Механіка, машинознавство та електропостачання

УДК 621 (045)

О.А. Вишневский, А.С. Давыдов

Национальный авиационный университет, Киев

МОДЕЛИРОВАНИЕ ПРОЦЕССА ИЗНАШИВАНИЯ МЕТАЛЛОВ НЕЗАКРЕПЛЁННЫМ АБРАЗИВОМ

Экспериментально реализован метод испытаний на износ цилиндрических образцов, выполняющих вращательные движения вокруг оси в абразивной смеси. Разработана методика определения основных величин, участвующих в процессе абразивного изнашивания.

Ключевые слова: абразивное изнашивание, схема испытаний, модель изнашивания, параметры модели.

Введение

Сложность трибологических процессов приводит к необозримому количеству методов исследований и испытаний, что делает результаты несопоставимыми. Создание единой теоретической основы экспериментальной трибологии затрудняется также наличием большого числа факторов, влияющих на износ. Интенсивность износа разных пар трения может различаться в 109 раз. Также может различаться износ одной и той же пары трения в зависимости от условий нагружения, температуры, скорости, приобретённого состояния поверхности трения. Испытания на изнашивание могут выполняться с разными целями: качественное сравнение материалов по изнашиванию; изучение механизма и вида изнашивания; определение параметров моделей, описывающих количественные закономерности процесса. Необходимо разработать методы лабораторных испытаний с определением таких параметров моделей изнашивания, с помощью которых можно оценить износ реальных узлов трения машин [1].

Анализ последних достижений. Решению проблемы определения и прогнозирования величины износа при движении деталей землеройной, бурильной и других видов машин уделялось много внимания в научных работах видных учёных.

Использование метода по схеме – образец, который движется в абразивной смеси (ОДАС), находим в работе А.П. Малышева [2]. Веллингер и Уэтц опубликовали результаты испытаний по схеме ОДАС, где образцы делали только вращательные движения в абразивной смеси [3]. Показателем изнашивания считалось отношение объёмных износов образца к эталону, который испытывался вместе с первым.

К недостаткам можно отнести вращение жидкости, которая присутствует в смеси и неравномерное распределение абразивных частиц. Не была построена модель изнашивания с параллельным определением её параметров и, как следствие, было невозможно переносить результаты на другие силовые, кинематические и геометрические условия проведения испытаний. Определение величины износа путём взвешивания образцов превращало эти показатели в чисто качественные.

На основе теории подобия и размерности [4] была установлена зависимость между безразмерными комплексами, играющими роль критериев подобия [5].

В качестве основной формы зависимости между безразмерными критериями выбрана функция вида:

$$\frac{dU_{w}}{ds} = K_{w} \left(\frac{\sigma}{HB}\right)^{m} \left(\frac{9\delta}{\nu_{0}}\right)^{n} \left(\frac{V_{A} + V_{B}}{V_{A}}\right)^{k} \left(\frac{T_{c}}{T_{n\pi}}\right)^{\alpha}.$$
 (1)

Таким образом, возникла задача определения основных параметров и величин, задействованных в модели (1).

Постановка задач. Испытания материалов на абразивную износостойкость является неотъемлемой составляющей прогнозирования сроков работы соответствующих узлов трения, поэтому, в данной работе разрабатывается методика определения основных величин, задействованных в процессе абразивного изнашивания.

Поэтому были поставлены следующие задачи:

 – дополнить многофакторную критериальную модель абразивного изнашивания по схеме MWU безразмерным комплексом, связанным с давлением атмосферы и песка на образец;

 определить силы, действующие на цилиндрический образец;

– определить давление абразива на образец;

 – определить путь и скорость трения абразива по образцу;

 определить влияние зернистости абразива на процесс изнашивания.

Результаты исследований

В зависимости (1) необходимо добавить ещё один безразмерный комплекс, составленный из опре-

деляющих величин атмосферного давления P_{AT} и давления P_A, возникающего под действием слоя абразива:

В связи с добавлением безразмерного комплекса (2), модель (1) примет следующий вид:

$$\Pi_{p} = \frac{P_{AT} + P_{A}}{P_{AT}} = \left[\frac{H}{M^{2}} / \frac{H}{M^{2}}\right].$$
(2)
$$\frac{dU_{w}}{ds} = k_{w} \left(\frac{\sigma}{HB}\right)^{m} \left(\frac{9\delta}{\nu_{0}}\right)^{n} \left(\frac{V_{A} + V_{B}}{V_{A}}\right)^{k} \left(\frac{T_{c}}{T_{n\pi}}\right)^{\alpha} \left(\frac{P_{AT} + P_{A}}{P_{AT}}\right)^{\beta}.$$
(3)

Для разработки методики определения основных величин в процессе абразивного изнашивания по схеме ОДАС в первую очередь была найдена сила, действующая на образец.

