Let Pi1 , · · · , Pip be a continuous partition of unity subordinated

to this sub-covering. For the sake of brevity we write j := ij .

Let b : M → [0, 1] be a continuous function such that b ≡ 1 on A and

b ≡ 0 on

(M \
p⋃
j=1

Uj)
⋃
B.

Let rmin be the minimum of such ri’s and t0 =
rmin

1 + k2
. For t ∈ (0, t0)

define the function σ0(t, x) = x and the functions σj(1 ≤ j ≤ p) inductively by

σj(t, x) =

ψ−1
j

(
ψj(σj−1(t, x))− tb(x)Pj(x)hj

)
σj−1(t, x) ∈ Vj

σj−1(t, x) otherwise

where hj ∈ Vj ∩ B∞(0xi). For j = 1, from(3.4) it follows that σ1 is well

defined and continuous. Let x be an arbitrary point in V1, and for s ∈ [0, t] let

1(s) = σ1(s, x) be the curve that joins x to σ1(t, x). Then, for all n ∈ N

ρn(x, σ1(t, x)) ≤
∫ t

0

‖ ′1(s) ‖n(t) d s

≤
∫ t

0

‖ d

d s
ψ1(1(s)) ‖nx1

d s

= kb(x)P1(x)t. (3.5)

Therefore, in view of the definition of the Finsler metric (2.3) we have

ρ(x, σ1(t, x)) ≤ kb(x)P1(x)t. (3.6)

If x ∈ V1, by the mean value theorem we can find δ ∈ (0, 1) such that

ϕ(σ1(t, x))− ϕ(x) = ϕ ◦ ψ−1
1

(
ψ1(x)− tb(x)P1(x)h1

)
− ϕ ◦ ψ−1

1 (ψ1(x))

=
〈
(ϕ ◦ ψ−1

1

)′(
ψ1(x)− δtb(x)P1(x)f1

)
, h1〉(tb(x)P1(x))

< −2ε(1 + k2)b(x)P1(x)t. (3.7)

For x /∈ V1 we have P1(x) = 0 so (3.7) holds also. Now assume σj−1 is well

defined and continuous and (3.6) and (3.7) hold, we prove them for j. By (3.5)
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and the triangular inequality for all n ∈ N

ρn(x, σj−1(t, x)) ≤ ktb(x)

j−1∑
q=0

Pq(x) ≤ kt, (3.8)

also,

ρ(x, σj−1(t, x)) ≤ kt. (3.9)

But, t <
rmin

1 + k2
therefore

ρn(x, σj−1(t, x)) ≤ rmin

2
. (3.10)

For any x ∈ supp(Pj) with σj−1(t, x) ∈ Vj , let Cx be the set of all C1-curves

ι : [a, b] → M with ι(a) = x and ι(b) = σj−1(t, x) that lie in Vj . If a curve ι

that joins x to σj−1(t, x) leaves Vj , then since ρn(x,M \ Vj) = rmin we have

Ln(ι) = rmin. Whence

ρn(x, σj−1(t, x)) = inf
{
Ln(ι) : ι ∈ Cx

}
. (3.11)

If a curve ι ∈ Cx, then for all n ∈ N

Ln(ι) =

∫ b

a

‖ ι′(s) ‖nι(t) d s =
1

k

∫ b

a

‖ d

d s
ψj(ι(s)) ‖nxj

d s =

=
1

k
‖ ψj(σj−1(t, x)− ψj(x) ‖nxj

. (3.12)

Hence

‖ ψj(σj−1(t, x))− ψj(x) ‖nxj
≤ kρn(x, σj−1(t, x)) ≤ k2t. (3.13)

Therefore,

‖ ψj(σj−1(t, x)− tb(x)Pj(x)hj)− ψj(x) ‖nxj
≤ k2t+ t < rmin. (3.14)

Thus, if x ∈ supp(Pj) and σj−1(t, x) ∈ Vj , then

ψj(σj−1(t, x)− tb(x)Pj(x)hj ∈ ψj(Vj)

which proves that σj is well defined and continuous. Now, define a curve

`j(s) = ψ−1
j

(
ψj(σj−1(t, x)− sb(x)Pj(x)hj

)
, s ∈ [0, t].