Рассмотрим схематический рисунок расчётной схемы установки для испытаний цилиндрического образца в гидроабразивной смеси (рис. 1).

Рис. 1. Расчётная схема установки для испытаний на изнашивание латунных цилиндрических образцов радиуса R, где точки A, B соответствуют проекциям осей образцов

При вращении держателя с двумя образцами на каждый из них действует сила Q, уравновешенная моментом M по соотношению:

$$M = 2R_{\rm B}Q.$$
 (4)

Из полученной формулы (4) имеем:

$$Q = \frac{M}{2R_{B}}$$
(5)

Момент в системе привода может быть выражен через потребляемую мощность из зависимости вида:

$$M = 72400 \frac{N}{n},$$
 (6)

где момент М [кг·см], потребляемая мощность N [кВт], частота вращения n [об/мин].

В результате эксперимента были получены следующие данные: N=0,7кВт; n=450 об/мин.

По соотношению (3) имеем M=112,6 кг · см. Расчёт силы, действующей на образец при $R_B=3,85$ см, по формуле (5) дал следующий, уточнённый по сравнению с работой [6], результат Q=14,6кг.

Определим давление абразива на образец. Среднее давление на цилиндр при взаимодействии с абразивом через силу Q можно определить из зависимости:

$$\sigma_{\rm cp} = \frac{Q}{\rm DH},\tag{7}$$

где D – диаметр цилиндра; H – высота цилиндра.

Расчёт среднего давления абразива на образец при диаметре цилиндра D=2,2см, высоте H=2см, Q=14,6кг по формуле (7) дал следующий результат σ_{cp} =3,3 кг/см².

Для определения максимального давления σ_0 нужно принять распределение давления в виде закона косинуса, что отображено на рис. 2.

Рис. 2. Схематическое распределение давления абразива на образец в виде закона косинуса

Таким образом, получаем следующую зависимость:

$$\sigma(\phi) = \sigma_0 \cos(\phi_0 - \phi). \tag{8}$$

Проектируя давления на направление силы Q и учитывая, что Н – высота цилиндра, имеем

$$Q_{\Delta} = H\sigma(\phi)Rd\phi\cos\phi.$$

- Рис. 3. Схематическое распределение давления абразива на образец по нормали
- (Q равнодействующая всех горизонтальных сил, действующих на цилиндрический образец со стороны абразива)

Из зависимости (8) с учетом модели (7) получим следующую промежуточную формулу:

$$Q_{\Delta} = HR\sigma_0 \cos\varphi\cos(\varphi_0 - \varphi)d\varphi$$

Из условия равновесия силы Q и противодействующего давления имеем следующее соотношение:

$$Q = 2HR\sigma_0 \int_{0}^{\frac{\pi}{2}} \cos \varphi \cos (\varphi_0 - \varphi) d\varphi$$

Отсюда получаем следующую зависимость

$$Q = RH\sigma_0 \left(\sin \varphi_0 + \frac{\pi}{2} \cos \varphi_0 \right).$$
 (9)

Из уравнения (9) получим,

$$\sigma_0 = \frac{4}{2\sin\phi_0 + \pi\cos\phi_0}\sigma_{\rm cp} \,.$$

Твёрдость латуни, из которой сделан образец, равна HB = 35 кг/мм². Дисперсность абразивной среды равна $\delta = (0,2+0,3)/2=2,5$ мм.

Определим путь трения и скорость абразивных частиц по поверхности образца. Для этого рассмотрим схему движения частиц по поверхности трения в нормальном сечении к оси цилиндрического образца.

Путь трения за один оборот для точки на поверхности цилиндра, соответствующей углу φ найдём по формулам, которые уточняют аналогичные формулы работы [6]:

$$s(\phi) = 2\pi \sqrt{(R_{\rm B} - R\sin\phi)^2 + R^2\cos^2\phi} \quad \text{для } \phi \in \left[-\frac{\pi}{2}; 0\right]; \tag{10}$$

$$s(\phi) = 2\pi \sqrt{(R_{\rm B} + R\sin\phi)^2 + R^2\cos^2\phi} \quad \text{для } \phi \in \left[0; \frac{\pi}{2}\right]. \tag{11}$$

В точке на окружности, соответствующей углу $\phi = -\frac{\pi}{2}$, путь трения за один оборот равен длине окружности описываемой этой точкой $s\left(\phi = -\frac{\pi}{2}\right) = 2\pi (R_B - R)$. Скорость трения v по определению равна $v = \frac{s}{T}$, где T – период вращения

держателя с образцами, n – частота вращения, T = l/n,

Используя результаты эксперимента, рассмотрим пример определения скорости трения песка по образцу. Частота вращения равна n = 450 об/мин; период вращения $T = \frac{60}{450} = 0,13[c]$; путь трения за один оборот находим по формуле:

 $s = 2\pi (R_B - R) = 2\pi \cdot (38, 5 - 11) = 217,34$ [MM].

Скорость трения равна
$$v = \frac{217,34}{0,13} = 1,67 [m/c].$$

Определим распределение износа по поверхности трения образца и величину параметра k_w.

Рассмотрим модель изнашивания в линейнодифференциальной форме

$$\frac{\mathrm{d}\mathbf{u}_{w}}{\mathrm{d}\mathbf{s}} = \mathbf{k}_{w}\boldsymbol{\sigma}^{\mathrm{m}}.$$
 (12)

В интегральной форме модель (12) примет следующий вид

$$\mathbf{u}_{\mathrm{w}} = \mathbf{k}_{\mathrm{w}} \boldsymbol{\sigma}^{\mathrm{m}} \mathbf{s}. \tag{13}$$

Подставим в выражение (13) распределение давлений по (8) и зависимость пути трения от угла по (10) и (11) за один оборот держателя с образцами. Получим следующую модель линейного изнашивания:

$$u_{w}(\phi) = 2\pi k_{w}\sigma_{0}^{m}\cos^{m}(\phi_{0}-\phi)\sqrt{\left(R_{B}\mp R\sin\phi\right)^{2}+R^{2}\cos^{2}\phi}.$$
(14)

Тогда модель (14) примет вид

$$u_{w}(\phi) = 2\pi ntk_{w}\sigma_{0}^{m}\cos^{m}(\phi_{0}-\phi)\sqrt{(R_{B}\mp R\sin\phi)^{2}+R^{2}\cos^{2}\phi},$$
(15)

где t – время испытаний, а n – частота вращения держателя с образцами.

Используя данные эксперимента в четырёх точках, получим следующую систему уравнений для значений $\varphi \in [0; \pi/2]$.

$$\begin{cases} u_{w}(\phi_{1}) = 2 \cdot \pi \cdot 4^{m} k_{w} nt \sigma_{cp}^{m} \left(\frac{\cos \phi_{0} \cos \phi_{1} + \sin \phi_{0} \sin \phi_{1}}{2 \sin \phi_{0} + \pi \cos \phi_{0}} \right)^{m} \sqrt{R_{B}^{2} + 2R_{B}R \sin \phi_{1} + R^{2}}; \\ u_{w}(\phi_{2}) = 2 \cdot \pi \cdot 4^{m} k_{w} nt \sigma_{cp}^{m} \left(\frac{\cos \phi_{0} \cos \phi_{2} + \sin \phi_{0} \sin \phi_{2}}{2 \sin \phi_{0} + \pi \cos \phi_{0}} \right)^{m} \sqrt{R_{B}^{2} + 2R_{B}R \sin \phi_{2} + R^{2}}; \\ u_{w}(\phi_{3}) = 2 \cdot \pi \cdot 4^{m} k_{w} nt \sigma_{cp}^{m} \left(\frac{\cos \phi_{0} \cos \phi_{3} + \sin \phi_{0} \sin \phi_{3}}{2 \sin \phi_{0} + \pi \cos \phi_{0}} \right)^{m} \sqrt{R_{B}^{2} + 2R_{B}R \sin \phi_{3} + R^{2}}; \\ u_{w}(\phi_{4}) = 2 \cdot \pi \cdot 4^{m} k_{w} nt \sigma_{cp}^{m} \left(\frac{\cos \phi_{0} \cos \phi_{4} + \sin \phi_{0} \sin \phi_{4}}{2 \sin \phi_{0} + \pi \cos \phi_{0}} \right)^{m} \sqrt{R_{B}^{2} + 2R_{B}R \sin \phi_{4} + R^{2}}. \end{cases}$$
(16)