Then,

ρn(σj−1(t, x), σj(t, x)) ≤ Ln(`j) ≤
∫ t

0

‖ `′j ‖n`j≤ kb(x)Pj(x)t. (3.15)

Similarly as in the case j = 1 by using the mean value theorem between σj and

σj−1 we can prove ϕ(σj(t, x)) − ϕ(σj−1(t, x)) ≤ −2ε(1 + k2)b(x)Pj(x)t. This

concludes the induction.

Now, let H(t, x) = σp(t, x), it satisfies all assertions of the lemma and the

poof is complete. �
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We will need the following facts.

Lemma 3.2. If ϕ : M → R satisfies the Palais-Smale condition in A ⊂M and

has no critical point in A, then there exists ε > 0 such that Φϕ(x) < −ε for all

x ∈ A.

Proof. If there is no such ε, then there exists a sequence (mi) ⊂ A such that

Φϕ(mi) → 0 and therefore there exists a subsequent of (mi) converging to a

critical point in A which is a contradiction. �

Lemma 3.3. Suppose that ϕ : M → R satisfies the Palais-Smale condition on

M at a level c ∈ R and U is an open neighborhood of Cr(ϕ, c). Let

Ur = {x ∈M | x ∈ Br(c),Φϕ(x) ≥ −r},

where r > 0 and Br(c) is the closed ball centered at c with radius r with respect

to the usual metric on R. Then, there exists ε > 0 such that Uε ⊂ U .

Proof. Suppose there is no such ε > 0, then there exists a sequence (xn) ⊂
M \U such that limn→∞ ϕ(xn) = c and limn→∞ Φϕ(xn) = 0. Since ϕ satisfies

the (PS)c condition, there exists a convergent subsequent of (xn) with the limit

p such that ϕ(p) = c and ϕ′(p) = 0 which is a contradiction. �

Theorem 3.4. [11, Theorem 1.1] Let M,N be Hausdorff manifolds, where M

is a connected infinite dimensional Fréchet manifold, and N satisfies the first

countability axiom, and let ϕ : M → N be a continuous closed non-constant

map. Then ϕ is proper.

Corollary 3.5. Let M be a connected C1-infinite dimensional Fréchet man-

ifold, ϕ : M → R a C1 closed non-constant function. Suppose ϕ satisfies the

Palais-Smale condition at all levels.

(1) If for c ∈ R and δ > 0 we have

ϕ−1[c− δ, c+ δ] ∩ Cr(ϕ) = ∅,

then there exists t1 < t0 and 0 < ε < δ such that

H(t1, ϕ
c+ε) ⊂ ϕc−ε. (3.16)

(2) If ϕ has finitely many critical points, and for c ∈ R if U is an open

neighborhood of Cr(ϕ, c) (U = ∅ if Cr(ϕ, c) = ∅), then there exist

t1 < t0 and ε > 0 such that

H(t1, ϕ
c+ε \ U) ⊂ ϕc−ε. (3.17)
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Proof. (1) The function ϕ is proper by Theorem (3.4) therefore

A = ϕ−1[c− δ, c+ δ]

is compact. Since ϕ satisfies the Palais-Smale condition and has no critical

point in ϕ−1[c− δ, c+ δ] it follows in view of Lemma 3.2 that we can find small

enough 0 < ε < δ and k > 1 such that Φϕ(x) < −2ε(1 + k2) for all x ∈ A.

Let B = Cr(ϕ) (it is easy to see that B is closed), then by Lemma 3.1 there

exists t0 > 0 and B-invariant deformation H for [0, t1] (if t0 > 1 let t1 =
1

1 + k2

otherwise let t1 = t0) such that for x ∈ ϕc+ε we have

ϕ(H(t1, x)) ≤ ϕ(x)− 2ε(1 + k2)t1 ≤ c− ε. (3.18)

Thus, H(t1, x) ∈ ϕc−ε and the proof is complete.