Как образец, покажем решение системы (16).

$$\frac{u_{w}(\phi_{1})}{u_{w}(\phi_{2})} = \left(\frac{\cos\phi_{1} + x\sin\phi_{1}}{\cos\phi_{2} + x\sin\phi_{2}}\right)^{y} \sqrt{\frac{R_{B}^{2} + 2R_{B}R\sin\phi_{1} + R^{2}}{R_{B}^{2} + 2R_{B}R\sin\phi_{2} + R^{2}}};$$

$$\frac{u_{w}(\phi_{3})}{u_{w}(\phi_{4})} = \left(\frac{\cos\phi_{3} + x\sin\phi_{3}}{\cos\phi_{4} + x\sin\phi_{4}}\right)^{y} \sqrt{\frac{R_{B}^{2} + 2R_{B}R\sin\phi_{3} + R^{2}}{R_{B}^{2} + 2R_{B}R\sin\phi_{4} + R^{2}}}.$$
(17)

После преобразований (17) получим:

$$\left(2\ln\frac{u_{w}(\phi_{1})}{u_{w}(\phi_{2})} - \ln\frac{R_{B}^{2} + 2R_{B}R\sin\phi_{1} + R^{2}}{R_{B}^{2} + 2R_{B}R\sin\phi_{2} + R^{2}}\right)\ln\frac{\cos\phi_{3} + x\sin\phi_{3}}{\cos\phi_{4} + x\sin\phi_{4}} - \left(2\ln\frac{u_{w}(\phi_{3})}{u_{w}(\phi_{4})} - \ln\frac{R_{B}^{2} + 2R_{B}R\sin\phi_{3} + R^{2}}{R_{B}^{2} + 2R_{B}R\sin\phi_{4} + R^{2}}\right)\ln\frac{\cos\phi_{1} + x\sin\phi_{1}}{\cos\phi_{2} + x\sin\phi_{2}} = 0.$$
(18)

Решая уравнение (18), получим значение x=0,785, что даёт возможность определить ϕ_0 =0,666.

Из первого уравнения системы (16) найдём значение m=3,25208. Коэффициент k_w =1,90119x10⁻⁵ найден из первого уравнения системы (16).

А с помощью уравнения (8) можно найти значение σ для конкретного значения φ.

Определим влияние зернистости на абразивный износ. Цель этой части испытаний состоит в том, чтобы получить обобщенную зависимость абразивного износа по схеме MWU с учетом размера абразивного зерна δ . В общем виде зависимость интенсивности от основных факторов, включая размер абразивных частиц, предложена:

$$\frac{\mathrm{d} \mathbf{u}_{w}}{\mathrm{d} s} = \mathbf{k}_{w} \left(\frac{\sigma}{\mathrm{HB}}\right)^{m} \left(\frac{\nu \delta}{\nu_{0}}\right) \varepsilon^{k} \,.$$

Сохраняя все факторы кроме σ и δ базовыми имеем частный случай этой зависимости в форме $\frac{du_w}{ds} = k_w \sigma^m \delta^n$, при этом HB_δ , v_δ , $v_{0\delta}$, ε_δ . В инте-

гральной форме имеет вид

$$\mathbf{u}_{w} = \mathbf{k}_{w} \boldsymbol{\sigma}^{\mathrm{m}} \boldsymbol{\delta}^{\mathrm{n}} \mathbf{s} \,. \tag{18}$$

Для определения трех параметров модели k_w , m, δ необходимо иметь три базовых точки на пространстве экспериментальных точек

$$\{u_{w1}(\sigma_{1},\delta_{1},s_{1});u_{w2}(\sigma_{2},\delta_{2},s_{2});u_{w3}(\sigma_{3},\delta_{3},s_{3})\}.$$
 (19)

Запишем модель (18) для трех точек (19)

$$\begin{cases} u_{w1} = k_w \sigma_1^m \delta_1^n s_1; \\ u_{w2} = k_w \sigma_2^m \delta_2^n s_2; \\ u_{w3} = k_w \sigma_3^m \delta_3^n s_3. \end{cases}$$
(20)

Взяв непарные отношения уравнений системы (20), получаем:

$$\begin{cases} \frac{\mathbf{u}_{w1}}{\mathbf{u}_{w2}} = \left(\frac{\sigma_1}{\sigma_2}\right)^m \left(\frac{\delta_1}{\delta_2}\right)^n \frac{\mathbf{s}_1}{\mathbf{s}_2};\\ \frac{\mathbf{u}_{w2}}{\mathbf{u}_{w3}} = \left(\frac{\sigma_2}{\sigma_3}\right)^m \left(\frac{\delta_2}{\delta_3}\right)^n \frac{\mathbf{s}_2}{\mathbf{s}_3}. \end{cases}$$
(21)

Прологарифмируем оба уравнения системы (21)

$$\begin{cases} lg \frac{u_{w1}}{u_{w2}} = m lg \frac{\sigma_1}{\sigma_2} + n lg \frac{\delta_1}{\delta_2} + lg \frac{s_1}{s_2}; \\ lg \frac{u_{w2}}{u_{w3}} = m lg \frac{\sigma_2}{\sigma_3} + n lg \frac{\delta_2}{\delta_3} + lg \frac{s_2}{s_3}. \end{cases}$$
(22)

Запишем систему (22) в следующем виде:

$$\begin{cases} m \lg \frac{\sigma_1}{\sigma_2} + n \lg \frac{\delta_1}{\delta_2} = \lg \frac{u_{w1}}{u_{w2}} - \lg \frac{s_1}{s_2}; \\ m \lg \frac{\sigma_2}{\sigma_3} + n \lg \frac{\delta_2}{\delta_3} = \lg \frac{u_{w2}}{u_{w3}} - \lg \frac{s_2}{s_3}. \end{cases}$$
(23)

Решая систему уравнений (23) относительно параметров m, n, получим:

$$m = \frac{\lg \delta_{1} \lg \frac{u_{w3}s_{2}}{u_{w2}s_{3}} + \lg \delta_{2} \lg \frac{u_{w1}s_{3}}{u_{w3}s_{1}} + \lg \delta_{3} \lg \frac{u_{w2}s_{1}}{u_{w1}s_{2}}}{\lg \sigma_{1} \lg \frac{\delta_{2}}{\delta_{3}} + \lg \sigma_{2} \lg \frac{\delta_{3}}{\delta_{1}} + \lg \sigma_{3} \lg \frac{\delta_{1}}{\delta_{2}}};$$

$$n = \frac{\lg \sigma_{1} \lg \frac{u_{w3}s_{2}}{u_{w2}s_{3}} + \lg \sigma_{2} \lg \frac{u_{w1}s_{3}}{u_{w3}s_{1}} + \lg \sigma_{3} \lg \frac{u_{w2}s_{1}}{u_{w1}s_{2}}}{\lg \delta_{1} \lg \frac{\sigma_{2}}{\sigma_{3}} + \lg \delta_{2} \lg \frac{\sigma_{3}}{\sigma_{1}} + \lg \delta_{3} \lg \frac{\sigma_{1}}{\sigma_{2}}}.$$

При вычислении пути трения расчётных точек, используем зависимости (10–11).

На основании экспериментальных данных, полученных при изнашивании латунных цилиндров и вычислении пути трения каждой расчётной точки за время всего эксперимента, составим табл. 1.

Выводы

Определены силы, действующие на цилиндрический образец. Построена зависимость давления абразива на образец в горизонтальном и вертикальном направлениях.

Рассчитан путь и скорость трения абразива по образцу.

Дополнена многофакторная критериальная модель абразивного изнашивания по схеме MWU безразмерным комплексом, связанным с давлением атмосферы и абразива на образец.

Определено влияние зернистости абразива на процесс изнашивания.

Показана методика определения основных величин влияющих на величину износа в исследуемых точках поверхности трения, а также, пути трения.