(2) By Lemma 3.3 there exist ε > 0 and a neighborhood Uε ⊂ U of Cr(ϕ, c),

the neighborhood Uε is closed since ϕ′ is continuous. Let

A = {x ∈M \ U | ϕ(x) ∈ Bε(c)},

if necessarily shrink ε so that on A there is no critical point (it is possible

because the set of critical points is discrete), so by Lemma 3.2 we have Φϕ(x) <

−ε. In virtue of Theorem 3.4, ϕ−1
(
Bε(c)

)
is compact and since A is closed in

ϕ−1
(
Bε(c)

)
, A is compact either. Now, as A ∩ Uε = ∅, by the same arguments

as in the previous part there exist a Uε-invariant deformation H for M , t1 < t0,

such that for x ∈ ϕc+ε\U we haveH(t1, x) ∈ ϕc−ε, this concludes the proof. �

Theorem 3.6. Let M be a connected C1-infinite dimensional Fréchet manifold

and let ϕ ∈ C1(M,R) be a non-constant closed function satisfying the (PS)

condition at all levels. Suppose that F is a deformation invariant class of

subsets of M and suppose that

c = c(ϕ,F) = inf
A∈F

sup
x∈A

ϕ(x) (3.19)

is finite, then c is the critical value for ϕ.

Proof. We prove by contradiction. If c is not a critical value, then c ∈ R\Cr(ϕ).

Since Cr(ϕ) is closed we can find small enough ε > 0 such that

ϕ−1
(
[c− ε, c+ ε]

)⋂
Cr(ϕ) = ∅. (3.20)

By the definition of c we can find A ∈ F such that

sup
x∈A

ϕ(x) ≤ c+ ε, (3.21)

therefore, A ⊆ ϕc+ε. Thus, by Corollary 3.5 we can find t > 0 such that

H(t, ϕc+ε) ⊆ ϕc−ε. (3.22)



A LUSTERNIK-SCHNIRELMANN TYPE THEOREM FOR C1-FRÉCHET MANIFOLDS11

Hence H(t, A) ⊆ ϕc−ε and since F is invariant deformation we have H(t, A) ∈
F . Thus,

c 6 sup
x∈H(t,A)

ϕ(x) 6 sup
x∈ϕc−ε

ϕ(x) 6 c− ε, (3.23)

which is a contradiction. �

Remark 3.7. Let F = {{x} | x ∈ M}, then c(ϕ,F) = infx∈M ϕ(x). Let

F = {M}, then c(ϕ,F) = supx∈M ϕ(x).

The Lusternik-Schnirelmann category CatXA of a subset A of a topological

space X is the minimal number of closed sets that cover A and each of which

is contractible to a point in X. If CatXA is not finite, we write CatXA =∞.

We will need the following basic properties.

Lemma 3.8. [10, Proposition 2.2] Let T be a topological space, A,B ⊂ T .

Then

(1) If A ⊂ B, then CatXA ≤ CatMB.

(2) CatM (A ∪B) ≤ CatMA+ CatMB.

(3) If A is closed and H : [0, 1]× T → T is a deformation, then CatMA ≤
CatM (H(t0, A)).

(4) If T is a Finsler manifold, then there exists a neighborhood U of A

such that CatMU = CatMA.

(5) If M is connected and A is closed then CatMA ≤ dimA+1, where dim

is the covering dimension.

Let Co(M) be the set of compact subsets of M . Define the sets

Ai =
{
A ⊂M : A ∈ Co(M),CatMA ≥ i}, (3.24)

for i ∈ N. In view of the property (3) of Lemma 3.8 each Ai is a deformation

invariant class of subsets of M . The i-th Lusternik-Schnirelmann minimax

value of ϕ is defined by

µi = inf
A∈Ai

sup
x∈A

ϕ(x). (3.25)

It is easy to see that the sequence of numbers µi is increasing.