Таблица 1

φ	-90^{0}	-60^{0}	-30^{0}	0^0	30^{0}	60^{0}	90 ⁰
t, час	7	6	5	1	2	3	4
10	<u>0,0</u>	0,01	0,02	0,01	0,03	0,03	<u>0</u>
	46653	50031	58269	67930	76374	82007	83975
20	<u>0,0</u>	<u>0,03</u>	<u>0,04</u>	<u>0,02</u>	<u>0,05</u>	<u>0,05</u>	<u>0,01</u>
	93305	100062	116538	135855	152747	164014	167950
30	<u>0,01</u>	<u>0,03</u>	<u>0,07</u>	<u>0,03</u>	<u>0,10</u>	<u>0,06</u>	<u>0,01</u>
	139958	150093	174807	203782	229121	246022	251924
40	<u>0,01</u>	<u>0,05</u>	<u>0,09</u>	0,05	0,12	<u>0,08</u>	0,02
	186611	200124	233077	271709	305495	328029	335899
50	<u>0,02</u>	<u>0,06</u>	<u>0,11</u>	<u>0,06</u>	<u>0,14</u>	<u>0,09</u>	<u>0,02</u>
	233263	250155	291346	339636	381868	410036	419874
60	0,02	<u>0,07</u>	<u>0,13</u>	<u>0,07</u>	<u>0,16</u>	<u>0,10</u>	<u>0,03</u>
	279916	300186	349615	407564	458242	492043	503849
70	0,02	<u>0,08</u>	<u>0,15</u>	<u>0,08</u>	<u>0,19</u>	0,11	<u>0,03</u>
	326569	350217	407884	475491	534616	574050	587823
L_{Σ}	0,02	0,08	0,15	0,08	0,19	0,11	0,03
σ, кг/мм ²				0.02793	0.03516	0.03297	0.02194
σ_0 ,кг/мм 2				0.03552			

Зависимость износа от времени эксперимента, пути трения (м) и координаты точки для образцов δ = 0,63 –1 мм

Список литературы

1. Кузьменко А.Г. Прикладная теория методов испытаний на износ / А.Г. Кузьменко. – Хмельницький: ХНУ, 2007. – 579 с.

2. Малышев А.П. Изнашивание материалов от трения / А.П. Малышев // Вестник общества сибирских инженеров. – 1917. – Т. 2, № 5-6. – С. С. 24-27.

3. Хрущов М.М. Абразивное изнашивание М.М. Хрущов, М.А. Бабичев. – М.: Наука, 1970. – 252 с.

4. Веников В.А. Теория подобия и моделирования / В.А. Веников. – М.: Высш. шк., 1976. – 479 с.

5. Кузьменко А.Г. Теоретические основы метода испытаний на абразивный износ по схеме Малышева -Веллингера - Уэтца / А.Г. Кузьменко, О.А Вишневський // Проблеми тертя та зношування: наук.-техн. зб. – К.: НАУ. – 2011. – Вип. 55. – С. 79-82. 6. Кузьменко А.Г. Теоретические основы и экспериментальная реализация метода испытаний на абразивный износ с определением параметров моделей изнашивания по схеме Малышева-Веллингера-Уэтца(MVU) / А.Г. Кузьменко, О.А. Вишневський // Вісник ХНУ. Технічні науки. – 2011. – № 3. – С. 7-19.

Поступила в редколлегию 11.01.2017

Рецензент: д-р техн. наук доц. М.А. Павленко, Харьковский университет Воздушных Сил имени Ивана Кожедуба, Харьков.

МОДЕЛЮВАННЯ ПРОЦЕСУ ЗНОШУВАННЯ МЕТАЛІВ НЕЗАКРІПЛЕНИМ АБРАЗИВОМ

О.А. Вишневський, О.С. Давидов

Змодельований процес зношування циліндричних зразків, що виконують обертальні рухи навколо спільної осі в абразивній суміші. Розроблена методика визначення основних величин, що приймають участь в процесі абразивного зношування.

Ключові слова: тертя, тиск, твердість, лінійний знос, математична модель.

MODELING OF METAL WEAR PROCESS IS NOT FIXED ABRASIVE

O. Vishnevskii, A. Davydov

Simulated wear process of cylindrical specimens, performing rotational movements around a common axis in the abrasive mixture. A method of determining basic quantities involved in the process of abrasive wear. **Keywords:** friction, pressure, hardness, linear wear, mathematical model.