Proposition 3.9. Let (M,ρ) be a connected, complete C1-infinite dimensional

Finsler Fréchet manifold and let a C1-function ϕ : M → R be non-constant

and closed. Let CatMM = k, k ∈ N ∪ {∞}. If ϕ satisfies the Palais-Smale

condition for all µi, i = 1, · · · k, then

(1) either each µi is a critical value for ϕ or µi =∞,

(2) if ϕ is bounded on Cr(ϕ), then µi <∞ for i ≤ CatMM ,
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(3) if µ := µj = µj+1 = · · · = µj+m < 0 for some m, j ≥ 1, then ϕ has at

least m+ 1 critical points at level c.

Proof. (1) The proof follows from Theorem 3.6.

(2) Suppose b = supCr(ϕ) ϕ < ∞. Then, by virtue of Corollary 3.5 for

some ε > 0, M is deformable to ϕb+ε and so CatMM = Catϕb+εϕb+ε. Thus,

ϕb+ε ∈ Ai therefore µi ≤ b+ ε.

(3) If there are infinite number of critical points of ϕ at level c we are done,

therefore, assume that x1, · · · , xn are the only critical points. We can assume

that there are open contractible neighborhood xi ∈ Ui such that Uj ∩ Uj = ∅
if i 6= j. Let U =

⋃n
l=1 Ul, by Corollary 3.5 there exist ε > 0, t > 0 and a

deformation H on M such that

H(t, ϕc+ε \ U) ⊂ ϕc−ε. (3.26)

Thus, CatM
(
ϕc+ε \ U

)
≤ j − 1. Now CatMU ≤ n, therefore

j +m ≤ CatMϕ
c+ε ≤ CatM

(
ϕc+ε \ U

)
+ CatMU (3.27)

≤ j − 1 + n.

Thus, n ≥ m+ 1. �

Theorem 3.10. Let (M,ρ) be a connected, complete C1- Fréchet Finsler man-

ifold and let a C1-function ϕ : M → R be non-constant, closed and bounded

below. Let CatMM = k, k ∈ N∪{∞}. If ϕ satisfies the Palais-Smale condition

for all µi, i = 1, · · · k, then ϕ has at least k critical points.

Proof. If there are infinite number of critical points of ϕ at level c we are

done, therefore, we assume that ϕ has finite number of critical points. Each

µi, i = 1, · · · , k, is finite and so a critical value, see Proposition 3.9. To prove

the theorem, it is enough to show that

#
(
Cr(ϕ) ∩ ϕµi

)
≥ i, i = 1, · · · , k. (3.28)

We prove by induction. If i = 1, since the global minimum is a critical point

(see Remark 3.7) so the relation (3.28) is trivial. Suppose (3.28) is true for

i = 1, · · ·n, we shall prove it for n+ 1.

If µn 6= µn+1, then Cr(ϕ, µn+1) 6= ∅ by Proposition 3.9. Thus, elements

of Cr(ϕ, µn+1) and Cr(ϕ) ∩ ϕµn are obviously different, hence, Cr(ϕ) ∩ ϕµn+1

contains at least n + 1 distinct points. But if µ := µn = µn+1, then let m be

the least positive number such that µm = µn+1. By Proposition 3.9

CatM
(
Cr(ϕ, µ)

)
≥ n+ 1−m+ 1 = n−m+ 2. (3.29)
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If m = 1, we are done. Let m > 1, since m ≤ n it follows that

Cr(ϕ) ∩ ϕµm−1 ≥ m− 1.

Thereby,

#
(
Cr(ϕ) ∩ ϕµn+1

)
≥ #

(
Cr(ϕ) ∩ ϕµm−1

)
+ #

(
Cr(ϕ) ∩ ϕµn+1

)
(3.30)

≥ (m− 1) + (n−m+ 2) = n− 1.

�

Remark 3.11. As mentioned, the Lusternik-Schnirelmann method is used to

calculus of variation problems. However, manifolds of mappings are endowed

only with Hilbert manifolds (if possible) or it has been used Banach manifolds

of maps belonging to Sobolov spaces. To avoid limitations and dependence on

a Sobolev level, we may consider the more general context of Fréchet manifolds

and smooth maps. It is also worth mentioning that there are spaces of mappings

that do not admit neither Banach nor Hilbert manifolds structures, cf., [5].

Thus, Our results would provide a more general setup for variational problems

in non-linear setting.
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